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ABSTRACT The problem of calculating binding affinities of protein–RNA complexes is addressed by analyzing a computational
strategy of modeling electrostatic free energies based on a nonlinear Poisson–Boltzmann (NLPB) model and linear response
approximation (LRA). The underlying idea is to treat binding as a two-step process. Solutions to the NLPB equation calculate free
energies arising from electronic polarizability and the LRA is constructed from molecular dynamics simulations to model reorga-
nization free energies due to conformational transitions. By implementing a consistency condition of requiring the NLPB model to
reproduce the solute–solvent free-energy transitions determined by the LRA, a “macromolecule dielectric constant” (em) for treating
reorganization is obtained. The applicability of this hybrid approach was evaluated by calculating the absolute free energy of
binding and free-energy changes for amino acid substitutions in the complex between the U1A spliceosomal protein and its
cognate RNA hairpin. Depending on the residue substitution, em varied from 3 to 18, and reflected dipolar reorientation not included
in the polarization modeled by em 5 2. Although the changes in binding affinities from substitutions modeled strictly at the implicit
level by the NLPB equation with em 5 4 reproduced the experimental values with good overall agreement, substitutions
problematic to this simple treatment showed significant improvement when solved by the NLPB-LRA approach.

INTRODUCTION

Molecular interactions between proteins and RNAs are
ubiquitous events critical to many cellular processes. With
the increasing number of reported protein–RNA complexes
determined by x-ray crystallography and NMR spectroscopy,
computational methods are challenged to provide detailed un-
derstanding of the factors that govern molecular recognition of
nucleic acids by proteins and the formation of stable com-
plexes. Included in this challenge are quantitative calculations
of the absolute binding free energies and the evaluation of the
effects of amino acid substitutions on complex stabilization.
Application of the latter is the structure-based design of protein
ligands where it is necessary to anticipate the effect of residue
substitution on binding the RNA molecule.

An attractive computational approach for estimating
binding affinities of protein–RNA complexes is continuum
models (Sharp and Honig, 1990; Olson, 1999). Rather than
enumerating the configurations of the macromolecules and
surrounding solvent by all-atom simulations, a mean-field
treatment is implemented, in which the complex is modeled
by a semimicroscopic description and the solvent by a
dielectric continuum. Electrostatic contributions to binding
affinities are calculated from numerical solutions to the
Poisson–Boltzmann (PB) equation, and nonpolar interac-
tions are modeled by using solute–solvent cavitation ener-
gies. Although several recent studies demonstrated the gen-
eral applicability of PB models for analyzing protein

interactions with nucleic acids (Misra et al., 1998; Olson
and Cuff, 1999; Reyes and Kollman, 2000a,b), many issues
remain to be clarified regarding the consistent treatment of the
dipolar response underlying macromolecular associations.

Central to the application of PB models and a source of
many of the unresolved issues is the so-called macromole-
cule dielectric constant (em). It is generally accepted that, in a
continuous approach, the soluteem is a scaling factor that
represents all of the contributions that are not treated explicitly,
rather than a true dielectric constant (King et al., 1991; Warshel
and Åqvist, 1991). Although standard continuum methods
commonly model relaxation and nonrelaxation free energies
by the application of a singleem, macromolecular dielectric
environments are in fact inhomogeneous. Dielectric constants
for proteins calculated from simulations show dipole moment
fluctuations that depend on the site considered (King et al.,
1991; Simonson and Perahia, 1995; Simonson and Brooks,
1996). In the dehydrated core regions, electronic polarizability
makes the largest contribution toem with a value of;2. Near
ionizable groups at the periphery,em reflects the reorientation
of charged side chains and contains a much larger value of
;20–40. Because of this manifold of dielectric responses, the
binding process reflects a combination of induced dipoles and
reorganization from conformational transitions. The optimal
choice of the dielectric constant to treat both contributions
presents a challenge for continuum methods. This challenge
arises principally from a lack of universality inem and the
weak connection to the physical macroscopic constant (King et
al., 1991; Warshel and Papazyan, 1998). The development of
accurate and reliable models ultimately requires a departure
from a strictly implicit scheme to that of an explicit represen-
tation of the relaxation component.

The purpose of this study is to explore the application of
combining a nonlinear PB (NLPB) model with the explicit
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determination of reorganization free energies. A computa-
tional strategy is developed that retains the simplicity of PB
models for calculating the induced polarization component,
whereas conformational transitions are modeled at the ex-
plicit level by a linear response approximation (LRA). The
LRA method provides a powerful and convenient calcula-
tional framework for determining free energies of solvation
by all-atom simulations. Recent applications of LRA in-
clude modeling protein–inhibitor interactions (Lee et al.,
1992; Åqvist et al., 1994; Muegge et al., 1997; Jones-
Hertzog and Jorgensen, 1997), protein–protein binding
(Muegge et al., 1998), and charge insertion in proteins (Del
Buono et al., 1994; Sham et al., 1997, 1998; Simonson et al.,
1999). Here, a theoretical model is provided of the free-
energy terms that contribute to complex formation between
the U1A protein and a 21-nucleotide RNA hairpin. U1A is
a component of the U1 small nuclear ribonucleoprotein and
plays a functional role in initiating spliceosomal assembly.
The complex with the RNA is well-characterized crystallo-
graphically (Oubridge et al., 1994) and experimental differ-
ences in binding affinities from amino acid substitutions
have been reported (Jensen et al., 1991; Kranz et al., 1996;
Kranz and Hall, 1998, 1999).

To establish the utility of a combined NLPB-LRA ap-
proach, a series of models were applied to the U1A–RNA
complex in estimating the absolute binding free energy and
the effects of mutations. By using molecular dynamics (MD)
simulations, reorganization in solute–solvent free energies was
evaluated by the LRA. These simulation results were com-
bined with the nonrelaxation terms calculated from the NLPB
equation to yield the final free energies. Calculations are also
reported for the application of standard NLPB methods, fol-
lowed by a nonstandard protocol of using the NLPB model
with the protein dielectric environment treated implicitly as
inhomogeneous (Olson, 1999; Olson and Reinke, 2000). The
NLPB-LRA strategy differs from the recent works of Reyes
and Kollman (2000a,b) and provides an approach by way of
LRA that is less sensitive to the large calculational fluctuations
in determining interaction energies (Muegge et al., 1998).
Moreover, the NLPB-LRA model offers a computational
framework to gauge the accuracy of implicit versus explicit
schemes for modeling associations.

THEORY AND COMPUTATIONAL STRATEGIES

General Formulation

The molecular association between the U1A protein (denoted as3) and the
RNA receptor (5) can be described as a two-step process given by (see,
e.g., Misra and Honig, 1995; Misra et al., 1998)

3 1 5 N
DGconf

3* 1 5*, (1)

3* 1 5* N
DGstatic

3*5*, (2)

where the first step accounts for the conformational transition from the
native3 and5 conformers to the functional (i.e., bound) conformers3*
and5*, and the second step describes the binding of the two macromol-
ecules in their functional state. The Gibbs free energy of binding is
obtained by combining Eqs. 1 and 2,

DGbind 5 DGconf 1 DGstatic

5 DGconf 1 DW1 DGint 2 TDS, (3)

whereDGconf is the free-energy shift upon conformational transitions, and
DGstatic is the nonrelaxation free energy. This latter term will be referred to
below as the “static” free energy that considers the single-conformer
process commonly invoked in continuum models. A more complete de-
scription for DGstatic is given by partitioning the term into independent
energetic contributions, whereDW represents the change in the potential of
mean force for3* and 5* due to solute–solvent interactions,DGint is the
interaction free energy between the bound molecules, andTDS is the
change in nonelectrostatic entropy determined at temperatureT. In Eq. 3,
the concentration of the molecular species3, 5, and 3*5*, and their
standard concentration are implicit in the given formula. A more detailed
discussion of this point can be found in a recent review (Gilson et al.,
1997).

Although the terms of Eq. 3 are an explicit function of the atomic
coordinates for the solute molecules plus solvent, the computational diffi-
culty in achieving numerical convergence in free energies from all-atom
simulations requires the development of simplified models. An implicit
model of the solvent environment can be derived from a statistical me-
chanical description of an explicit solute–solvent system (Pratt and Chan-
dler, 1977; Ben-Naim, 1990; Gilson et al., 1997; Roux and Simonson,
1999). The free energy for the3*5* complex is related to the classical
partition function,Z3*5*, and can be written as (b 5 1/kBT andkB is the
Boltzmann constant),

Z3*5* 5

EE
9

dx3*5* dy3*5*exp@2bU3*5*~x3*5* , y3*5*!#

E
9

dy3*5*exp@2bUs,s~y3*5*!#

,

(4)

wherex3*5* andy3*5* denote the atomic coordinates of a bound confor-
mational state in the ensemble and the surrounding solvent, respectively, in
volume9. The potential energy function is defined as

U3*5*~x3*5* , y3*5*! 5 Uint~x3*5*! 1 Uintra~x3*5*!

1 Um,s~x3*5* , y3*5*! 1 Us,s~y3*5*!,

(5)

whereUint is the interaction energy represented by a sum of Coulombic and
van der Waals (vdW) terms,Uintra is the intramolecular potential energy of
the complex,Um,s is the solute–solvent potential interaction energy, and
Us,s represents the potential energy of solvent–solvent interactions. Al-
though the configuration integral in Eq. 4 extends over all conformations,
it is straightforward to modify the formula to treat either molecule as partly
rigid. This will be the case for modeling the U1A protein, and the statistical
thermodynamic basis for such an approximation is well documented (see,
e.g., Gilson et al., 1997).
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The partition function can be rewritten as

Z3*5* 5 E
9

dx3*5*exp$2b@Uint~x3*5*! 1 Uintra~x3*5*!

1 W~x3*5*!#%, (6)

where

exp@2bW~x3*5*!#

5

E
9

dy3*5*exp$2b@Um,s~x3*5* , y3*5*! 1 Us,s~y3*5*!#%

E
9

dy3*5*exp@2bUs,s~y3*5*!#

.

(7)

Eq. 6 indicates an implicit representation of the solvent acting as an
external potential throughW(x3*5*) on the complex with conformation
x3*5*. Similar functions are obtained for the unbound states. One major
problem with implicit solvent formulations, as the main results of this
paper will illustrate, is extracting the dipolar reorganization from extending
W(x3) 3 W(x3*) required of modeling Eq. 1.

The solute–solvent interactions that defineDW from Eq. 7 applied to the
bound and unbound states can be separated into individual terms,

DW5 DGcav 1 DGs,vdW 1 DGs,ele, (8)

whereDGcav is the change in free energy required to form the solute-
sized cavities in the solvent,DGs,vdW is the free-energy change in vdW
interactions of inserting solute molecules into the cavities, andDGs,ele

is the change in the free energy of solvent polarization. The cavitation
term models the hydrophobic effect and is proportional to the change in
solvent-exposed surface area upon association with a constant surface
tension,g,

DGcav 5 g~A3*5* 2 A3* 2 A5*!, (9)

where theA denote surface areas. The value of the proportionality constant
g for a water–vacuum interface depends on the definition of the surface
area, either solvent-accessible surface area or molecular surface area (Jack-
son and Sternberg, 1994).

The solvent polarization term given in Eq. 8 can be conveniently
calculated from classical electrostatics by using a thermodynamic cycle of
charging and uncharging3* and 5* on complex formation (Gilson and
Honig, 1988; Muegge et al., 1997). The expression forDGs,ele can be
rewritten as

DGs,ele5 ~DGs,ele
3*5* 9 2 DGs,ele

3* ! 1 ~DGs,ele
3* 95* 2 DGs,ele

5* !

5 DDGs,ele
3*5* 9 1 DDGs,ele

3* 95* , (10)

where 3* 9 and 5* 9 are uncharged. Each free energy is determined by
applying the reference state of bringing the solvent boundary from infinity
to the solvent-accessible surface of a given solute molecule, e.g.,

DGs,ele
3*5* 9 5 Gs,ele

3*5* 9~em, es! 2 Gs,ele
3*5* 9~em, em!, (11)

wherees the solvent dielectric constant. From Eq. 10, the termDDGs,ele
3*5* 9

corresponds to the loss of solute–solvent interaction energy through the
partial desolvation of the electrostatically charged3* on binding the

uncharged5* 9; and DDGs,ele
3* 95* is the loss of solute–solvent interaction

energy through the partial desolvation of the electrostatically charged5*
on binding the uncharged3* 9. Early studies of using this particular
thermodynamic cycle in computing binding free energies are given by
Misra and Honig (1995), and Jackson and Sternberg (1995).

The contributionDGint contains polar and nonpolar intermolecular
interaction terms between3* and 5*,

DGint 5 DGm,vdW 1 DGm,ele, (12)

where DGm,vdW is the vdW contribution andDGm,ele the electrostatic
interaction component. The termDGm,vdW combined withDGs,vdW of Eq.
8 can be neglected as an approximation by invoking an enthalpy–entropy
compensation phenomenon argument (Nicholls et al., 1991). The argument
assumes that the change in dispersion energy between atoms making
interactions at the interface of the complex and atoms contacting water in
the dissociated state is equal to the loss in side-chain conformational
entropy upon association.

To evaluate the net electrostatic contribution to binding, the mean
electrical potential (w) is solved by NLPB equation

¹ z e~r !¹w~r ! 2 e~r !k2~r )sinh~w~r !! 1 4prf~r ! 5 0,

(13)

whererf is the interior charge distribution of the fixed positions described
by r of all charges in the solute molecules andk is the Debye–Hu¨ckel
parameter. The NLPB model was chosen due to the high charge density of
the phosphodiester backbone of the RNA molecule. The electrostatic free
energies are calculated from the integrals (Sharp and Honig, 1990)

DGs,ele
3*5* 9 5 E@rf

3*5* 9wpol
3*5* 9 2 ~r3*5* 9wpol

3*5* 9/2

1 DP~w3*5* 9!!#dn, (14)

DGs,ele
3* 95* 5 E@rf

3* 95*wpol
3* 95* 2 ~r3* 95*wpol

3* 95* /2

1 DP~w3* 95*!!#dn, (15)

DGm,ele
3*5* 5 E@rf

3*5*wint
3*5* 2 ~r3*5*wint

3*5* /2

1 DP~w3*5*!!#dn, (16)

wherer is total charge distribution,wpol is the potential generated from
electronic and orientational polarization,wint is the intermolecular interac-
tion potential between the solute molecules, andDP ; cb[cosh(w) 2 1],
wherecb is the bulk salt concentration.

The numerical value ofem depends on the representation of the con-
formational term implemented in modeling Eq. 1. Typically, in an implicit
approach, contributions from the native conformers of3 and 5 are not
explicitly accounted for by sampling conformational space via the distri-
bution functions similar to Eq. 6. Rather, the contribution of dipolar
fluctuations toDGconf are treated by scalingem greater than the implicit
polarizability limit of 2. This scheme models only Eq. 2 and sets the
electrostatic terms to include implicitly the structural reorganization. Cau-
tion must be used, however, in applying large values ofem ; 20 or higher
in treating reliably the charge–charge reorganization (Warshel et al., 1997;
Muegge et al., 1997, 1998; Sham et al., 1998). These scaling problems
stem from the dielectric heterogeneity and can be removed in part by
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partitioning the electrostatic terms based on ionized and polar residues
(Olson and Reinke, 2000),

DDGs,ele
3*5* 9 5 DDGs,ele

3*(ion)25* 9 1 DDGs,ele
3*(dipole)25* 9 (17)

DDGs,ele
3* 95* 5 DDGs,ele

3* 925*(ion) 1 DDGs,ele
3* 925*(dipole) (18)

DGm,ele
3*5* 5 DGm,ele

3*(ion)25*(ion) 1 DGm,ele
3*(ion)25*(dipole)

1 DGm,ele
3*(dipole)25*(ion) 1 DGm,ele

3*(dipole)25*(dipole),

(19)

where, generally,

Gele 5 Gele~em
ion, em

dipole, es!, (20)

and em
ion and em

dipole are the dielectric constants for ionized residues and
polar residues, respectively,DDGs,ele

3*(ion)25* 9 is the free-energy change
where only the ionized residues of3* contain atomic charges while5* is
uncharged, andDDGs,ele

3*(dipole)25* 9 is the free-energy change where only
polar residues of3* are charged and5* is uncharged. The remaining free
energies of Eqs. 18–19 are similarly defined. The parameterem

ion is scaled
to large values, whereasem

dipole is restricted to values corresponding to the
internal regions of globule.

An alternative approach to the implicit schemes is to model explicitly by
all-atom simulations the contribution ofDGconf as a combination of free-
energy terms,

DGconf 5 DGreorg1 DGintra, (21)

whereDGreorg represents the solute–solvent reorganization free energies
andDGintra is the free energy due to intramolecular strain of3* and 5*.
Each free-energy term contains nonbonded interactions and, in addition,
DGintra models covalent interactions. We will focus strictly on the electro-
static terms and neglect the remaining contributions. The structural reor-
ganization of33 3* (and similarly for53 5*) can be expressed as a
sum over small perturbations from the native unbound structure to the final
functional conformer

3~x3!O¡
l1

3~x1!O¡
l2

3~x2!· · ·O¡
ln21

3~xn21!O¡
ln

3* ~x3*!,

(22)

where li is the order parameter for describing the transition along the
conformational path defined byxi. The free-energy difference for each
change is given by (Zwanzig, 1954)

DGli

333* 5 2b21ln^e2bDUli&li, (23)

where ^. . .& denotes a canonical ensemble average over the potential
energy changeDUli

from the perturbationli 3 li11. Eq. 23 is a
rigorous treatment of relaxation and can be evaluated by free-energy
perturbation methods using MD simulations; however, calculations for
macromolecular assemblies are generally computationally prohibitive.
Alternatively, an LRA treatment can be constructed for modeling
reorganization in the solvation free energies by using the two endpoint
structures3 and 3*,

DDGs,reorg
333* 5 1

2
~^Um,s

3* 2 Um,s
3* 9&3* 1 ^Um,s

3* 2 Um,s
3* 9&3* 9!

2 1
2
~^Um,s

3 2 Um,s
39 &3 1 ^Um,s

3 2 Um,s
39 &39!,

(24)

where the ensemble averages are over MD trajectories using the potential
surface representing interactions between the solute and the explicit sol-
vent. The thermodynamic average corresponding to^. . .&3* is conditional
on restricting3 to the functional conformation. Eq. 24 can be reduced by
Um,s

39 5 Um,s
3* 9 5 0 and noting that the solvent in the uncharged state of3

and3* does not experience the charge distribution of the solute. This gives

DDGs,reorg
333* 5 1

2
~^Um,s

3* &3* 2 ^Um,s
3 &3!. (25)

The change in solvation of5 from its relaxed unbound conformation to the
functional form is similarly determined from

DDGs,reorg
535* 5 1

2
~^Um,s

5* &5* 2 ^Um,s
5 &5!. (26)

If both solute molecules are relaxed sufficiently, Eqs. 25 and 26 provide
good estimates of reorganization on solvent polarization due to the reori-
entation of the dipoles of3 and5.

The internal electrostatic interaction of3 is reorganized to the func-
tional 3* conformer through the potential energy surface,

DUintra,ele
333* 5 DUqq 1 DUqm 1 DUmm, (27)

representing interactions between charge–charge, charge–dipole, and di-
pole–dipole, respectively. Evaluation of Eq. 27 for discriminating between
3 and3* conformations is particularly challenging by the application of
simulation models because of computational instabilities in determining
reliable potential energies. As a simplification, we have constructed for the
Coulomb term a semimacroscopic scaling relationship based on a modifi-
cation (Warshel and Åqvist, 1991; Lee et al., 1993; Muegge et al., 1998)
of the generalized Born (GB) approximation. The underlying idea of the
scaling relationship is a partial compensation betweenDDGs,reorg and
DGintra,ele. Specifically, the change in self-energy from structural reorga-
nization is opposed by the change in charge distribution of the solute. This
offset involves detailed balance of large charge–charge interactions and is
nicely illustrated by microscopic simulations of an ion pair in solvent water
(Lee et al., 1993). Here, we model the competing energies asDGintra,ele'
2fDDGs,reorg, where f is a smooth scaling function that is assumed to
depend only upon the reorganization of the protein permanent dipoles
described byem. The functional form off is motivated by considering the
limit em3 es, which yields a free-energy balance ofDGconf ' 0 and in the
limit of small em ; 2, DGconf reaches its maximal value. The ansatz for
treating the interpolation off between the two extremes is Born’s formula.
We approximate the energy change of charging the functional conformer
from the nonfunctional form and bringing the charges from a gas-phase
dielectric to a uniformem medium by scaling the interaction energy by the
factor (12 1/em). Applying this scaling factor, the free-energy contribution
of DGintra,ele is estimated by the expression,

DGintra,ele
333* < S em

1 2 em
DDDGs,reorg

333* , (28)

whereem contains the lower bound of the electronic polarizability limit. As
noted above, we must again state that the dielectric constant represents all
contributions that are not considered explicitly. However, estimates forem

are not selected arbitrarily, but rather are obtained from applying the NLPB
equation to conformations extracted from the MD simulation trajectories
and by finding anem value that brings the continuum model in agreement
with the LRA, via Eq. 25. Although Eq. 28 is a nonrigorous approach, the
term DDGs,reorg is calculated at the explicit level and the precision of
determiningDGintra,ele by a scaling relationship should be no worse than
that of computing the difference between two very large microscopic
energy terms (see, e.g., Reyes and Kollman, 2000b). In fact, the scaling of
microscopic energy terms reduces the absolute value of the energy contri-
bution and thus increases the precision of the calculations (Lee et al., 1993;
Sham et al., 1998). A similar formulation is constructed for the5 3 5*
transition.
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Calculations

Atomic coordinates of the U1A–RNA hairpin complex were extracted
from the PDB file 1URN (Oubridge et al., 1994). Crystallographic
waters were ignored in the calculations. The initial x-ray structure (Fig.
1) contained two amino acid substitutions, Y31H and Q36R, neither of
which interacts with the RNA structure. The RNA molecule consisted
of the sequence 59AAUCCAUUGCACUCCGGAUUU39. Partial atomic
charges for U1A and the RNA were derived from theAMBER force field
(Weiner et al., 1986). Single-residue mutants (Y13F, N16V, N18A,
E19D, S46A, S48A, L49A, F56Y, R52K, and R52Q) were constructed
from the wild-type (WT) complex and, in the case of non-alanine
substitutions, the side chains were replaced with the most favorable
rotamers.

The finite-difference NLPB method (Reiner and Radke, 1990; Sharp
and Honig, 1990) implemented in the program DelPhi (Gilson and Honig,
1988) was applied for continuum calculations of the electrostatic free
energies. Electrostatic potentials for each molecule were calculated by
using the solvent-accessible surfaces to define regions of low dielectric
medium embedded in high dielectric solvent water of ionic strength set at
0.145 M. TheAMBER parameter set was used to represent the charges and
atomic radii. DelPhi calculations were carried out on a cubic grid of 1213

grid points. Ionization states were set corresponding to a neutral pH. Full
Coulombic boundary conditions were applied for all calculations and the
number of nonlinear iterations for solving the NLPB equation was set at
250. Dummy atoms were used to retain an identical scale and position on
the grid for the complex and individual structures.

The dielectric constant for the protein and RNA was initially set at
either 2 or 4, and, for modeling bulk water, a dielectric of 80 was used.
Because DelPhi treats dielectric environments as homogeneous by allow-
ing only one dielectric constant for the protein and RNA, approximations
were used in modeling a non-uniform dielectric response. We partitioned
only the protein reaction field into ionized and neutral residues by applying

em
ion andem

dipole set at 25 and 4, respectively (see, e.g., Muegge et al., 1998).
Independent DelPhi calculations were carried out by turning off the atomic
charges of ionized or polar residues, and the free energies were combined
to approximate the true final contribution. Partitioning the reaction fields
into ionic and polar components is a reasonable first approach for treating
heterogeneity and quantitative errors in the net free energies are acceptably
small due the their cancellation calculated from the thermodynamic cycle.

MD simulations for evaluating the LRA were performed using the
programDISCOVER(Molecular Simulations, Inc.) on structures representing
the bound and unbound conformers starting from the WT complex. Con-
formational sampling of the U1A structure in the bound state and the native
unbound conformer used an active-site region, in which amino acid resi-
dues positioned within 8 Å of the RNA in thecomplex were allowed to
move freely. The remaining U1A residues lying in the outer shell were
rigidly fixed to their initial positions. Dynamics of the RNA bound and
native conformers were treated as unrestrained structures, allowing the
molecules to be completely flexible. All unrestrained atomic regions were
modeled with a 16-Å layer of explicit solvent by using the TIP3P water
model (Jorgensen et al., 1983). The simulations consisted of the WT and
mutant protein–RNA complexes bound with 21 sodium counterions and
2965 solvent water molecules; the unbound WT and mutant U1A structures
with 1858 water molecules; the unbound RNA structure with 21 sodium
counterions and 2633 water molecules; and unfolded U1A in an extended
conformation with 8095 water molecules. The sodium counterions were
placed adjacent to the charged phosphate groups to neutralize the simula-
tion systems.

Simulations were initiated with 100 cycles of minimization by a con-
jugate gradient method, followed by 25-ps MD equilibration phase. The
initial atomic velocities were assigned from a Boltzmann distribution
corresponding to temperature of 298 K. Coulombic interactions were
modeled by a cell multipole method (Ding et al., 1992) with a constant
dielectric of e 5 1, and the vdW interactions were calculated using a
group-based approach with a cutoff radius of 12.0 Å. Constraints were
applied via theRATTLE algorithm (Andersen, 1983) to bond lengths of the
macromolecules plus the solvent during dynamics runs. The integration
timestep was set at 2.0 fs and ensemble averages were determined from 100
ps with coordinates saved every 500 time steps for further analysis.

The functional conformers of U1A and the RNA were extracted from
the MD simulations of the complexes. Evaluation of the LRA terms of Eqs.
25 and 26 corresponding to3* and 5* used single conformations taken
from the trajectories based by a selection criteria of yielding the smallest
root-mean-square deviation (rmsd) from the average MD structures of the
bound state. The interaction between a functional conformer and solvent
was sampled with the solute restricted to its conformation as determined
from the MD simulation, while the water molecules were allowed to move
freely. The approximation of using an average conformer based on rmsd
rather than a Boltzmann average over all MD conformers is reasonable and
the sensitivity of the results to the specific conformation was observed to
be no greater than;1 kcal/mol difference. A simulation protocol was
applied similar to that described above for the bound and native conform-
ers.

Multiconformers for the WT and mutant bound structures were gener-
ated by using a series of short MD simulations. Each structure was
analyzed from trajectories extracted from 10 independent simulations,
where each MD calculation was carried out to 20 ps of dynamics. Delphi
calculations were applied to each saved trajectory. The dielectric constant
for the electronic polarization component was set at 2. All individual
free-energy contributions were averaged over the simulation runs to yield
a final determined value.

Cavitation energies were determined from the molecular surfaces using
the Connolly algorithm (Connolly, 1981) with the solvent probed radius set
at 1.4 Å. The numerical value ofg was set at 69 cal/mol/Å2 (Jackson and
Sternberg, 1994).

FIGURE 1 Schematic illustration of the x-ray crystallographic structure
of the U1A–RNA complex. The U1A protein is depicted in a ribbon
representation colored yellow and the RNA hairpin is an oval tube colored
green. The RNA bases are depicted as ball-and-stick structures. The figure
was constructed with the program ICMlite (R. A. Abagyan and coworkers).
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RESULTS AND DISCUSSION

Absolute binding free energy

To apply a solute dielectric constant of 2 in the NLPB
model to capture the correct physics of protein–ligand bind-
ing, structural relaxation at the explicit level must be taken
into account (Sham et al., 1998; Warshel and Papazyan,
1998; Muegge et al., 1998). From LRA calculations of
relaxation combined with an NLPB model analysis of the
simulation trajectories, the electrostatic components to
DGconf are summarized in Table 1.For the transition3 3
3*, DDGs,reorg 5 ;27 kcal/mol and indicates that the
functional form of U1A exhibits a more favorable solvation
free energy than that corresponding to the native conformer.
To put this number in proper perspective, the change in
self-energy for the interfacial residues from the native con-
formation to a simulation model of the unfolded state is
DDGs,reorg 5 ;259 kcal/mol. The interfacial surface of
U1A consists primarily of loop structural elements, and
ligand binding selects a dipolar orientation more disordered
than that of the native conformer. Yet, an ordered state is
achieved in which the protein dipoles are orientated with the
electrostatic potential of the RNA molecule.

The end effect of the33 3* structural reorganization is
molecular complementarity with the RNA; however, not all
protein residues contribute favorably to the transition. Illus-
trated in Fig. 2 are residue contributions toDDGs,reorg for
the transition projected onto the U1A molecular surface.
Surfaces colored red depict residues that strongly favor
solvation of the functional conformation (DDGs,reorg, 22
kcal/mol) and blue-colored surfaces strongly favor the na-
tive conformation (DDGs,reorg. 1 kcal/mol). Intermediate
are residues moderately influenced by the solvent in either
promoting (yellow/orange) or hindering (green) the transi-
tion. An interesting feature of the free-energy decomposi-
tion at the residue level is the dispersal of “hot” and “cold”
regions. A possible significance of the solute–solvent “fin-

gerprint” is cooperativity, where a recent study of protein–
protein complexes (Freire, 1999) suggested that low-stabil-
ity regions might be involved in the transmission of binding
information to regions other than the interface. An implica-
tion of this, as noted by Nussinov and coworkers (Tsai et al.,
1999), is that stable regions contribute to conformational
specificity and less stable regions are more flexible in
accommodating binding affinity.

The role of protein–solvent reorganization as a determi-
nant of which residues contribute to specificity or binding
affinity relates to the magnitude in individual free-energy
transitions. In other words, significant changes in solvation
generally arise from conformational specificity, whereas
highly flexible residues show marginal transitions. Charged
residues E19 and R52, critical for the formation of specific
U1A side-chain interactions with RNA bases, are strongly
facilitated by the solvent in obtaining the functional con-
former. For these residues, the solvent acts as a facilitator in
shifting the conformer populations. Although both E19 and
R52 are positioned in loop regions and show free-energy
preferences for hydration of the unfolded state versus the
native state, MD simulation of the native structure indicates
stable conformations for the side chains (Fig. 3a). Not all
conformationally specific ionic-charge interactions are nec-
essarily favorable in solvation changes. For example, K80
forms a hydrogen bond with the base U8 in the simulation
structure and prefers the native conformer. Residues impor-
tant solely for binding affinity of the RNA phosphodiester
backbone (e.g., K20, K22, and K23) generally show large

TABLE 1 Conformational reorganization free energies
(kcal/mol) for wild-type U1A and RNA hairpin structures

Free Energy
Term

LRA Continuum model

em 5 1 em 5 2 em 5 4 em 5 6 em 5 8 em 5 10

DDGs,reorg
333* 26.8 224.5 211.8 210.5 27.6 23.4

DDGintra,ele
333* 7.8–13.6* 48.9 15.7 12.6 8.7 3.8

DDGconf
333* 1.0–6.8 24.4 3.9 2.1 1.1 0.4

DDGs,reorg
535* 22.5 221.6 210.3 26.4 24.6 23.5

DDGintra,ele
535* 2.7–5.0a 43.2 13.7 7.7 5.3 3.9

DDGconf
535* 0.2–2.5 21.6 3.4 1.3 0.7 0.4

DGconf 1.2–9.3 46.0 7.3 3.4 1.8 0.8

*Calculated using a range ofem values from 2 to the value obtained from
fitting the NLPB calculation to the results determined by the LRA model.
Statistical errors;1–3 kcal/mol.

FIGURE 2 The change in free energy of solvation for the U1A transition
from the native to functional conformer projected onto the protein molec-
ular surface. The free energy scale (kcal/mol) is as follows: surfaces
colored red depict residues that contribute free energies,22 kcal/mol;
22 , orange, 21; 21 , yellow , 0; 0, green, 11; blue. 11. The
gray-colored surface regions represent no free-energy changes. Bound
RNA hairpin is shown colored purple.
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side-chain orientational fluctuations in the MD structures,
whereas the local shifts in solvation between functional and
native conformers are insignificant. A noted exception is
S48, which is part of a flexible loop in the free structure and
shows a large unfavorableDDGs,reorg. Hydrophobic contacts
at the interface from Y13 and L49 display favorable values
for DDGs,reorg, albeit the transitions as expected are much
smaller than ionic interactions.

Although solvation favors the3* conformation, the free-
energy barrier to sampling this conformational state for the

native protein is the strain energy incurred at the bound
conformation. Estimates of this penalty can be obtained
from the scoring function of Eq. 28; however, one must first
resolve the problem of choosing an optimal value for the
protein dielectric constant describing the energetics of the
internal transition. One approach to tackling this problem is
to require consistency between calculations of an NLPB
analysis of the conformational ensemble generated from the
MD trajectory and the LRA results. This consistency con-
dition yields a linear relationship between the explicit and

FIGURE 3 Stereo views of the conformational transitions between the native and functional conformers for (a) the U1A protein and (b) RNA structure.
Structures shown as thin lines were extracted from MD simulation trajectories of the native conformers and structures shown as thick lines were takenfrom
the x-ray crystal structure of the bound conformers.
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implicit models, and leads to a natural description of mo-
lecular association, namely, multiple dielectric constants
reflecting different aspects of binding. Here, the result is the
application of two dielectric constants for the implicit
model, one treating the static component of electronic po-
larizability and the second treating relaxation involving the
motion of charged or polar atoms. This idea of a multistep
component analysis is particularly applicable to modeling
mutations and is conceptually similar to a recent study of
charge insertion in an enzyme-active site (Simonson et al.,
1999). From Table 1,DDGs,reorg, calculated from the NLPB
model, is consistent with the free energy determined by the
LRA for a value ofem ; 8. This value for the dielectric
constant correctly accounts for relaxation (i.e.,.2) and
indicates that the residues responsible for the conforma-
tional transition are moderately polarizable. Using this
value of em in Eq. 28, the electrostatic “strain energy” is
estimated atDGintra,ele5 ;8 kcal/mol. Alternatively, using
an em of 2 or 4 in the scoring function yieldsDGintra,ele5
;14 kcal/mol and 9 kcal/mol, respectively. Combining the
strain energy term with the transition in solvation energy,
the shift in the static electrostatic free energy for U1A is
DGconf ; 1–7 kcal/mol. The calculated range forDGconf is
physically reasonable, showing a value less than the free
energy of unfolding for the U1A protein, which is 9 kcal/
mol at neutral pH (Lu and Hall, 1997).

For the5 3 5* transition of the RNA,DDGs,reorg 5
22.5 kcal/mol from the LRA model and the NLPB calcu-
lation requires anem ; 14 to bring the self-energy in
agreement with the LRA. This yields a dielectric constant
for the RNA that provides for significant dipolar reorienta-
tion and is notably higher than that obtained for modeling
the U1A protein reorganization. From the simulation mod-
els, the rmsd between the bound and unbound RNA con-
formers is greater than 3 Å (Fig. 3b), whereas for the
protein, the rmsd is;1 Å. Longer simulations of the free
RNA show an rmsd. 5 Å (Tang and Nilsson, 1999). The
conformational flexibility and the modeled dielectric relax-
ation of the RNA is consistent with the observation from
NMR studies of the free U1 snRNA hairpin that the loop is
largely unstructured in free RNA (Allain and Varani, un-
published; referenced by Oubridge et al., 1994). The calcu-
lated shift in the RNA free energy upon binding U1A is in
the range of 0.2–2.5 kcal/mol. The small magnitude of
DGconf suggests a rugged free-energy topology with a large

ensemble of RNA conformers easily accessible to the func-
tional conformation by thermal fluctuations and without any
significant electrostatic penalty.

Given the caveats of the GB-modeled scoring function of
Eq. 28 and the approximation that the neglected terms of
Eq. 21 offset their net contribution to reorganization, the
total DGconf for association is in the range of 1.2–9.3 kcal/
mol. Conformational sampling implemented in arriving at
the free-energy shift was limited to relaxation of local
structural changes, rather than the computationally more
difficult problem of calculating global changes. We should
note, in particular, that the MD calculations were carried out
to relatively short times, and full convergence may not have
been achieved in sampling complete torsional rotations.
Nevertheless, the length of the simulations are typical of
LRA calculations (Åqvist et al., 1994; Muegge et al., 1998)
and extending the simulation time suggests that conver-
gence inem was adequate. An important point is that the
calculated variation inem from the two structures is clearly
much larger than the fluctuations inem from sampling a
single structure. A recent application of a more global
approach using a combination of molecular mechanics and
a PB model withem set to unity similarly reports a net
unfavorable electrostatic contribution to the conformational
transition for U1A–RNA hairpin binding (Reyes and Koll-
man, 2000b). Although the magnitude of the individual
electrostatic terms calculated by the two computational ap-
proaches differ, both show the fundamental result of solva-
tion promoting the shift in populations on the energy land-
scape favoring the functional conformers.

Table 2 presents the individual free-energy terms that
contribute to the molecular association between the U1A
protein and the RNA hairpin. The static terms were deter-
mined from the single-conformer model describing Eq. 2.
Each calculation displays highly favorable electrostatic in-
termolecular interactions, yet the net electrostatic compo-
nent is unfavorable due to the desolvation cost of releasing
the interfacial waters from the protein and RNA surfaces.
Unlike other modeled protein–nucleic acid complexes
(Misra et al., 1998; Olson and Cuff, 1999), where the
desolvation cost of the nucleic acid is much larger than the
protein, displacement of the waters at the RNA surface for
a single dielectric model is more favorable than the desol-
vation cost of the U1A protein. The lack of significant
buried surface of the RNA phosphodiester backbone in the

TABLE 2 Absolute free energy of binding (kcal/mol) without explicit relaxation for the U1A–RNA complex*

em DDGs,ele
3*5*9 DDGs,ele

3* 95* DGm,ele
3*5* DGele

3*5* DGcav
3*5* DGconf 2TDS DGbind DGexpt

2 57.6 42.8 247.6 52.8 274.7 1.2–9.3† ;10 211–22 214.2
4 28.1 23.4 228.8 22.7 274.7 10.5–18.6‡ ;10 232–223
4, 25 9.9 23.4 220.3 13.0 274.7 10.5–18.6‡ ;10 241–233

*Experimental data taken from Williams and Hall (1996).
†Combination of solvation free energy and strain energy.
‡Strain energy only.
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low-dielectric molecular interface provides for the low de-
solvation penalty. Structurally, the ten-nucleotide RNA loop
binds to the surface of U1A as an open structure (see Fig. 1)
and the nucleotide sequence of the loop interacts exten-
sively through stacking of RNA bases with side chains of
the protein. The solute–solvent cavitation offsets the elec-
trostatic penalty and stabilizes complex formation. This
compensation from hydrophobicity mirrors results calcu-
lated for protein–protein complexes using various PB ap-
proaches (see, e.g., Olson, 1998) and is similar to that
previously noted for proteins binding nucleic acids (Misra et
al., 1998; Olson and Cuff, 1999).

The calculated net value ofDDGs,reorgat ;29 kcal/mol
for U1A–RNA complex formation indicates that the im-
plicit models ofem 5 4 and the non-uniform approach of
using the combination ofem 5 4 and 25 overestimated the
contribution due to dipolar transitions. Consequently, an
empirical value ofem for the WT complex is 2, a value
equivalent to that used a priori in the two reported studies of
protein–nucleic acid complexes (Misra et al., 1998; Olson
and Cuff, 1999). This leaves an entropic cost to be calcu-
lated in reconciliation ofDGbind with DGexpt. Although the
total entropic change on macromolecular association can be
determined by calorimetric experiments, interpretation of
the results in terms of individual energetic contributions is
not clear. The loss of translational and rotational conforma-
tional degrees of freedom is difficult to calculate by rigor-
ous methods and their magnitude on protein–ligand inter-
actions has led to considerable debate (Karplus and Janin,
1999; Privalov and Tamura, 1999). Nevertheless, some
progress has been made recently in calculations of binding
entropy (Hermans and Wang, 1997; Sham et al., 2000).
Here, we will take theoretical estimates of the transla-
tional and rotational loss for protein–protein assemblies
to be in the range of 7–15 kcal/mol at room temperature
(Karplus and Janin, 1999; and references cited therein).
Using a value of;10 kcal/mol, we obtained aDGbind of
;22 to 211 kcal/mol (reported in Table 2), whereas the
experimental binding affinity is214.2 kcal/mol (Wil-
liams and Hall, 1996). In comparison with other reported
continuum model predictions of absolute binding affini-
ties (Jackson and Sternberg, 1995; Froloff et al., 1997;
Olson, 1998; Olson and Cuff, 1999), the predictions
outlined here are quite reasonable for the U1A–RNA
complex. It should be mentioned that the estimated en-
tropy used in the calculations is much less than that
determined by Reyes and Kollman (2000b), and the latter
might be difficult to reconcile with values suggested by
other researchers (Karplus and Janin, 1999; Hermans and
Wang, 1997; Sham et al., 2000).

Differential binding free energies

Because of the general computational simplicity of PB
models, these approaches are currently popular for evaluat-

ing energetic changes on macromolecular complexes due to
amino acid substitutions. Table 3 presents the relative free-
energy changes determined by the NLPB model for 10
single-residue protein substitutions without any explicit re-
organization. The calculations are compared with experi-
mental data taken from Nagai and coworkers (Jensen et al.,
1991). Note that, for several of the mutants, somewhat
different values forDDGexpt have been reported, particu-
larly Y13F, where the relative change is 2.4 kcal/mol
(Kranz and Hall, 1998). Nonetheless, the general conclu-
sions of the calculations remain essentially unaffected. A
scatter plot of the calculated change in free energy versus
DDGexpt is presented in Fig. 4a.

Results for the two uniformem models show mean abso-
lute errors of61.4 kcal/mol forem 5 2 and61.1 kcal/mol
for em 5 4. For mutants Y13F, N16V, and S46A, modeling
only static polarization effects of the electrostatic contribu-
tion appears to be adequate for obtaining reasonable agree-
ments with experiments without the need of including con-
formational transitions. Treating the protein dielectric
heterogeneity yields no significant improvement in the
mean error from theem 5 4 model (typically the standard
protocol in applying continuum models), although, in sev-
eral cases, better quantitative agreement is achieved. For
example, the two-state dielectric model for R52K reduces
the error from 0.8 to 0.1 kcal/mol. More promising overall
results for partitioning the dielectric environment were ob-
tained in modeling protein–protein complexes (Olson and
Reinke, 2000). However, improvement may be made if a
field correction is incorporated in the hydrophobic effect
(Muegge et al., 1998), thus reducingDGcav. Further exam-
ples are needed to gauge the applicability of this computa-
tional strategy. Altogether, the calculations for U1A–RNA
complex were able to discriminate between many of the
mutational effects and to detect the significance of Arg52 in
binding the RNA. The errors are quite encouraging for
modeling mutations of protein–RNA complexes by using
continuum methods and are comparable with similar mod-
eling studies of other macromolecular complexes (No-
votony et al., 1997; Olson, 1998; Sharp, 1999; Olson and
Cuff, 1999; Olson and Reinke, 2000).

To explore the application of the NLPB–LRA formalism
in modeling the free-energy change underlying conforma-
tional reorganization, five mutants were selected: Y13F,
N18A, E19D, L49A, and R52Q. From the single-conformer
(nonrelaxation) results of Table 3, two of these mutants,
E19D and L49A, show significant changes due to hydro-
phobic effects at the interface, and a simple modification of
the total electrostatics by scalingem will not reconcile the
differences between theory and experiment. The mutant
R52Q was chosen to examine the performance of the NLP-
B–LRA approach in evaluating mutations where binding is
significantly reduced, as well as the effect of charge dele-
tions on calculatingem.
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Summarized in Table 4 are the conformational transition
free energies for the mutants. Because of the smaller net
change in the calculatedDGconf of the RNA in the WT
complex, we applied the LRA method only to the protein
interactions that contribute to the free energy of binding.
The results show that, on account of the structural pertur-
bations, the protein–solvent reorganization varies signifi-
cantly among the different mutants. Each calculated reor-
ganization term by the LRA method directly reflects the
electrostatic potential felt by the protein and explicit solvent
atoms. Consequently, a physical basis is provided for un-
derstanding the solvation free energies of incorporating
amino acid substitutions. The large increase in the R52Q
DGs,reorg from the WT structure indicates a considerable
change in solvent polarization due to the charge deletion,
whereas, in contrast, the change for Y13F is much smaller.
None of the mutants modified the solvation preference for
the functional conformation, and two of the amino acid
substitutions increased the equilibrium shift greater than the
WT transition.

A variation is similarly observed for the reorganization
dielectric constant calculated from fitting the NLPB model
to the LRA result. Approximate values obtained forem are
7 for Y13F, 3 for N18A, 4 for E19D, 6 for L49A, and 18 for
R52Q. Values of the dielectric constants are comparable to
the dielectric constants approximated from MD simulations
(King et al., 1991; Simonson and Perahia, 1995; Simonson
and Brooks, 1996). Moreover, the calculations correctly
showed that, accounting for conformational flexibility, an
em value is necessarily greater than the static limit of 2.
Consistent with the WT complex, the continuum model
leads to a representation with two solute dielectric con-
stants. The NLPB calculations further indicate thatem is
very different for charged and uncharged deletions. This
result is not very surprising and reflects the current trend in
continuum modeling of applying largeem values of;20 for
handling the overestimation of charge–charge interactions
(see, e.g., Olson, 1998). The NLPB results also suggest a
correspondence between the magnitude ofem and the extent
of conformational flexibility, although caution must be used

TABLE 3 Relative free-energy changes (kcal/mol) without explicit relaxation for U1A mutants*

Mutant em DDGs,ele
3*5* 9 DDGs,ele

3* 95* DDGm,ele
3*5* DDGele

3*5* DDGcav
3*5* DDGbind DDGexpt

Y13F 2 1.2 20.1 0.0 1.1 0.0 1.1 1.9
4 0.6 0.1 20.2 0.5 0.0 0.5

4, 25 0.5 0.1 0.1 0.7 0.0 0.7

N16V 2 0.0 0.0 0.9 0.9 0.0 0.9 1.6
4 0.1 0.1 0.2 0.4 0.0 0.4

4, 25 20.3 0.1 0.4 0.2 0.0 0.2

N18A 2 20.1 20.1 0.0 20.2 0.0 20.2 1.0
4 0.0 0.1 20.2 20.1 0.0 20.1

4, 25 20.1 0.1 0.0 0.0 0.0 0.0

E19D 2 24.9 20.9 6.2 0.4 2.0 2.4 0.4
4 22.4 20.3 2.8 0.1 2.0 2.1

4, 25 20.2 20.3 0.5 0.0 2.0 2.0

S46A 2 0.0 20.2 0.5 0.3 0.1 0.4 0.4
4 0.0 0.0 0.1 0.1 0.1 0.2

4, 25 20.1 0.0 0.3 0.2 0.1 0.3

S48A 2 20.9 20.3 0.8 20.4 20.1 20.5 0.4
4 20.4 1.5 0.2 1.3 20.1 1.2

4, 25 20.4 1.5 0.5 1.6 20.1 1.5

L49A 2 20.5 1.1 0.1 0.7 1.8 2.5 0.4
4 20.2 1.3 20.1 1.0 1.8 2.8

4, 25 20.1 1.3 0.0 1.2 1.8 3.0

F56Y 2 1.1 0.2 0.8 2.1 20.3 1.8 0.7
4 0.5 0.2 0.2 0.9 20.3 0.6

4, 25 0.5 0.2 0.4 1.1 20.3 0.8

R52K 2 0.0 21.2 2.8 1.6 0.6 2.2 0.7
4 0.1 20.5 1.3 0.9 0.6 1.5

4, 25 0.1 20.5 0.4 0.0 0.6 0.6

R52Q 2 23.5 21.7 11.3 6.1 1.6 7.7 .4.0
4 21.9 20.7 6.9 4.3 1.6 5.9

4, 25 0.4 20.7 4.2 3.9 1.6 5.5

*Experimental data taken from Jensen et al. (1991).
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because of the implicit formulation ofem. With the dielec-
tric constants, each protein–solvent reorganization term is
offset by the transition in the internal energy, with N18A
showing the greatest conformational penalty.

An important result of linking the NLPB model with the
LRA is a clear demonstration of the difficulty in deriving a
consistent value forem in applying a strictly implicit scheme
to modeling conformational flexibility. This indicates that,
although MD simulations applied to the structural relaxation
of 3* can sample significant local reorganization, a mean-
ingful NLPB analysis of the conformations from the trajec-
tories requires the correct a priori choice ofem. This is of

practical concern for continuum models, because the results
of Table 4 show that there is no single optimumem that
treats all substitutions. A direct implication of this is the
difficulty in applying the hydration free energy calculated
by standard continuum methods to the problem of distin-
guishing between native and non-native conformations, par-
ticularly the selection of loop conformations (e.g., Pellequer
and Chen, 1997). The results further show that applying the
standard protocol ofem 5 4 to calculating the change in
DGs,reorgrelative to the WT U1A yields free energies that,
when added to the static polarization term, does not improve
the overall predictions. For example, calculations for Y13F
indicateDDGs,reorg5 20.9 kcal/mol, and, when combined
with DDGbind of 1.1 kcal/mol (Table 3 calculated withem 5
2), the net result is 0.2 kcal/mol; a value in the wrong
direction when compared with experiments. Clearly, adding
the DDGintra,ele contribution has little effect on improving
the overall accuracy of the predictions whenem is incorrect.

Rather than relaxing only the unbound state, a multicon-
former model must be applied to the complete thermodynamic
cycle. Table 5 and Fig. 4 report the results obtained with full
relaxation of the individual energetic components that contrib-
ute toDGstatic, combined with the conformational free energies
taken from the LRA withem determined via the NLPB model.
Several observations can be made of the calculated results. The
first is that MD sampling of only the complex configuration
and using the generated bound3* and 5* conformers in
NLPB calculations of the thermodynamic cycle failed to help
the reconciliation ofDDGstatic with experimental data for all
mutants. This is particularly evident for E19D, where the
multiconformerDDGstaticstill displays considerable error with
DDGexpt, although the trend is in the right direction from the
single-conformer free-energy value of Table 3. One mutant
where relaxation significantly helps is L49A. Nevertheless,
calculations that are more consistent are obtained by including
at the explicit level theDDGconf by the LRA method. An
accurate modeling procedure cannot generally be developed
from merely adding theDDGconf contribution to the single-
conformer results. Again E19D provides an example, where
DDGconf 5 1.7 kcal/mol and the addition of this term to the
single-conformerDDGbind of 2.4 kcal/mol from Table 3 failed
to improve the results. The second observation is that confor-
mational averaging combined with the explicit determination
of the reorganization component removes the inconsistencies
in the application ofem. The NLPB model contribution that is
calculated with the static limit of including only electronic
polarizability ensures a proper treatment of the nonrelaxation
free energies, whereas LRA accounts for the dipolar transitions
without forcing homogeneity inem.

Although the results of the NLPB–LRA calculations show
excellent overall agreement with experiments, we conclude
with a few cautionary comments regarding the statistical er-
rors. Because of computational instabilities typically encoun-
tered in the relaxation of global structural changes, conforma-
tional sampling was limited to relaxation of local changes.

FIGURE 4 Scatter plots ofDDGcalc versusDDGexpt for single-residue
substitutions. (a) Results of the NLPB equation with the macromolecule
dielectric constant modeled by using a value of 2 (circles) or 4 (triangles).
(b) Results of the NLPB–LRA computational approach with the individual
free energies calculated as a sum of the static polarizability limit by using
a dielectric constant of 2 combined with the structural transition term
determined by the LRA. The calculated points for R52Q are not included
in the plots.
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Nevertheless, propagation of the statistical variances for the
free-energy terms are quite significant (Table 5) and arise
primarily from sampling electrostatic interactions at the com-
plex configuration. The large fluctuations observed in the sim-
ulation trajectories of relaxing the interfacial perturbations are
similarly problematic of other MD strategies applied to the
U1A–RNA complex (Reyes and Kollman, 2000a). The LRA
method of calculating free energies of solvation combined with
the corresponding NLPB analysis are numerically more stable,
resulting in errors of;1–3 kcal/mol (Tables 2 and 4), which
are comparable with reported protein–protein binding studies
(see, e.g., Muegge et al., 1998). Without resorting to the
significant computational demands of free-energy perturbation
methods, the magnitudes of statistical errors render the calcu-
lations of DDGbind to be qualitative. Yet, the NLPB–LRA
approach is sufficiently reliable and thus provides a powerful
tool for gaining valuable information regarding the dielectric
response underlying the variations in the free-energy values.
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333* 25.6 28.2 24.0 22.6 21.9 21.4

DDGintra,ele
333* 8.7* 16.4 5.3 3.1 2.2 1.6

DDGconf
333* 3.1 8.2 1.3 0.5 0.3 0.2

E19D DDGs,reorg
333* 28.2 218.0 28.8 25.8 24.2 23.3

DDGintra,ele
333* 10.9* 36.0 11.7 7.0 4.8 3.7

DDGconf
333* 2.7 18.0 2.9 1.2 0.6 0.4

L49A DDGs,reorg
333* 28.2 226.3 212.6 28.1 25.8 24.5

DDGintra,ele
333* 9.8* 52.6 16.8 9.7 6.6 5.0

DDGconf
333* 1.6 26.3 4.2 1.6 0.8 0.5

R52Q DDGs,reorg
333* 21.1 232.1 215.5 29.9 27.2 25.5

DDGintra,ele
333* 1.2* 64.2 20.7 11.9 8.2 6.1

DDGconf
333* 0.1 32.1 5.2 2.0 1.0 0.6

*Calculated usingem values of;7 for Y13F, 3 for N18A, 4 for E19D, 6 for L49A, and 18 for R52Q. Statistical errors;1–3 kcal/mol.

TABLE 5 Relative free-energy changes (kcal/mol) for U1A
mutants calculated with full relaxation*

Mutant DDGele DDGcav DDGstatic DDGconf DDGbind DDGexpt

Y13F 1.8 20.6 1.2 0.2 1.4 1.9
N18A 0.3 21.1 20.8 2.1 1.3 1.0
E19D 0.1 21.3 21.2 1.7 0.5 0.4
L49A 22.0 2.7 0.7 0.6 1.3 0.4
R52Q 4.7 1.4 6.1 20.9 5.2 .4.0

*Errors from averaging over the simulations forDDGbind range from65.3
kcal/mol to613.0 kcal/mol.
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