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ABSTRACT Autocrine loops formed by growth factors and their receptors have been identified in a large number of
developmental, physiological, and pathological contexts. In general, the spatially distributed and recursive nature of autocrine
signaling systems makes their experimental analysis, and often even their detection, very difficult. Here, we combine
Brownian motion theory, Monte Carlo simulations, and reaction-diffusion models to analyze the spatial operation of autocrine
loops. Within this modeling framework, the ability of autocrine cells to recapture the endogenous ligand and the distances
traveled by autocrine ligands are explicitly related to ligand diffusion coefficients, density of surface receptors, ligand
secretion rate, and rate constants of ligand binding and endocytic internalization. Applying our models to study autocrine
loops in the epidermal growth factor receptor system, we find that autocrine loops can be highly localized—even at the level
of a single cell. We demonstrate how the variations in molecular and cellular parameters may “tune” the spatial range of
autocrine signals over several orders of magnitude: from microns to millimeters. We argue that this versatile regulation of the
spatial range of autocrine signaling enables autocrine cells to perceive a broad spectrum of environmental information.

INTRODUCTION

Cells actively modify their environment (Werb and Yan, engineered epidermal growth factor receptor (EGFR) systems
1998). Membrane proteases degrade the extracellular m&@®ong, 1999; Shi et al., 2000; Lauffenburger et al., 1998;
trix; receptors and proteoglycans shed from the cell surfac®eWitt et al., 2001; Oehrtman et al., 1998; Lauffenburger et
selectively block the incoming signals; cells secrete solublel., 1995). In particular, it has been found that autocrine cells
ligands that bind to receptors on their own surfaces. The lastan be extremely efficient in processing and responding to
process defines an autocrine loop: a mode of cell signalingecreted ligands, and that autocrine loops appear to function in
in which a cell both releases a soluble factor and respondsg spatially localized manner (Lauffenburger et al., 1998; Dong
to it (Sporn and Todaro, 1980; Sporn and Roberts, 1992)et al., 1999). For example, EGFR ligands made at the basolat-
Autocrine loops formed by growth factors and their recep-eral surface of polarized epithelial cells do not enter the bulk
tors are ubiquitous in cell biology and have been identifiedmedium unless the EGFR are blocked (Kuwada et al., 1998).
in a large number of normal and pathological contexts. Atsimilar observations have been made in related contexts: e.g.,
the same time, the principles governing their operation angequlatory cascades stimulated by the spatially restricted net-
their role in cell and tissue regulation are largely unex-yorks of paracrine and autocrine growth factors were identi-
plored. A distinguishing characteristic of autocrine systems;eq at various stages @rosophiladevelopment (Casci and

is their structural complexity, stemming both from the mul- Freeman, 1999), in bone remodeling (Goldring and Goldring,
tip[icity of their components and from the variety of mech- 1996), and in wound healing (Tokumaru et al., 2000). Al-
anisms through which these components can be regulategh,,gh the mechanism of self-stimulation involving the auto-
Endogenous ligands are produced in extremely low amouni§;ine release of growth factors and cytokines appears to be
and are suspected to operate at submicron dlr'nens"onﬁniversal, little is known about the length scale over which any

These. factors makg the experimentql a”a',ys,‘s' and even tQf\/en autocrine loop operates, or about the molecular and
detection, of autocrine loops exceedingly difficult (Lauffen- cellular properties that govern the spatial range of autocrine

burger et al., 1998; DeWitt et al., 2001). signals

Over the past few years, much has been learned abOUtA mechanistic model relating the operation of autocrine

important characteristics of autocrine loops from the studies Olfo ops to their structural components can assist their exper-

imental detection and guide the development of strategies
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The paper is organized as follows: In the next section, wes %), and are converted to surface complexes with the rate
describe a continuum reaction-diffusion model for a singleconstantk,,, (moles * cm® s™%). Surface complexes disso
autocrine cell. We state the governing equations and deteciate with the rate constark,; = k, K4 (s°1) and are
mine the key dimensionless groups characterizing cell'sndocytosed with rate constait(s ™).
ability to recapture the endogenous ligand. Following that, The governing equations and boundary conditions are
we use Brownian motion theory and stochastic simulations

to characterize random paths followed by autocrine ligands. % _ [azL + 23"] (1)

Our results explicitly relate the spatiotemporal properties of at ar> - roor]’

these paths to ligand diffusion constants, density of surface

receptors, and rate constants of ligand binding and endo- dﬁs = —KyRL(Feen) + kotC + S — ke 2
dt - n cell ff Rsv ( )

cytic internalization. Finally, we use both approaches to
examine autocrine loops in the EGFR system. In the final dc

section, we discuss the recently proposed “ce_II sonar” hy- 5= k,,RL — koC — k.C, (3)
pothesis (Lauffenburger et al., 1998), according to which t
cells use the spatially restricted networks of autocrine

growth factors to actively probe their microenvironment. D L(;"f”’ Y = —q+ KynRL — koC, L(o2, t) = 0.
CONTINUUM MODEL OF BINDING 4)
AND TRANSPORT The system of equations is rendered dimensionless by the

In this section, we use a continuum reaction-diffusiontransformations,
model to analyze transport and binding in an autocrine

system. We consider a single autocrine cell. Our analysis p= L, T=kgt, L= L

enables the computation of the fraction of endogenous li- Feel K

gand recaptured by the autocrine cell, and the evaluation of _C. . R (5)
the transient ligand-receptor binding in an autocrine cell. C= gk’ R= gk’

First, we analyze the transient problem, deriving the re-
duced binding/transport model that depends only on thehe coordinate is scaled by the cell radius; the time is scaled
concentration of surface receptors and ligand/receptor conby the inverse dissociation rate constant; ligand concentra-
plexes. Our continuum model is similar to the one followedtion is scaled by the equilibrium binding constant; the
by Shoup and Szabo (1982); Goldstein and Dembo (1995kurface densities of free and occupied receptors are scaled
Berg and Purcell (1977); and Starbuck et al. (1990). Apy the density of receptors in the absence of ligaRd £
hybrid stochastic/deterministic approach to modeling of augk_). The rescaled problem becomes

tocrine loops has been proposed by (Forsten and Lauffen-

burger, 1994b); our analysis is fully deterministic. Then, we aL %L 24l
solve the steady problem, deriving the equation for the €91 ap? pop’ (6)
steady probability of ligand recapture as a function of the o
measurable parameters of autocrine loops. & = =

The model (Fig. 1A) accounts for the concentration of d4r - TR+ YA =R+ G )
endogenous ligand, (moles/cnd), and the surface densities N
of free and occupied surface receptd®s{moles/cni) and (LC — R 1 c 8
C. (moles/cr), respectively. The cell is modeled as a dr 1-67 8)

hemisphere with radius.;, placed on an infinite plane. L1 1)

is mimi i . aL(1, T o
This mimics an autocrine cell attached to a'substraf[e, 'by — —Au+ 8DaRL, L(x, 7) = 0. 9)
symmetry arguments, the same model applies to binding ap
and transport around an autocrine cell suspended in solu-, di ionl ,
tion. We consider the axially symmetric spatial distribution V€& dimensionless groups appear in Egs. 6-9,

of ligand around the cell. Ligand secretion is uniformly

. . . . Areen I<onrcellS kc
distributed over the cell surface, resulting in the steady flux Au= DK.® Pa= kD Y= Koy
of autocrine ligandsy (moles/s/crf). Ligand released in the d ft
extracellular medium diffuses with constadt(cn?/s) and k. Feor Kot (10)
reversibly binds to cell surface receptors with the binding d= Ko+ Koy e=—p -

constantK, (moles/cni). The newly synthesized receptors
arrive to the cell surface with the flux(moles/s/crf); they  The first of these dimensionless groups, is the Autocrine
are constitutively internalized with the rate constdgt number, the ratio of the ligand concentration at the cell
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surface in the absence of surface receptors to the dissociandogenous ligand that escapes from the autocrine cell is
tion constant of a ligand-receptor pair. The secddd, is  found asf/q. The remaining fraction of the secreted ligand
recognized as the Darkier number that quantifies the defines the (steady) probability of ligand captuRe,, =
relative importance of ligand binding and transport (Deen,1 — f/g. Finding the steady state of Egs. 7—8 as a function
1998). The third groupy, compares the rates, with which of ligand concentration at the cell surface, and then substi-
free receptors are removed by constitutive internalization, tauting this expression into the analytical solution of the
the rate with which they are freed by dissociating com-boundary value problem for the extracellular ligand (Egs. 6
plexes. For a bound ligand, the fourth grodpdefines the and 9),P.,,is expressed as a function Af, Da, vy, and$,
probability of being internalized. Finally, is the time scale
for the extracellular diffusion. Da = PeaAU Peap _
The system of Egs. 6-9 is nonlinear; its solution, in Y 8(1 — Peap)
general, requires numerical methods. We have discretizefl
the partial differential equation in this problem using equi-
distant finite differences. The semi-infinite domain was
approximated by a large finite domain with the Dirichlet
boundary condition at the outer boundaltyr(, ) = 0); the

(14)

he classic Berg/Purcell expressid?,,, = Da/(1 + Da)
(Berg and Purcell, 1977), is recovered in the limits of
infinitely fast ligand internalization or negligible rate con-
stant of complex dissociation. A&tu = 0, P.,,simplifies to
Pcap = Dadl/(1 + Dad). At low autocrine numbers, i.e., low

dfor?/%'g:ii Og«e:ZIItlemnteSatherg(Ziri;Ti?) ﬁeyoriggéﬁstéefr:i ?r?f)imtesecretion rates, we can use the implicit function theorem to
P PP approximateP.,, as

problem. Discretization leads to a large dynamical system
for the evolution of the concentrations of ligand on the grid Dad Aud

points and the surface densities of surface receptors and Peap = 1+ Das v(1 + Das)?’ (15)
complexes. This system was solved using a fully implicit

time-integration method with a sparse linear system solverThis captures the initial decrease in the fraction of recap-
Numerical solution was used to check the accuracy of théured ligand with the increase in the ligand secretion rate.
simplified transport/binding model that can be derived fromWhen transport is rate limitingXaé >> 1), the last expres-
Eqgs. 6-9. sion become®_,, ~ 1 — AudyDa’.

For high values of the secreted growth factor diffusivity,
concentrations of soluble species evolve on the time scal
that is much shorter than that of surface receptors an NALYSIS OF LIGAND TRAJECTORIES
ligand/receptor complexes. In this regime the binding/transtn this section, we use Brownian motion theory and sto-
port model can be simplified. Using a steady-state approxehastic simulations to analyze the statistical properties of
imation for the concentration of endogenous ligand, we camandom paths followed by autocrine ligands from the point
solve for the value of this concentration at the surface of oubf their release on the cell surface until their removal from
autocrine cell, the extracellular medium (Fig. B). Our results are in the

form of cumulative probability distribution functions that
. (11) relate the spatiotemporal properties of random trajectories
1+ DaR to the measurable parameters of autocrine systems. In par-

icular, we focus on the spatial and temporal extrema of the

Substituting this expression into the dynamical balance fo{r. tories followed b tocrine ligands. This leads to th
surface receptors and ligand/receptor complexes, we obtafpplcctones Totowed by autocrin€ figands. 1his feads to the

the lumped model for binding and transport, I%'sc;tiprr;ates of the spatial and temporal ranges of autocrine
dR _Au+ DaC _ B Our analysis is based on a model in which a ligand is
&~ Ri7par TY@-R+C  (12)  represented by a point particle that is released at the origin
and randomly moves in the half-space above the plane
dC _ Au+ DaC C covered by reversible traps that represent surface receptors
o R1iDar 1-5 (13)  (wang et al., 1992; Lagerholm and Thompson, 1998; For-
sten and Lauffenburger, 1994a; Agmon and Edelstein,
By construction, the steady state of the lumped system i4997). Transport of autocrine ligands in the extracellular
identical to that of the full model (Egs. 6—9). Furthermore,space is modeled as the three-dimensional Brownian mo-
for small values of parameter dynamics of the lumped tion. The distribution of surface receptors is assumed to be
model is in excellent agreement with that of the full model,uniform in space and time. Surface complexes, produced
Egs. 6-9. when a ligand binds to one of the surface receptors, diffuse
We can now analyze the steady probability for ligandin two dimensions and are removed from the surface by
recapture. Defining to be the steady mass flux of ligand internalization and dissociation. The dissociated ligand,
from the cell surfacef = D(dL(r.ey)/dr), the fraction of again, moves in the half-space above the plane covered by
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FIGURE 1 Models of binding and transport in autocrine systemy. (
Continuum model. A cell is modeled as a hemisphere with radigs
placed on a plane that does not absorb secreted ligand. The model accounts
for the surface densities of receptors and ligand-receptor complexes, and i
for the radial distribution of endogenous ligand. The inset shows the main X
physical processes: receptor synthesis and constitutive degradation, ligand
secretion at constant rate, diffusion, reversible binding, and endocytosiFIGURE 2 Definition of the random variables that characterize stochas-
(B) Stochastic model. A Brownian particle is released at the surfacaic trajectories (see text for details). Every trajectory is composed of an
randomly covered by reversible traps. Each trajectory is composed of @qual number of two- and three-dimensional segments. Random variables
random number of two- and three-dimensional “segments.” Bound particleharacterizing the composite trajectories are related to the corresponding
is removed from the surface by a combination of two first-order processesiandom numbers of the individual segments. In this example, the ligand is
in one of these processes, the particle is again released into the half-spaiggernalized after the first binding event and the composite trajectory
above the plane, the other process terminates the trajectory. consists of one three-dimensional and one two-dimensional segment. Max-
imal radial displacement of the composite traject®y,,, is bounded from

L displacen K >CLOLY, !
receptors plane until the next binding event. Thus, a trajec?0Ve PYRmax = R + Ria, the sum of maximal displacements in two
P P 9 J and three dimensions. IB). The solid and dashed lines represent the

,torY fO”OW.Ed *?y a. ligand from the time of its release until radial parts of the two- and three-dimensional segments, respectively.
its internalization is composed of an equal number of two-trajectory is terminated aftef,,,, = T2, + T22,. Maximal vertical

and three-dimensional random “segments” (see Fi@).2 displacement iZ2,, (A).

Four random numbers can be associated with each compos-

ite trajectory:Z,,,.,andR ., denote the maximal excursions

in space, T, is the time interval between the particle’s In the model, we do not restrict the motion of Brownian
release and internalization, and 2s the number of seg- particles, allowing for arbitrarily large lateral and vertical
ments. The cumulative distribution functioR§Z,,., = z, displacements prior to capture. Although, in reality, the
P{Rax = r}, and P{T,,.x = t} quantify the spatiotemporal finite size of the cell and system boundaries influence the
extent of autocrine loops. By containing the informationtransport of autocrine ligands, analysis of ligand motion in
about the statistical properties of the extremal properties odn unbounded case is quite useful. As far as lateral con-
ligand trajectories, these distributions provide quantitativestraints on the trajectory are concerned, our analysis is
estimates in answering the following question: how far doapplicable to the analysis of transport above a confluent
autocrine signaling loops extend into the cell’s microenvi-monolayer or an epithelial layer of autocrine cells. See
ronment? For example, the probabil®{Z,,., = 7} char- Freeman (2000) for many examples of this problem in the
acterizes the maximal distance traveled by the secretecbntext of developmental biology. In addition, the rates with
ligand normal to the cell surface. which the spatial distribution functions approach unity, as
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their arguments increase, indicate whether secreted ligandived; here, we only summarize our analytical results. Note
are captured before they reach an absorbing boundampat the distribution 0%, Rpae @nd T,.x are not inde
placed at the argument of the distribution function. Forpendent of each other; they are distributed according to the
example, the probabilitP{ Z,,.. = Z} can be interpreted as joint multivariable distribution function. Here we report the
the probability of the particle being absorbed before reachmarginal probability distributions foZ,,,4,, Ryase @NdTiax
ing the perfectly absorbing boundary located at the height The joint distributions for the random variables character-
above the layer of autocrine cells. izing the individual segments can be easily obtained from
The number of segments in a composite trajectory ighe linear boundary value problems stated in Appendices A
related to the probability of ligand internalization. From the and B.
previous section, this probability is given loy= kJ(Ky; + The statistical properties of the three-dimensional seg-
ko). The number of “visits” to the surface, therefore, is aments depend on receptor densityforward ligand/recep-
geometric random variable with parame&efRoss, 1972); tor binding constank,, and the ligand diffusivity in the
hence, on the average, composite trajectories hawel/é6  extracellular mediumD. In this approach, the receptor
two-dimensional (and an equal number of three-dimendensity, o, can be identified with the surface density of
sional) segments. unoccupied receptors in the continuum modegl).( The
Consider a particular composite trajectory consisting ofcumulative distribution functions of the random variables
2N segments as in Fig. & andB. Three random numbers T332 R3P andz 32 can be approximated by the following
are assigned to each of tiethree-dimensional segments: expressions (Appendix A):

Z30. . and R%, ; denote the maxilgnal vertical and lateral

excursions of a particle, where@s>, ; is the time elapsed 3D ( t) _ ( t)
. iS5 PITR <t} ~ —|=1-Erf —
from the release of the ligand and to its next capture. In T max = = Gr{ oon D rfex| okn D/’

complete analogy, two random numbers can be associated

with each of theN two-dimensional segment?.,'ﬁf,,mi is the (20)
duration of theith visit to the surface, aannZX’i is the ooz okyZID
maximal distance the particle diffuses before it is either PlZox=2= Gz( D ) =1+ ok, ZID’ (21)
internalized or dissociated. Random variables characteriz- "
ing a composite trajectory are related to the corresponding okl okyf/D
random variables of the individual segments, PR =1}~ GR( D ) Z1.87+ ok, /D" (22)

N N where Erfcx is the scaled complementary error function

Toax= 2T i+ 2T oo (16)  (Abramowitz and Stegun, 1964).
i=1 i=1 The statistical properties of the two-dimensional seg-
Zo = MaXZ 2, 1N (17) ments depend on the rate constants of dissocigktignand

endocytic internalizatiork,, as well as on the diffusion
N N coefficient of the bound ligandD,. In Appendix B, we
<R .= D D 18 derive the following expressions for the cumulative distri-
Rinex = R ,:ElRE"aX" I:ElR'Z“aX" (18) bution functions of the random variabl&g2, and T22

The last inequality follows from the fact that every trajec- P{RMx=r}=1— 1o(r (ke + kot)/Dy),  (23)
tory can be fully enclosed by a cylinder with the radius 0 _
Ry €qual to the sum of the maximal radial displacements PThax=1th =1 —exd—(ke + ko)t],  (24)

of all the segments (Fig. B). Hence, the cumulative dis- \ynerel, is the modified Bessel function of the first kind of
tribution function of random variableR,,,, provides an  54er zero (Abramowitz and Stegun, 1964).
upper bound for the lateral extent of autocrine loops, In Fig. 3, each of the derived distributions is plotted as a
= function of the corresponding dimensionless variable. The
P{Rmax = 1} = P{Rnac = 1 (19) cumulative distributions foR32,, 732 andT22, are easily
At the end of this section, we describe efficient Monte Carloinvertible; hence, generation of the corresponding random
algorithms for the numerical generation of the cumulativevariables is trivial. Generation d®22, and T>2_ is easily
distribution functions 0fZ,,,, Rpae and T, Our alge  accomplished by numerical inversion. To generate each of
rithms are based on direct generation of the random nunmthe random variables, we generate a uniformly distributed
bersz3 R T3 R andT22. The algorithms are random number and use it as an argument of the inverse of
direct in the sense that extremal properties of Browniarthe cumulative distribution function (Dagpunar, 1988).
paths are obtained without simulation of the paths them- The foregoing provides a basis for the straightforward
selves. In Appendices A and B we illustrate how cumulativeMonte Carlo algorithms for the generation of the random
distribution functions for these random variables are devariablesZ,, ., Rnae and T, Each algorithm starts by
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FIGURE 3 Distribution functions characterizing the spatiotemporal extent of the two- and three-dimensional parts of “composite” trajectories.
Cumulative distribution functions are plotted as functions of their dimensionless arguments.

drawing a random numbeN, from the geometric distribu- 2000; Zwick et al., 1999). At the same time, dysregulation
tion with parameters; N is the number of returns to the of the various parts of the EGFR system has been correlated
surface. For a fixedN, Z,, is generated by calculating a with several stages of tumorigenesis (Tang et al., 1997; Kim
maximum of N independent random numbers distributedet al., 1999; Wells, 2000; O-Cahroenhat et al., 2000). EGFR
according toP{Z,. = 2z, Eq. 1. For a fixedN, R,..iS  belongs to the class of receptor tyrosine kinases (Zwick et
generated by adding two terms, which correspond to thal.,, 1999; Wells, 1999; Moghal and Sternberg, 1999).
sum ofN random variables distributed accordingRpR32,  Bound receptors dimerize, cross-phosphorylate their cyto-
= r}and P{R22, = r}. In the similar generation of,,.,, the  plasmic tails at several tyrosine residues, forming a signal-
two terms correspond to the sum of theandom variables ing complex that provides a scaffold for the components of
distributed according t®{ T2, =< r} and P{T22 = t}. intracellular signaling cascades (Schlessinger, 2000). Acti-
For each of the random variabl@s,,,, Ryae aNdTae  vation of EGFR system is commonly accomplished by
generation of 1Hrealizations took-2 min on a 450 MHz locally produced ligands and can be classified as paracrine,
PC. To determine the cumulative distribution functions forautocrine or juxtacrine. It is known that EGFR ligands are
Zmaxe Rmax OF Traw We first generated multiple realizations produced in the form of membrane-bound precursors that
(10% of the corresponding random variable. An accurateare processed into soluble form by membrane metallopro-
discrete approximation of the corresponding distributionteases (Massague and Pandiella, 1993). In several cases, it
function was then assembled through statistical analysis aas demonstrated that biological activity of soluble ligands
the resulting database. is much greater than that of their membrane-bound precur-
sors. In the EGFR system, the perturbation of the external
EXAMPLE APPLICATION: AUTOCRINE LOOPS IN part of.autocrine loops critically affech' cell’s proliferative
THE EGFR SYSTEM and m|gra§0ry pa_tterns, and the ablllty' of cells to self-
assemble in multicellular structures (Wiley et al., 1998;
In this section, we use our continuum and stochastic modelBong et al., 1999; Tokumaru et al., 2000; Kalmes et al.,
to analyze autocrine loops in the EGFR system. Signalin@000).
through EGFR is critical in defining and modulating normal  Equilibrium and kinetic parameters for binding and traf-
physiological responses, such as cell proliferation, differenficking in growth factor receptor systems, including the
tiation, and motility (Casci and Freeman, 1999; Davies etErbB1-4 system to which the EGFR belongs, have been
al., 1999; Hackel et al., 1999; Kim et al., 1999; Wells, 1999,well documented; furthermore, experiments either reporting
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diffusivities of growth factors in tissues or allowing their P apfAt.Da)
estimation from data have recently started to appear (Dowd S ‘ ‘
et al., 1999; Strigini and Cohen, 2000; Haller and Saltzman,
1998; Entchev et al., 2000). These data can be directly
incorporated into our models of autocrine loops.

First, we analyze the steady probability of ligand capture
by a single autocrine cell. Fixing the value of rate constants 3|
kot ko, andks—the intrinsic parameters of autocrine loops, 5
we examine the effects of parameters that can be manipu- <
lated—the rates of ligand and receptor synthesis (Dong, 2
1999; Dong et al., 1999; DeWitt et al., 2001). In our model,
this amounts to the variations in the Darhker (Da) and
Autocrine @Au) numbers. Using Eqg. 14, we plot the lines of
constant capture probability?.,, in the Da-Au plane, ~
Flg 4, Q-7

Consider an autocrine cell equipped with®Ir@ceptors 0
and producing one ligand molecule per second (the lower
limit of secretion rates reported in DeWitt et al., 2001). At
fixed values for the rates of ligand and receptor synthesis, B
theAuandDa depend on the extracellular ligand diffusivity,

D. Reported valueB for peptide growth factors range from 075/
10~ cné/s in free solution to 10* cn?/s in the extracel
lular matrix (ECM) (Dowd et al., 1999). Low values of
ligand diffusivity arise from the combination of geometric s 050
and hydrodynamic effects with the reversible ligand binding o
to the components of the ECM (Johnson et al., 1996). In our
model, changing the extracellular ligand diffusivity with all

0.25}
parameters held constant, shifts the autocrine cell along the
line Da/Au = 0/R;k,4. We predict that, depending on the
value of extracellular ligand diffusivity, our cell can recover
0

from 10 to 65% of endogenous ligand. Hence, our analysis 1(')4 10
of steady ligand recapture probability indicates that auto- # receptors/cell
crine cells can be very efficient in recapturing the endoge-

nous ligand and, accordingly, that autocrine loops can OpI_:IGURE 4 ?teady—state a_nalysis of the continuum moa_RaI.L(nes of
erate already at a single cell level equal probability of capture in th&u-Da plane computed with Eq. 14 for
y . 9 . i L vy =0.1ands = 0.5.P.,,for a single autocrine cell computed as a function
Recent experiments with autocrine systems indicate thajt the extracellular ligand diffusivity. Parameters usiég= 10~ *> moles/

ligand release is dynamically regulated through the activityen®, k. = 1/60+ 0.1 s°%, k,,, = 1/60* 10'* moles * cm®s™%, k. = 1/60

of ligand-releasing proteases (Arribas et al., 1996; Carpen0.01s™ k.= 1/60%0.15 % re = 5+ 10 *cm,Q = 1 molecule/s/cell,

ter, 1999; Dent et al., 1999; Dethlefsen et al., 1998; Diaz10" receptorsicelld = 10°% 10°% 10 cnffs. @) Peap for a single

Rodriguez et al.. 2000: Doedens and Black. 2000 Ean anitocrlne cell as a funcnon of the number of receptors/cell computed for

! ! ! v veral values of ligand release ra@.= 1/60 = 1, 100, 1000, 4000

Derynck, 1999; Gechtman et al., 1999). To examine thénolecules/cell/s; all other parameters asAd. (

dynamics of ligand-receptor binding induced by a step-

change increase of the rate of ligand release we use the

time-dependent continuum model, Egs. 12—13. As we see igeveral values of the effective diffusivify. In these compu-

Fig. 5, steady receptor occupancy can be achieved relativelations, the surface receptor density corresponds toet@p

quickly, within 15-30 min. Note that the reduced modeltors uniformly distributed over the surface of a disk-like cell

provides a very accurate approximation to the transienwith 10-um diameter. We see that,@t= 10 ° cné/s, 90% of

computed with the full model, Egs. 6-9. the ligand molecules are bound before reaching the height of
We now turn to the analysis of random trajectories followedone micron. Autocrine loops become progressively localized

by autocrine ligands. Consider a confluent monolayer or aras D decreases. Charged ligands strongly interacting with

epithelial layer of autocrine cells. We start by analyzing thecomponents of ECM, such as HB-EGF, will have even smaller

effect of ligand diffusion in the extracellular medium. In Fig. 6 values of effective diffusivitiesd§ < 10~ ° cn/s); autocrine

A, the distribution functio?{ Z,,., = 7}, which quantifies the loops formed by these ligands are likely to be even more

probability that the ligand is bound for the first time before localized. This means that absorbing boundary placed at

diffusing to the height above the cell surface, is plotted for heights above &m above the layer of autocrine cells will have
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FIGURE 5 Evolution in the number of ligand receptor complexes
(scaled by the total number of receptors/cBY}, = sk in response to a B \
step-change in ligand secretion computed with a continuum model. Time is
scaled by the dissociation rate constant of the ligand/receptor complex. In
the computationk,, = 1/60+ 0.1 s %, Ry = gk, = 10° receptors/cellQ
was changed from O to 1/68 1000, 1/60* 2000, and 1/60+ 4000
molecules/cell/s. All other parameters as in F&). Solid line Full model

<r}

Egs. 6-9.Circles Pseudo-steady-state approximation, Eqgs. 12-13. The 9,;12 05
PDE for the spatial distribution of endogenous ligand was discretized using a

100 equidistant intervals.

negligible effect on the statistical properties of the trajectories
followed by autocrine ligands. Thus, prior to the first binding
event, autocrine ligands sample a very small volume. 0 2 4 6 8 10

Our analysis was done for the case when the extracellular z. [uml
Iigand di.foSiVity is space independent. The str_uctural andFIGURE 6 Autocrine loops in the model of the EGFR/EGF system:
biochemical complexny of the extracellular matrices is Only analysis of random trajectoriesd)(Effect of the ligand diffusivity in the
now starting to be appreciated. The cell surface proteolglyextraceliular medium on the distribution function for the radial component
cans can reversibly bind peptide growth factors, loweringof the three-dimensional segment computeddgr= 1/60+ 10** moles *
the value of the effective diffusion coefficient next to the cm’s * and 16 receptors/cell. B) Effect of the spatially nonuniform
surface. To analyze the effects in the spatial variation of th%xt_racellular ligand diffusivity. Diffusivity is a stepwise function of the
diffusion coefficient, e.g., lower value of diffusivity next to eight above the cell surface,
the surface, consider the case when the diffusivity is a [ Dy z=sw
piecewise constant function of the height above layer of D _{ D, z>w -
autocrine cells. Straightforward modification of the bound—Comput'altion parameter®, = 10~® cn/s, D, = 107 cls;w = 0, 0.1
ary value problem (Eq. A9) for the case with the space- 104 0.25+ 104 0.5+ 104 and 1 10 cm.
dependent diffusivity leads to the following expression for
the cumulative distribution function characterizing the max-

imal vertical displacement: can be realized in the medium whebe= 107 cn¥/s and
P{zL <7 the surface is surrounded with the low diffusivity layer of
one micron. Hence, the parameters that characterize the
ok,nZ/Dy _ nonuniformity in the spatial distribution of ligand transport
1+ ok,Z/D, Z=12, properties can play critical roles in governing the operation
= ok, ZID, + z/D, — z,/D, (25)  of autocrine loops (and other ligand/receptor systems).
1+ ok,z/D, + 2JD, — 7D, z2>17. We have also calculated the minimal number of surface

receptors that ensures that a ligand is bound, for the first
The effect of the nonuniformity in the diffusivity on ligand time, with high probability (95%) before diffusing to a
recapture is presented in FigB5 Note that 90% capturing radial distance equal to the linear dimension of the cell. For
efficiency of the homogeneous medium with= 10 8cn?  this, the inequalityP{ R32, = r.,} = 0.95 has to hold

Biophysical Journal 81(4) 1854-1867



1862 Shvartsman et al.
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FIGURE 7 Number of surface receptors needed to ensure that ligand is

bound for the first time before diffusing to a distance equal to the linear

dimension of the cell (5¢ 10°* cm), plotted as a function of ligand v,
diffusivity for several values ok, 1/60= 10*° 1/60+ 10*, and 1/60: =0
10'2 moles ! cm®s~ 1. Computations are based on Eq. 22. a

0.25+

(reen = 5 wm). Using Eq. 22, the calculation of the requisite

surface density is done analytically. The requisite number of

surface receptors is an increasing functiopfs shown in 0

Fig. 7. The figure also illustrates the sensitivity of the

requisite number of surface receptors to the forward bindingiGURE 8 Effect of multiple binding events. The number of binding

rate constant. The higher the valuekgf, the greater is the events is given byN = 1 + k,/k.. Radial and vertical distribution

spatial localization of autocrine loops. Consequently, fewefunctions computed fob = 109 cn/s, D, = 10 ** cm/s and several

receptors are needed to ensure binding within a specifieﬁa(')‘;f: g;':rg/:f The distribution functions were constructed using the
;i . . gorithm in Appendix C.

distance, ifk,, is large.

Multiple binding events preceding the eventual ligand
internalization delocalize autocrine loops. This is illustrated
in Fig. 8, A andB, which show the function®{Z,,.. = Z} CONCLUSIONS
andP{R,,. = r} for several values of the parametef;/k;, ~ We have developed mechanistic models of binding and
the magnitudes for vertical and radial excursions increas@ansport in autocrine systems. The continuum model allows
with k,«/k.. Recall that the average number of bindingthe evaluation of the steady and transient ligand recapture
events isN = 1 + kys/k.. The rate constants of ligand probabilities as functions of the ligand diffusivity, kinetic
dissociation and endocytic internalization are approximatelyand equilibrium binding constants, and internalization rate
equal for the EGFR/EGF pair; henbe~ 2. We have found constants characterizing the ligand/receptor pair. A stochas-
that, even aD = 10 ° cn/s, autocrine loops are quite tic description of the extremal properties of trajectories
localized for the parameters and receptor densities charaéellowed by autocrine ligands provides direct estimates for
teristic of the EGFR system. Although the value of thethe spatial range of autocrine loops. Applying our models to
surface diffusion coefficientDg, has no affect on the ver study autocrine loops in the EGFR system, we found that
tical extent of autocrine loops, it strongly affects their radialthe distances over which cells communicate with their en-
span. In fact, surface diffusion becomes the main source ofironment using secreted endogenous ligands can vary from
the radial dispersion whel > 108 cn/s. submicron to tens of microns as a function of such param-

Surface mobility of ligand/receptor complexes in growth eters, as receptor density and endocytic rates. Thus, cells
factor systems can be impeded by their interaction withhave the capability to tune the range of their autocrine loops
cytoskeletal components and by the presence of “corralsthrough the regulation of gene expression levels and choice
that compartmentalize the cell surface (Saxton, 1994, 199%f ligand family members. These levels of regulation are
1996, 1997; Saxton and Jacobson, 1997) in our computasertainly present in the EGFR system: Cells equipped with
tions we useD = 10~ ** cn/s. the EGFR autocrine loops release several types of the EGFR

r, [um]
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ligands, such as heparin-binding EGF, transforming growtt1998). Note that, in most of the experimental reports of
factor alpha, and amphiregulin. Concurrently secreted li-autocrine systems, the spatial range of autocrine loops is
gands can differ in their binding affinities, levels of their inferred from indirect measurements: e.g., changes of the
interaction with the extracellular matrix, and binding/traf- cell migratory parameters or spatial distribution of the ex-
ficking rate constants. Surface receptor densities are regyression of the gene activated by the activated receptor. Our
lated by a variety of mechanisms, from relatively fast re-models provide fast access to the estimates of the quantita-
ceptor-mediated endocytosis, to slower changes at the levéle characteristics of autocrine loops that cannot be easily
of gene expression. Rates of EGFR ligand release can k@ directly measured.
differentially regulated by surface metalloproteases. Such Both the deterministic and stochastic approaches can be
versatility in autocrine regulation is likely to be character- easily extended to account for other processes of ligand/
istic of other growth factor and cytokine systems. Thisreceptor systems, such as recycling of internalized ligands
indicates that an important fraction of information process-and receptors. A combination of ligand diffusion, binding,
ing in cell communication can take place even before thénternalization, and recycling has been recently shown to
intracellular signaling circuitry is engaged. define the morphogen gradients in the developing tissues
Both the deterministic and stochastic models are easy t(Strigini and Cohen, 2000; Entchev et al., 2000). These
use. The evaluation of the steady capture probability in-quantitative measurements of the spatial distribution of the
volves solving a single algebraic equation, Eq. 14. Thdigands and its target genes can be used together with our
transient binding and transport problem had been convertechodels to extract the kinetic and transport parameters from
to a second-order dynamical system that serves as an acca-system that cannot be easily reconstituted using the cell
rate approximation of the original model, Eqs. 12—-13. Thetissue culture experiments.
distribution functions characterizing the spatiotemporal ex- Spatially restricted operation of autocrine loops might
trema of the two- and three-dimensional random paths arbave important consequences for the dynamics of intracel-
provided by explicit analytical expressions, Eqgs. 20—24. Wdular cell signaling. Rapidly mounting experimental evi-
have to rely on the simulation when computing the distri-dence indicates that proteolytic release of growth factors
bution functions of composite (a mix of two- and three- can be activated by the signal transduction pathways that are
dimensional) random paths. These simulations, howevestimulated by the corresponding growth factor receptors. In
are straightforward to implement and extremely efficient;an autocrine cell operating in the regime of efficient ligand
our Monte Carlo procedure relies on the analytically avail-recapture, this can establish a positive feedback loop. In-
able distribution functions for the extrema of individual, deed, positive feedback has been identified in the EGFR
two- and three-dimensional segments. system: the EGFR stimulates the Ras-MAPK pathway, that,
We have used our models and algorithms to analyze théhrough still ill-defined processes, activates ligand-releasing
operation of autocrine loops in the EGFR system. Based oprotease, leading to a further increase of receptor occupancy
the continuum model, we conclude that autocrine cells camand activation (Dent et al., 1999). Using this positive feed-
be very efficient in recapturing endogenous ligand. Henceback loop, autocrine cells can fine-tune their responses to
autocrine loops can operate already at the level of a singlexogenous stimuli. Specifically, both the duration and the
cell. This is consistent with experiments that report thatamplitude of signaling through the Ras-MAPK pathway can
effects of autocrine signaling can be detected in migratonpe influenced by the autocrine loops. When autocrine loops
responses of single epithelial cells equipped with the EGFRire closed, i.e., endogenous ligands are recaptured, the
autocrine loops (Dong et al., 1999). In these experimentslynamics of MAPK induced by a transient exogenous stim-
interrupting autocrine loops at the stages of ligand release arlus is large amplitude and persistent; when the autocrine
recapture, using inhibitors of ligand-releasing proteases doop is interrupted at the stage of ligand return to the
receptor-blocking antibodies resulted in significant changesurface, the dynamics of induced MAPK signaling is low-
of the speed and persistence of random walks executed @mplitude and transient. The fact that secreted growth fac-
autocrine epithelial cells. Using our stochastic model, wetors can bind to the components of the extracellular matrix
have found that, prior to their capture, autocrine loopsindicates that the dynamics of intracellular signaling in-
sample a very small volume of the extracellular medium.duced in an autocrine cell by exogenous stimuli is sensitive
Specifically, in the EGFR system, autocrine ligand is boundo the composition of cellular microenvironment. Hence,
for the first time before it has a chance to leave the “pillbox” spatially localized autocrine loops emerge as modules for
with the characteristic dimension of 243n. This estimate  (extracellular) context-dependent signaling. This mecha-
is important in light of recent findings in developmental nism of context-dependent cell signaling, efficient ligand
biology, reporting that, in developing tissues, autocrine sigtecapture+ positive feedback involving ligand release,
naling through the EGF receptor proceeds in the spatiallyprovides a working model for the “cell sonar” hypothesis,
restricted manner. Specifically, in thHgrosophilaoogene- according to which autocrine cells use endogenous ligands
sis, secreted ligand Spitz (a homologue of the mammaliato probe the composition of their microenvironment
TGFa) has been estimated to act on 3—4 cells (StevenglLauffenburger et al., 1998).

Biophysical Journal 81(4) 1854-1867



1864 Shvartsman et al.

APPENDIX A: RANDOM PATHS LEADING TO THE Formally, if the probabilities of escape to the perfectly absorbing
FIRST CAPTURE surfaces are denoted lyz,) ande(z, r,), respectively, then
Consider a Brownian particle moving in the half-space above a plane
covered by traps, which are distributed with surface densitjrapping is G,(z, ket D) = 1 — £(0), (A7)
characterized by the forward rate constiapnt The cumulative distribution
H o 3D D 3D
functions of random variableg32 , R22  andz32, depend on parameters GR(R1 keﬁ, D) —1— 8(0, 0). (A8)
a, kyp, andD,
P{T®, =t} = F+(t, 0, ko, D), Al
{ max } T( Kan ) ( ) We now specify the boundary value problems forFor the Brownian
P{Rrsn%x = r} = Fx(r, o, Koy D), (A2) partlcle_ starting ar, € [0, z], the p!’ObabIhty of escaping to the perfectly
absorbing boundary at heightis given by the solution of the boundary
value problem,
P{Zrax=12 = F2(z 0, kon D). (A3) P
The first step in our derivation of approximate expressions for these distribu- d’%
tion functions involves averaging of the heterogeneity of the trapping surface. E =0, ¢ |ZO:Z =1 D dizo 20=0 = keffs- (A9)

In this way, the surface is modeled as trapping everywhere, with the surface

reaction rate constakyy. This effective rate constant appears in the boundary

condition of a diffusion equation that describes the evolution of the probability

density function of particle coordinates. In the simplest approximatign= For the Brownian particle, starting inside the infinitely tall cylinder of
ok, Deriving effective rate constants from the structural parameters of@diusr, the probability of escaping to the perfectly absorbing side is given
heterogeneous systems, in this case a two-dimensional surface covered W

partially absorbing traps, is the subject of active research (Zwanzig and Szabo,

1991; Belyaev et al., 1999; Torquato, 1991). 190 de 9%

Let p(f, t|f,, 0) denote the probability density function of particle r? l’oy + 67 =0, (AlO)
coordinates at timg given that, initially, the particle was locatedgt= 0770 0 2
(Xor Yo Zo)- The evolution of(F, t[f,, 0) is governed by diffusion equation,
ap p  *p P de de
—=D|-st st =1, | =kgs, .| =0, gl =1
ot [ax2 a2 0| (AD) el 925 20-0 Kere gl ro=0 lro—r
p(F, t[fo, 0) = &(F — To), (A5) (Al1)
p
D Y = Kefp. (A6) Note that, although we are solving for escape probabilities in the
z=0 domain bounded by the trapping surfaces, we are interested in solutions

The chosen approximation for the effective boundary condition on theevaluated only at a single point. We ne€0) andz(0, 0) for the first and

trap-covered surface is based on using the low-density limikjprand second boundary value problems, respectively. Both problems can be

on the steady-state value of the bimolecular reaction rate Constan§olved analytically. The solutions, expressed in terms of dimensionless

(Zwanzig and Szabo, 1991). Because these assumptions provide a Iow\éerlrlablesz = ker?/D andr = keqr/D are

bound fork. (Belyaev et al., 1999), our estimates of the spatial and B
temporal extent of autocrine loops will be conservative. Hence, auto- pA
crine loops will be even more localized than predicted by our analysis. GA(Z, ket D) = G,() = 1+ 7 (A12)
With heterogeneity in the boundary condition removed, we can derive
expressions for the distribution functions characterizing extrema of the
Brownian paths leading to the first capture. Approximations for the distri- GR(Ra keﬁv D)
bution functionsF,, Fg, and F+, obtained using the effective boundary
condition, are denoted b$,, Gg, andG+, respectively. The derivation of > oF
G,, Gg, andG; follows the standard analysis of splitting probabilities, i.e., = E -
the probability of a diffusing particle being absorbed by one of several n=1 )\n(r + /\n)Jl(/\n)
competing boundaries (Weiss, 1994; Berezhkovskii et al., 1999).
The probability, P{Z32 =< 2z}, that a particle is absorbed before P
reaching the heightis equivalent to the probability of a particle getting > s,
absorbed before reaching a perfectly absorbing plane located at the 187+
heightz. In complete analogyP{R32, = r} is found as the probability
that a particle, starting on the partially absorbing plane, is absorbedvherei,, are zeros o8, Bessel function of the first kind of order zero, and
before reaching the perfectly absorbing surface of a cylinder with radiusl, is the Bessel function of the first kind of order one (Abramowitz and
r. In both cases, we derive the probability of escape from the partiallyStegun, 1964). The inequality in Eq. A13 comes from approximation to the
absorbing plane to the perfectly absorbing surface. The splitting probinfinite series in expression f@g. Although this series, involving zeros of
abilities are functions of the starting coordinatgsandr,, of a particle. Bessel functions, can be summed numerically, it is not convenient for use
Problems for splitting probabilities lead to Laplace’s equation; thein applications. The last inequality is strict, with the maximum difference
boundary condition is unity on the absorbing surface to which thebetween exacGg and its approximation being less than 2%.
particle is escaping, and partially absorbing on the plane from which the The cumulative distributio®(t, kes, D) is found as the probability that
particle starts (Weiss, 1994; Schuss, 1980; Berezhkovskii et al., 1999)a Brownian particle, moving on a half-line with a partially absorbing

Gr(F)

(A13)
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boundary and starting at that location, has not been absorbed by, fiine
transient problem leading 6.(t, ko, D) is

Grt, kerr, D) = 1 — J xp(z, t) dz, (A14)
0
p 0%p
a ~Paz (A15)
ap ,
azl,o = ket Pzt =0)=5(2). (A16)

Solution to this problem can be found in the literature (Weiss, 1994),

Gr(t, ke, D) = 1 — Erfex(t)

2

1-€%1-

(A17)

wheret = k.\/t/D. Our analytical results are summarized by Egs. 57 in
the paper.

APPENDIX B: EXTREMA STATISTICS FOR
SURFACE DIFFUSION

Before being removed from the surface, bound ligands diffuse with an

effective diffusion coefficienDg this increases the radial extent of auto-

1865

Following these definitions, the probability that a particle is removed from
the surface before its radial coordinate reachesfound as

©

PR =r} = j ¢(0, t) dt = ®(0). (B4)

0

Hence our goal is to obtain the dependence®obn the radius of the
domain.

The derivation relies on the properties of survival probab#ir,). A
well-known result in the theory of Brownian motion (Berezhkovskii et al.,
1999) states that survival probability satisfies the adjoint equation,

9S Dy 9 (as

Gt 1o drg\ar,
whereV,zo is the radial part of Laplace operator in cylindrical coordinates.
Applying that operator to both sides of Eq. B3, multiplyingyand using
Egs. B3 and B5 gives

) =D\V:S (B5)

%

DVZ® = DV j ke “'S(t|ry) dt

0

- IS(t|ro)
— —«kt
j ke < dt. (B6)
0
Integrating the last expression by parts, we obtain
DVZD = —k + k®. (B7)

crine loops. In this appendix, we formulate and solve a boundary value! N Poundary conditions are posed by requiring tha finite everywhere

problem describing the distribution of the maximal radial distances to

which a particle can diffuse before it is removed from the surface. The

probability, P{R22, = r}, that the maximal distancd2>,, traveled on the

surface is less than, can be found as the probability that a particle is

removed before reaching the perfectly absorbing boundary at radius
Consider a two-dimensional Brownian particle starting inside a circular

domain with a perfectly absorbing boundary. A particle can disappear on

in the domain and zero on the boundary; clearly, for a particle starting on
the boundary, the chance of reacting is zero. The solution is found in terms
of the modified Bessel function of the first kind of order zero (Abramowitz
and Stegun, 1964):

lo(rok/Dy)

(I)(I'o) = l_m

(B8)

the boundary of the domain, or it can leave the surface due to a first-order

process with a total rate constant= k; + k.. The probability,e(ro, t),
that a particle, starting at,, “reacts” in the time intervalt(t + dt) is
proportional to the product two probabilities,

@(ro, t) = ke ™S(t|ro).

The first term,xe "', is the probability that a particle, not yet reacted at
timet, reacts betweenandt + dt. The second terng(t|ro), is the so-called
“survival probability,” i.e., the probability that the particle, in the absence
of reaction, is still inside the circle at tintelt is defined as

S(tfro) = J

(B1)

2mp(p, t|r, O)p dp, (B2)

wherep(p, t|ro, 0) is the probability density function of the radial coordi-
nate of a Brownian particle diffusing inside a circle of radiusvith
absorbing boundary. The probability that a particle starting,ateacts
before reaching the boundary is denotedli{y,). It is found by integrating
the expression fop(r,, t) over all times,

D(ro) EJ

o(ro, 1) dt. (B3)

For the probability that the particle, released at the origin, is dissociated or
internalized before its radial coordinate increases, twe obtain

P{R=T} = ¢(ry=0)

=1 — lo(ry(ke + ko1)/Ds) . (B9)
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