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ABSTRACT A method for simulating the growth of branched actin networks against obstacles has been developed. The
method is based on simple stochastic events, including addition or removal of monomers at filament ends, capping of
filament ends, nucleation of branches from existing filaments, and detachment of branches; the network structure for several
different models of the branching process has also been studied. The models differ with regard to their inclusion of effects
such as preferred branch orientations, filament uncapping at the obstacle, and preferential branching at filament ends. The
actin ultrastructure near the membrane in lamellipodia is reasonably well produced if preferential branching in the direction
of the obstacle or barbed-end uncapping effects are included. Uncapping effects cause the structures to have a few very long
filaments that are similar to those seen in pathogen-induced “actin tails.” The dependence of the growth velocity, branch
spacing, and network density on the rate parameters for the various processes is quite different among the branching models.
An analytic theory of the growth velocity and branch spacing of the network is described. Experiments are suggested that
could distinguish among some of the branching models.

INTRODUCTION

The growth of actin networks is a crucial factor in the
crawling mobility of almost all eukaryotic cells. The growth
of such networks is believed to provide the force necessary
for extending cell protrusions such as lamellipodia, and for
propelling intracellular pathogens such asListeria through
the cytoplasm. Recent experiments (Loisel et al., 1999) have
shown that motile forces can be generated by the actin
polymerization energetics alone, without the help of motor
proteins such as myosin. An important factor in understand-
ing the nature of the network growth process is determina-
tion of the network structure. Numerous ultrastructural stud-
ies have been performed of the actin network in cells. Of
particular interest here are studies of lamellipodia of fish
keratocytes (Small et al., 1995; Svitkina et al., 1997),Xe-
nopus laevisfibroblasts (Svitkina and Borisy, 1999), and
Xenopus laeviskeratocytes (Svitkina and Borisy, 1999), as
well as the intracellular “comet tails” generated byListeria
(Small, 1988; Sechi et al., 1997). The lamellipodia studies
provided a detailed picture, showing a dense branched struc-
ture with almost none of the branches oriented away from
the membrane. Most branches were found to be at angles of
.30° relative to the growth direction. These structures have
been described in terms of an idealized “orthogonal” net-
work structure (Small et al., 1995; Svitkina et al., 1997) in
which the branches grow at angles of 45° relative to the
membrane, although the observed structures within 1mm of
the membrane are much more random than this idealized
structure. Farther from the membrane, the orientations of
the filaments are generally less random and correspond

more closely the idealized model. We will reserve the term
“orthogonal network” for this type of network structure,
keeping in mind, however, that even here the observed
networks are disordered. The attachment angle of the
branches in the keratocytes was found to be quite constant
(Svitkina et al., 1997), 756 10° relative to the growth
direction of the filament. TheListeria studies revealed a
structure based on two collections of filaments, one short
and randomly oriented, and other long and oriented parallel
to the motion. Very recently, studies have been performed
(Cameron et al., 2001) of the comet tails induced in cell
extracts by latex beads coated with the surface protein
ActA. These studies have revealed a dendritic actin filament
organization similar to that seen in the studies of lamellipodia.

Recent in vitro studies (Mullins et al., 1998; Welch et al.,
1998) have demonstrated that branching can be stimulated
by the Arp2/3 complex when activated by ActA, WASp
(Wiskott-Aldrich Syndrome protein), or related proteins.
The presence of the Arp2/3 complex in the environment of
the polymerizing actin results in a branched network struc-
ture, and this complex is also found to be localized at the
branch points of the network. The attachment angle, 706
7°, is quite similar to that observed in fish keratocytes.

However, the type of branching found in these studies is
not universal. Recent studies ofRickettsia ricketsiiactin
tails (Gouin et al., 1999; van Kirk et al., 2000), have shown
a structure based mainly on long filaments (about a micron),
with no evidence of a branched structure. Ultrastructural
studies of carcinoma cells (Bailly et al., 1999) have revealed
a network structure with a much greater variety of branch-
ing, including T-, Y-, and X-branching. The focus here is
actin networks dominated by Arp2/3 complex-induced
branching.

On the basis of ultrastructure studies such as those dis-
cussed above, along with detailed information about local-
ization of cytoskeletal proteins, it is now generally accepted
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that cellular networks in several types of cells result from
branch formation caused by Arp2/3 complex activated by
external signals, or proteins present on the surface of intra-
cellular pathogens that “hijack” the actin polymerization
machinery. However, the precise mechanisms of the net-
work growth process are not understood. For example, it is
not known whether branches are nucleated preferentially at
the end (Pantaloni et al., 2000), or rather with uniform
probability along the length of the filament (Blanchoin et
al., 2000a). The orientational distribution of the branching is
also not known. For example, there could be factors favor-
ing branch nucleation in the growth direction of the network
(Svitkina and Borisy, 1999). In addition, it is believed
(Hartwig et al., 1995) that the cell membrane or the surface
of an intracellular pathogen can have a barbed-end uncap-
ping effect on the actin filaments, which would stimulate the
network growth. This possibility has been supported by in
vitro studies (Schafer et al., 1996), which showed that PIP2

uncaps actin filaments. It has also been demonstrated that
actin filaments induced by the Cdc42 protein are protected
from capping (Zigmond et al., 1998; Huang et al., 1999).
Finally, it is possible that cortactin stimulates actin network
growth by inhibiting debranching (Weaver et al., 2001). The
relative importance of these effects is not known.

If one understood the relationship between the branching
and growth mechanisms on the one hand, and the structure
and growth velocity of the network on the other hand,
comparison with sufficiently detailed experiments could
establish the nature of the important mechanisms. Several
previous theoretical papers have addressed this relationship.
A cellular automaton model (Dufort and Lumsden, 1993)
has been used to study the spatial organization of actin gels.
This model included a large number of biochemical mech-
anisms, including cross-linking and severing. However, it
did not include the effects of Arp2/3-induced branching or
an obstacle stimulating the growth; thus a meaningful com-
parison with cellular branched network structures was not
possible. The Brownian-ratchet model (Peskin et al., 1993;
Mogilner and Oster, 1996) has been used to derive the
dependence of the growth rate on the orientation of a
filament impinging on a membrane. It was found that an
angle close to 45° is optimal. On this basis it was suggested
that the orientation dependence of the growth rate could be
responsible for the formation of the orthogonal actin net-
works referred to above.

The goal of the present paper is to provide a detailed
analysis of the actin network growth rate, its three-dimen-
sional structure, and the dependence of these properties on
key rate parameters of the network growth process. This is
accomplished by stochastic simulations of an actin network
growing against an obstacle, keeping track of the positions
of all the filament subunits over time. In this way the growth
rate and all structural parameters of the growing network are
accessible. The main approximations underlying the model
are an approximate treatment of the network’s flexural

elasticity and its interaction with the obstacle, and neglect of
electrostatic interactions, severing, cross-linking, and
monomer-depletion effects. Some of the rate parameters are
known, but for others values must be chosen to fit observed
properties of the network.

From the simulation results I obtain three-dimensional
visualizations of the growing network for eight distinct
models involving different assumptions about the branching
and growth mechanisms. These are compared with the ul-
trastructure studies of lamellipodia andListeria-induced
actin tails, and it is found that the structure near the mem-
brane observed in lamellipodia is fairly well reproduced if a
preference for branching in the direction of the obstacle, or
barbed-end uncapping effects, are included. The inclusion
of the uncapping effects results in a few very long filaments
analogous to those seen inListeria tails. However, I am
unable to unambiguously pin down the correct model on the
basis of these comparisons. I evaluate the dependence of the
network growth rate, average spacing between branches
along a filament, and network density near the obstacle on
the simulation parameters, in particular the capping rate and
the branching rate. I find pronounced differences among the
models with regard to these dependencies. For the growth
rate and the average branch spacing I present analytic the-
ories. Finally, I propose experiments that can be performed
to pin down which of the models are likely to be correct.

The organization of the remainder of the paper is as
follows. The next section describes the model and its im-
plementation. Subsequent sections give results for the three-
dimensional network structure, dependences of the growth
rate, average branch spacing, and network density on the
simulation parameters, and an analytic theory for the growth
rate and the average branch spacing. The last two sections
give a critical discussion of the main approximations that
are made in the calculations, conclude the paper, and sug-
gest possible relevant experiments.

MODEL

The simulation procedure involves stochastic growth of a
network from a starting configuration containing one or
more seed filaments. The variables that are stored over time
are the index numbers of the filaments, the positions of the
subunits contained in each filament, the directionn̂ of each
filament, the capping state of the branched end of each
filament, the collection of all the subunits in each filament
that are branch points, and the index numbers of the fila-
ments to which these subunits are attached. I do not track
the capping state of the pointed ends of the filaments, but
rather take all pointed ends to be uncapped. This will
exaggerate the effects of pointed-end depolymerization.
However, even with this exaggeration, I find that the effects
of this process on the network structure and the growth rate
are very small. Depolymerization would of course be an
important factor in recycling monomers, but such recycling
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effects are not treated in the present work. Once a subunit is
added to a filament, it does not move (although it can
disappear). At each time step the following processes illus-
trated in Fig. 1 can occur, with probabilities determined by
associated rate constants:

Growth

A monomer is added to the barbed end of an existing
filament, at a distancea 5 2.7 nm from the end. The
position is determined by the filaments’s direction vectorn̂.
The filament is assumed to be straight and rigid, son̂ is a
characteristic of the filament as a whole. This assumption is
justified by the long persistence lengths that have been
measured for actin filaments, ranging from 7mm (Riveline
et al., 1997) to 17–18mm (Gittes et al., 1993; Ott et al.,
1993; Isambert et al., 1995). The end of the filament in the
direction ofn̂ is the barbed end, and the opposite end is the
pointed end. The rate constant for monomer addition iskon.
All uncapped filament ends are potentially available for
growth. However, steric exclusion effects reduce this num-
ber. These are taken into account by imposing a minimum
distance ofa between subunits. Thus, before adding each
new subunit, it is necessary to scan all existing subunits to
confirm that the site for the new subunit is sterically al-
lowed. If done in the simplest fashion, this loop over all
existing subunits would lead to a very slow code. To avoid
this problem, I partition space into a three-dimensional
cubic mesh and keep track of which subunits are stored in
each mesh cube. Then, when adding a new subunit, it is
necessary to scan only the subunits in mesh cubes adjacent
to that containing the new subunit’s position. This leads to
a speedup factor of;100. I have increased the exclusion
volume by a factor of;2.5, and see no substantial changes

to the network structure, but only a 20% reduction in the
network density.

Depolymerization

A monomer is removed from the pointed end, with rate
constantkoff. This occurs only if the pointed end is not
attached to another filament.

Capping

This simply involves a change in the integer variable for
each filament that characterizes its capping state. The asso-
ciated rate constant iskcap. Once a filament has been
capped, it remains capped forever and thus cannot grow.
This assumption is justified by the small rate constants,
,1023 s21, that have been measured (Schafer et al., 1996)
for filament uncapping in the absence of potential uncap-
ping agents at membranes.

Branching

A new “daughter” filament is attached to the side of an
existing subunit (the “branching subunit”), with a rate con-
stantkbranch. The variable describing the branching state of
this subunit is changed accordingly. The daughter filament
starts off with one subunit. It is possible that it has more
than one subunit, but the starting number is not known. As
long as this number is small in comparison with the branch
spacing and the average filament length, its precise value
will not be important. Depending on the model used (cf.
below), new filaments can nucleate either with equal like-
lihood on any of the subunits in a filament, or only at the
end of the filament. The position of the first subunit in the
daughter filament is chosen at a distance ofa from the
branching subunit. The directionm̂ from the branching
subunit to the new subunit is chosen in the plane perpen-
dicular to n̂. The specific direction is chosen from all
directions in this plane using a random number generator.
The directionn̂9 of the new filament is chosen to in the
plane determined byn̂ andm̂, at an angle of 70° fromn̂, as
suggested by the in vitro studies (Mullins et al., 1998) and
cell studies (Svitkina et al., 1997). Electron micrographs
have demonstrated the localization of Arp2/3 complex to
branch points. I do not include this effect explicitly in my
simulations. It could serve to shift the position of the first
subunit in the new filament. However, we shall see later that
the branch spacing and filament lengths substantially ex-
ceed the size of a single subunit, so this effect is likely to be
unimportant.

Detachment of branches

The variable describing the branching state of a branched
subunit is changed to the unbranched state, with a rate

FIGURE 1 Schematic of unit processes in simulation method.
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constantkrip. The pointed end of the filament that is de-
tached is then available for depolymerization. The detached
branch is not moved explicitly. However, it is assumed to
diffuse away rapidly enough that it will not contribute to
structures seen in electron microscopy studies.

The rate constantskon, koff, kcap, kbranch, andkrip are to be
thought of as effective first-order rate constants in the sense
that they include all concentration factors and thus corre-
spond directly to the rates of the associated physical pro-
cesses. The rates are implemented as follows. At each time
step of lengthDt, for each possible event (such as the
addition of a monomer to a particular filament), a random
number generator is used to generate a numberx, such that
0 , x , 1. If x , kDt (wherek is any of the rate constants),
the event occurs. The time stepDt is kept short enough that
kDt ,, 1 for all of the processes. Note that diffusion of the
actin monomers and other proteins is not treated explicitly.
By ignoring the time and spatial dependence of these con-
centrations, the model implicitly assumes that their diffu-
sion is rapid in comparison with the processes of interest
here, and that the reservoir of the proteins is large enough
that depletion effects can be ignored. The validity of this
assumption is discussed below.

The rate constants are determined by the concentrations
of several proteins in the medium. Biochemical assays (Pol-
lard, 1986; Pollard et al., 2000) have given the valueskon 5
11.6 mM21 s21 ca and koff 5 1.4 s21, where ca is the
concentration of unpolymerized actin. The value ofca varies
widely from cell to cell; I use the value (Pollard et al., 2000)
of 12 mM for Xenopusegg extract, which giveskon 5 140
s21. For kcap, values in the range 2.3–6.5mM21 s21 ccap

have been found in in vitro studies (Schafer et al., 1996),
whereccap is the capping-protein concentration.ccap varies
between cell types, and we are not aware of measurements
for theXenopusextract. However, in a broad range of cells
one finds (Pollard et al., 2000) that the ratioca/ccap of the
free-actin to capping protein concentrations is between 40
and 100. This corresponds to a range of values ofkon/kcap

from ;100 to 300. In our simulations we typically use the
value of 100, because this reduces the lengths of filaments
emanating radially from the tail and thus permits easier
visualization of the network structure near the obstacle. We
find no significant differences in the small-scale network
structure resulting from smaller values ofkcap. The major
effect is a broadening of the tail, and of course an increase
in the average filament length.

The rate constantkbranch should be determined by the
concentration of activated Arp2/3 complex and the free
actin concentration. However, the relationship between the
Arp2/3 concentration and the branching rate is not known,
particularly because Arp2/3 activation is an important fac-
tor. Therefore, it is not possible to determine this parameter
a priori. Instead,kbranch is adjusted to correspond to ob-
served branch spacings in electron micrographs (Svitkina
and Borisy, 1999). Many branch spacings were found in a

range centered roughly on 15 subunit sizes, and so I use this
value here, except when I study the properties as a function
of the branching rate. The growth velocity (scaled to the
single-filament growth rate) and general nature of the struc-
ture depend mainly on the ratio of the branching rate to the
capping rate, so the validity of the results is not unduly
restricted by the choice of branch spacing. Branch detach-
ment could occur spontaneously (Borisy and Svitkina,
1999), perhaps accelerated by ATP-ADP conversion, or be
stimulated by proteins (Blanchoin et al., 2000b) such as
actophorin and ADF/cofilin, or a combination of both.
Again, the corresponding concentrations andrate constants
are not known. I find that the structure of the network near the
membrane is not affected bykrip. However, thelength of the
tail is, and my strategy is to fix a value of the length of the
tail and adjustkrip so that the simulations match this value.
The typical tail length is;1 mm.

I note that the diffusion constant for actin monomers in
cell cytoplasm is smaller than the in vitro values. In the cell
cytoplasm, 3–6mm2 s21 has been measured (McGrath et
al., 1998), while the aqueous-solution value (Lanni and
Ware, 1984) is 30mm2 s21. The structure of the network
near the obstacle will not be greatly influenced by such
effects. Because an overall scaling of the rates will not
affect the structure but only the time it takes for it to form,
the structure will be determined by the ratios between the
rates. For the structure near the obstacle, the important
parameters arekon, kcap, andkbranch, and these are all deter-
mined by diffusion constants that are reduced in the cell
environment. In addition,krip, which is the major factor in
determining the large-scale structure of the actin tails, is
likely to involve diffusion of proteins such as ADF/cofilin,
and will thus be reduced in the cell environment as well.
Therefore, my strategy is to use values of the rate constants
corresponding to in vitro diffusion coefficients. The growth
velocities that are obtained should then likely be scaled by
a factor involving the diffusion constants.

I now turn to the interaction between the obstacle and the
growing actin filaments. The obstacle is taken to be a
0.4-mm square. This value is used because it is the smallest
size at which consistent growth is obtained for all of the
models considered. In a few cases I have checked the results
with obstacles up to about twice this size, and found the
growth velocity and density to change only slightly. (In
these cases I used mobility values reduced by a factor of the
area increase, so that the force per unit area of the obstacle
remained constant.) The lower face is at a positionzobst, and
the obstacle moves only in thez-direction. The obstacle-
filament interaction takes several forms:

1. Branching is allowed only in the vicinity of the obstacle.
This assumption is based on the generally held view that
the membrane against which the growing network exerts
its force transiently activates the Arp2/3 complex. My
implementation of this effect is to define a branching
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region including the interior of the obstacle, and in
addition a layer of thicknessd extending down fromzobst.
Branching is allowed to occur only within this layer. The
correct value to use ford is not known. If branching
occurs only when Arp2/3 attached to filaments is acti-
vated by physical contact with the membrane, thend 5
0 would be appropriate. However, if activated Arp2/3
can diffuse from the membrane to the sides of growing
filaments, then larger values are appropriate. In models
defined below I distinguish between end branching and
side branching. For the case of end branching the value
of d has very little effect on the results, and I used 5 0.
For the case of side branching I note that the density of
branches along a portion of a filament inside the branch-
ing region should be proportional tokbrancht#, wheret# is
the age of this portion of the filament. This means that
parts of the network farther from the obstacle will have
a larger branch density than those closer to the obstacle,
and this growth will continue up to a distance ofd from
the obstacle. Such an increase is not observed in elec-
tron-microscopy experiments, which would resolve an
increase in the branch density that took place over much
more than a branch spacing. Therefore, I conclude that in
the side-branching scenario,d does not exceed the
branch spacing by a large factor. At small values ofd, the
end- and side-branching models are equivalent, because
practically only filament ends can be insided. Therefore,
in my simulations for the side-branching scenario, I take
d to equal the average branch spacing of 15 subunits;

2. The probability of subunits being added right at the
obstacle is reduced because of a repulsive interaction
with the obstacle. This locally reduces the rates for
growth and branching by a factor of exp(2E/kBT), where
E is the interaction energy. Because capping involves a
capping-protein molecule attaching at the end of a fila-
ment, I also apply such a factor to the capping rate. The
interaction energy “turns on” when a prospective new
subunit’sz-coordinatez exceedszobst, and has the fol-
lowing form:

E 5 kBT@~z2 zobst!/dz#3 (1)

wheredz is the distance over which the energy becomes
equal tokBT. (Note that the choice ofkBT as the prefactor
is purely a matter of convenience, because any change in
the prefactor could be compensated by a change indz.)
The motivation for this form for the energy is that it has
a steep climb after an initial smooth part. In a few cases
I have tried other powers of the distance in the energy,
ranging from 2 to 6. Over the range of values tried the
velocity varies by;2% and the density by;25%. The
general trends with the parameter values are unaffected.
The smooth buildup of the energy is motivated by con-
siderations of the elasticity of the networks. This elas-
ticity means that if a filament is impinging on the obsta-
cle, moving the obstacle down will not instantaneously

result in an enormous energy jump for the system, as the
filament can bend as a result of its own elasticity, the
elasticity of branch points, or that of the rest of the
network. For this reason, it is more appropriate to use a
smoothed-out energy function than an abrupt one, and
the quantitydzcan be taken as a measure of the filament-
end fluctuations present at room temperature. The most
immediate source of filament-end fluctuations is the
branch points. They have a thermal deviation (Blanchoin
et al., 2000a) of 7° to 10°, which corresponds to a
deviation of the filament end position of 1.5–2 subunit
sizes if one takes the part of the filament beyond the last
branch point to have a length of 15 subunits, the average
branch spacing. For this reason, I usedz 5 2a in the
simulations. Because there are many other sources of
network elasticity, including filament bending, it is
likely that the true value is larger than this. In my
simulations with larger values ofdz the density in-
creases, but the other properties of the network remain
basically unchanged. For very small values ofdz, less
thana, the network often fails to grow consistently at all.
For each force exerted on a filament end, an equal and
opposite force, in thez-direction, is exerted on the ob-
stacle;

3. The obstacle follows a diffusional law of motion, so that
for each time step

Dz5 r~t!Î6DobstDt 1 FobstDobstDt/kBT, (2)

wherer(t) is a random number between21 and 1,Dobst

is the diffusion coefficient of the obstacle (related to the
mobility by thekBT factor), andFobstis the sum of all the
individual filament forces acting on it. If I use values of
Dobst calculated from the obstacle size and standard
estimates of the viscosity of cytoplasm, the obstacle
rapidly diffuses away from the filaments so that they no
longer branch and the network stops growing. This is in
line with the observation (Olbris and Herzfeld, 2000)
that the filaments must be attached to the obstacle in
some way to prevent it from diffusing away. Recent
laser-tracking experiments (Kuo and McGrath, 2000) on
Listeria monocytogeneshave also found that the position
fluctuations of the bacterium are so small as to require an
attachment mechanism for their explanation. For this
reason I choose values ofDobst to provide reasonable
values of the polymerized-actin density for networks
having the average branch spacing of 15 subunits. We
choose 1 mM as the polymerized-actin density (Pollard
et al., 2000). I note that an obstacle moving according to
an equation of motion of the form of Eq. 2, together with
the Boltzmann factor in the monomer-addition probabil-
ity, naturally obeys an exponential force-velocity rela-
tion of the form proposed by Oster and collaborators
(Peskin et al., 1993; Mogilner and Oster, 1996). The
validity of this form has been confirmed by recent
Brownian dynamics simulations (Carlsson, 2000).
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Although there is substantial consensus in the literature
regarding the importance of Arp2/3-induced network
branching at the growth front, the details of this process are
not well established, and I thus consider several versions of
the model that differ in their incorporation of additional
effects that have been proposed in the literature. These
models are summarized in Table 1.

• Model A1. This is the model outlined above, with
branching allowed uniformly along the side of filaments.
The possibility of such side branching is demonstrated by
optical microscopy studies (Blanchoin et al., 2000a) of
filaments grown in vitro;

• Model A2. This is the same as model A1, except that
only branches pointing toward the obstacle are allowed.
Potential branches pointing away from the obstacle are
reflected through the filament so that they point toward
it. This is motivated by the suggestion (Svitkina and
Borisy, 1999) that a factor favoring branching toward the
obstacle may be present, based on the predominance of
such branching in observed ultrastructures. It is also
consistent with the generally accepted activation mech-
anism (Higgs and Pollard, 2000) of Arp2/3, which fol-
lows the path (PIP2 or Cdc42)3 WASp3 Arp2/3, or
one similar to it. Because PIP2 and Cdc42 are probably
localized to the membrane, this would favor branch nu-
cleation on the upper sides of filaments impinging the
membrane;

• Model B1. This is the same as Model A1, except that
branching is allowed only at filament ends. This model is
supported by kinetic studies (Pantaloni et al., 2000) of
polymerization kinetics and by comparison of mother-
daughter branch lengths (Pantaloni et al., 2000; Cameron
et al., 2001);

• Model B2. This differs from model B1 in that only
branching toward the obstacle is allowed;

• Model C1. This model is like A1, except that it includes
uncapping effects at the obstacle, motivated by the dis-
cussion in the Introduction. We include them in the limit
that the uncapping is infinitely rapid in a layer of thick-
nessduncapnext to the obstacle, so that capping is effec-
tively absent in this layer. This may also be thought of in

terms of capping suppression in the vicinity of the ob-
stacle. To avoid having too many independently chang-
ing variables, I do not scan a range of values ofduncap, but
rather use the valueduncap 5 3a except for a small
number of test calculations. For smaller values the effects
on the observed structure are small, but the capping-rate
dependence of the growth rate and other parameters is
still strongly affected. For larger values the structures
begin to be dominated by very long uncapped filaments;

• Model C2. This model is the same as C1 except that only
branching toward the obstacle is allowed;

• Model D1. This model is the same as C1 except that only
end branching is allowed;

• Model D2. This model is the same as D1 except that only
branching toward the obstacle is allowed.

THREE-DIMENSIONAL NETWORK STRUCTURE

I begin with a visual examination of the small-scale aspects
of the structures that are formed in the eight models defined
above. These are shown in Fig. 2. Here the light gray region
denotes the obstacle and is displaced in the growth direction
by four subunit spacings to avoid obscuring the subunits
that enter the obstacle region. The main geometrical param-
eter that can be seen in these pictures is the distribution of
orientations of the filaments. In this figure and Fig. 3 each
subunit is indicated by a cone with its apex toward the
pointed end of the filament. The size of the cones is chosen
to be several monomer sizes in order to correspond more
closely to electron micrographs. I delete filaments that are
disconnected from the main body of the network, on the
assumption that they diffuse away.

Visual examination of the structures suggests that the
inclusion of side versus tip branching causes only small
differences between the structures. In other words, the mod-
els divide into pairs (A1, B1), (A2, B2), (C1, D1), and (C2,
D2), where the members of a pair give very similar struc-
tures. This is confirmed by quantitative analysis of the
filament orientations. Following an earlier convention (Svit-
kina et al., 1997), I divide the filaments into “up” filaments,
with angles of,70° from the growth direction, “sideways”
filaments with angles between 70° and 110° from the
growth direction, and “down” filaments with angles of
.110° from the growth direction. I weight the filaments
according to how much of their length is contained in a box
of the dimensions of the obstacle, extending 40 monomer
spacings into the network. The distributions of filament
orientations are shown in Table 2. I consider the models in
each pair together because the fractions in each pair are
within two percentage points of each other.

From Table 2 one sees that the most important factor in
distinguishing between the models is whether downward
branching is allowed. Forbidding downward branching in-
creases the up-fraction by;20%. The inclusion of uncap-
ping also has a substantial effect in models that allow

TABLE 1 Summary of models considered

Orientation
Restriction

of Branching
End Restriction
of Branching Uncapping

A1 No No No
A2 Yes No No
B1 No Yes No
B2 Yes Yes No
C1 No No Yes
C2 Yes No Yes
D1 No Yes Yes
D2 Yes Yes Yes
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FIGURE 2 Near-obstacle structure of actin network
for eight models defined in text. (a) Model A1; (b)
model A2; (c) model B1; (d) model B2; (e) model C1;
(f) model C2; (g) model D1; (h) model D2.
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FIGURE 3 Large-scale structure of actin network
for eight models defined in text. (a) Model A1; (b)
model A2; (c) model B1; (d) model B2; (e) model C1;
(f) model C2; (g) model D1; (h) model D2.
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downward branching, thus the structures divide into three
subsets: (A1, B1), (C1, D1), and (A2, B2, C2, D2). Visually,
the (A1, B1) structures may be characterized as being the
most random; however, they still have many more up than
down filaments. The (A2, B2, C2, D2) structures are the
most ordered and give the most sense of a directionally
grown structure. They are, in fact, reminiscent of the “or-
thogonal networks” found in some ultrastructure studies
(Small et al., 1995; Svitkina et al., 1997). I note, however,
that the present simulations do not directly correspond to the
orthogonal networks because these are found at distances of
.1 mm from the membrane. The (C1, D1) structures are
intermediate between the most and least ordered classes. In
these structures very few down filaments are seen, even
though they are in principle allowed. The uncapping effects
in these models lead to a few very long filaments near the
growth direction, and many of the branches come from
these long filaments. These branches cannot be in the down
category because of the 70° branching angle.

In visual examination, the structures coming from models
(C1, D1) and (A2, B2, C2, D2) compare favorably with the
electron microscopy studies of Svitkina and collaborators
(Svitkina et al., 1997; Svitkina and Borisy, 1999), while
models (A1, B1) are too disordered. In Svitkina et al.,
(1997) the fractions of up, sideways, and down filaments
were found to be 75% up, 20% sideways, and 5% down.
This would be closest to the values from models C1 and D1.
Another possibility would be that downward branches are
not entirely forbidden, but only disfavored. In other words,
one could interpolate between models A1 and A2 or B1 and
B2. Assuming downward branching to be suppressed by
30% would lead to values of 77% up, 20% side, and 3%
down, close to the measured values. I note that the electron
microscopy extraction procedures, along with disorder in
the branching angles and that resulting from bending of
filaments, will tend to enhance the disorder in the system,
reducing the number of filaments in the “up” category.
These effects will bring models A1 and B1 farther from the
observed values and models A2 and B2 closer to them. This
will increase the amount of downward branching suppres-
sion needed to match the data. However, I am not able to
choose one model on the basis of the orientation distribu-
tions. The most likely alternatives are a member of the set
(C1, D1), or a variation of (A2, B2) or (C2, D2), which
allows some downward branching.

I turn now to the large-scale structure of the simulated
actin networks, shown in Fig. 3. Models A1, A2, B1, and B2
yield largely similar structures. Away from the obstacle, the
width of the tail gradually decreases. In A1 and B1 a long
sparse extension of the tail is seen; however, this extension
is seen in some runs and not in others, depending on the
choice of seed for the random number generator. It is
sometimes seen in models A2 and B2. Models C1, C2, D2,
and several other runs of D1, show a different behavior far
from the obstacle. They have a few very long filaments
whose orientation is fairly close to the growth direction.
These long filaments are found in most of the runs, but not
always. The survival of a few long filaments far from the
obstacle is not surprising for these models: the suppression
of barbed-end capping allows the growth of very long
filaments, and shorter filaments at this distance from the
obstacle will detach at long times. Small and collaborators
(Small, 1988; Sechi et al., 1997) have emphasized the
presence of such long filaments in comet tails from intra-
cellular pathogens. In addition, the studies on fish kerato-
cyte lamellipodia (Svitkina et al., 1997) showed that the
network more than roughly a micron from the leading edge
was dominated by filaments several microns or more in
length. The presence of these long filaments gives strong
reason to take these models based on barbed-end capping
suppression seriously.

QUANTITATIVE MEASURES OF STRUCTURAL
AND GROWTH PROPERTIES

In this section I present numerical results for the parameter
dependences of the growth velocity, the average branch
spacing, and the density of polymerized actin at the obsta-
cle. For the dependence of the growth velocity and the
average branch spacing onkbranch and kcap, I also present
simple analytic theories. In evaluating quantitative mea-
sures of growth and structure a considerable amount of
statistical averaging is necessary to obtain precise values.
The variation in density between runs with different starting
seeds for the random number generator is typically;15%
or less at densities above 0.5 mM. To reduce this variance,
I average over 20 runs for each set of values of the rate
parameters. This reduces the statistical fluctuation by a
factor of 1/=20, to ;3%. The fluctuations in the growth
velocity and branch spacing are;1% and 2%, respectively.
At lower densities the fluctuations in the network density
increase, to;7% at 0.2 mM.

Growth velocity

Fig. 4 shows the dependence of the growth velocity onkcap

andkbranchfor the eight models defined above. In this plot
and the subsequent ones, I scale the values ofkcapandkbranch

by kon, so thatkcapcan be thought of roughly as the inverse

TABLE 2 Percentages of filaments having up, side, and
down orientations, as defined in text

Up Side Down

A1, B1 69 27 4
A2, B2 94 5 0
C1, D1 77 22 1
C2, D2 96 4 0
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of the average filament length. The growth velocity is scaled
to that of a free uncapped filament, which iskon. In the plots
of thekbranch-dependence of the growth velocity we use the
quantitykbranchN/kcap as the abscissa. HereN is the number
of subunits available for branching in a straight filament
impacting the obstacle, which is 1 for the end-branching
models and taken to be (d 1 dz)/a cos 45°5 24 for the
side-branching models, where the cos 45° factor assumes an
average orientation of 45° of the filaments relative to the
growth direction. This choice is made becausekbranchN/kcap

then corresponds roughly to the number of branches per
filament. The curves for models A1, A2, B1, and B2, shown
in Fig. 4 a, all have a similar behavior. They approach an
asymptotic velocity substantially below the free-filament
velocity at largekbranchand drop off for smallkbranch, with
the dropoff accelerating aroundkbranchN/kcap 5 4. As ex-
pected, models A2 and B2, which enforce branching in the
direction of the obstacle, have higher growth velocities than
the corresponding unrestricted-branching models by;25%.
At first glance it is somewhat surprising that the end-
branching models B1 and B2 have lower growth velocities
then the corresponding side-branching models A1 and A2.
To explain this effect, I have looked in more detail at the
distribution of filament orientations. We define a “vertical
filament” as one whose orientation is within 20° of the

growth direction. Evaluating the fractions of vertical fila-
ments as before, I then find that in models A1 and A2
10–11% of the filaments are vertical, while in models B1
and B2 only 6–7% are. There are thus;50% more vertical
filaments in models A1 and A2. With the relatively small
forces exerted on the filament tips in the present simula-
tions, the filaments pointing in the direction of growth have
the highest growth rate (projected on the growth direction).
Thus models A1 and A2 should have higher growth rates
than models B1 and B2. Similar arguments apply to models
C1 and C2, which contain;14% vertical filaments and D1
and D2, which contain 5% vertical filaments. The larger
absolute difference between the numbers of vertical fila-
ments is reflected in a larger difference of model C1 relative
to D1, and C2 relative to D2, which is seen in Fig. 4b. The
reason for the greater prevalence of vertical filaments is that
the nucleation of a vertical filament requires a previous
mother filament fairly close to horizontal. Such a filament
will quickly drop back from the growth front. In the tip-
branching model, in which physical contact with the mem-
brane is required for nucleation, this filament will then be less
likely to nucleate a daughter filament than it would be in the
case of side branching.

Other aspects of the results for models C1, C2, D1, and
D2 are quite parallel to the models without barbed-end
capping suppression. The main difference is that thekbranch-
dependence is somewhat weaker. This is to be expected
because the velocity of an uncapped filament growing over
a long distance against the obstacle will not be directly
sensitive to branches growing off it. There will, however, be an
indirect sensitivity because the branching rate will affect the
number of filaments sharing the opposing force of the obstacle.

Fig. 5 a shows results for thekcap-dependence of the
growth velocity for the models without capping suppres-
sion. In all cases a monotonic dropoff is seen. The behavior
is very linear. The largest fractional effects are seen for
models A1 and B1, with model B1 experiencing a 60%
velocity dropoff askcapgoes from 0.005kon to 0.025kon. In
the parallel results for models C1, C2, D1, and D2 the
kcap-dependence is much weaker, which is to be expected if
the filaments that remain uncapped over large distances are
playing an important role.

The measured dependences (Loisel et al., 1999) of the
velocities of pathogens on the protein concentrations are
quite different from the rate dependences found here. The
measured velocities show an optimal concentration for each
protein rather than the monotonically increasing or decreas-
ing values seen in Figs. 4 and 5. I believe that the observed
behavior is due to “funneling” effects (Carlier and Panta-
loni, 1997), in the sense that having a sufficiently small
Arp2/3 concentration or a sufficiently large capping-protein
concentration concentrates free monomers in the vicinity of
the membrane. These effects are not present in our model
because we assume a fixed monomer concentration.

FIGURE 4 Dependence of obstacle velocity onkbranchatkcap5 0.01kon.
V given in units ofkon. (a) Models A1 (circles), A2 (squares), B1 (dia-
monds), and B2 (triangles). (b) Models C1 (circles), C2 (squares), D1
(diamonds), and D2 (triangles). Curves in (a) are from analytic theory
described in text.
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The numerical results can be clarified by developing a
simple analytic model theory. Because the filament length,
determined by the barbed-end capping rate, greatly exceeds
the branch spacing, I focus on the casekcap ,, kbranch. The
case of models B1 and B2 is the simplest. In these models
the branching occurs essentially at the same time that the
branching subunit is added; otherwise this subunit would no
longer be at the end. Thus, the time to cover a given growth
path (defined by a given set of branchings) is simply pro-
portional to the number of subunits in the path. The basic
physics of the growth velocity is then that a high branching
rate increases the velocity by allowing a higher fraction of
the filaments at the growth front to have optimal orienta-
tions. Denote the average number of branches per filament
by M. I note that even though there is no constraint on the
branching directions in model B1, there will be very few
branches pointing straight down; these would have to nu-
cleated off down-pointing filaments, and these will rapidly
move out of the branching region. In practice, there are very
few filaments pointing.120° away from the growth direc-
tion, and I use this as an upper limit in the theory. Because
the branch orientations are spread over the surface of a
sphere, their direction cosines are assumed to be spaced
uniformly over the interval cos 0° to cos 120° for model B1.
One readily shows that on the average, the direction of the
best of theM branches of a filament is cos 08 1 (1/M)

(cos 120°2 cos 08) 5 1 2 1.5/M. A similar analysis applies
to model B2, with 120° replaced by 90°. The resulting
growth velocities are then

V 5 kon@1 2 1.5kcap/kbranch# B1 (3)

V 5 kon@1 2 1.0kcap/kbranch# B2. (4)

These results are plotted in Fig. 4a, with an adjustment of
the overall magnitude of the velocity to match the last
calculated point in each curve. It is seen that the fit to the
numerical data is quite good, in particular the difference
between models B1 and B2 with regard to the reduction in
kbranchrequired to cause a 50% reduction in velocity. Sim-
ilarly, Fig. 5a confirms the linearkcapbehavior predicted by
the simple theory. The slopes are also fairly commensurate
with those of the theory. The theory predicts reductions of
60% and 30%, respectively, atkcap 5 0.025kon relative to
kcap 5 0.005 kon for models B1 and B2; the simulation
values are 60% and 20%.

For models A1 and A2 I use a parallel analysis, simply
replacing kbranch by Nkbranch. Then the growth velocities
become

V 5 kon@1 2 1.5kcap/Nkbranch# A1 (5)

V 5 kon@1 2 1.0kcap/Nkbranch# A2. (6)

The plots of these results in Fig. 4a show similar accuracy
to the results for the end-branching models, except for
model A1. Here, the value ofkbranch at the 50% point is
overestimated by about a factor of 3/2. The reductions at
kcap5 0.025kon for A1 and A2 are predicted to be 55% and
20%, respectively, in comparison with the numerical results
of 35% and 15%.

I do not have a satisfactory theory for the growth in the
models involving barbed-end capping suppression. The
curves in Fig. 4b could be fitted by a combination of the
functions used in Fig. 4a and a constant, but I see no merit
in providing such a fit with out knowing what the relative
weight of the constant term should be.

Branch spacing

Figs. 6 and 7 give corresponding results for the average
branch spacing. This is evaluated inside a 40-subunit-thick
box from the obstacle. All of the curves in Figs. 6a andb
decay monotonically withkbranch. This is expected since the
branch spacing should be inversely proportional tokbranch.
The curves in Fig. 7a also reveal a monotonic decrease in
average spacing as a function ofkcap. The curves in Fig. 7
b, for models with barbed-end capping suppression, show a
weaker dependence onkcap.

To develop an analytic theory for these effects I consider
a filament having the average filament length,l 5 kon/kcap,
and evaluate the average distance to the first branch. This is
equivalent to evaluating the average distance between

FIGURE 5 Dependence of obstacle velocity onkcap, with branch spacing
of 15 subunits atkcap 5 0.01 kon. kcap and V given in units ofkon. (a)
Models A1 (circles), A2 (squares), B1 (diamonds), and B2 (triangles). (b)
Models C1 (circles), C2 (squares), D1 (diamonds), and D2 (triangles).
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branches because the average length of a filament beyond
any branch point is alsol. This holds because the monomer-
addition events are assumed to be uncorrelated. For sim-
plicity, I first choose units in whichkon 5 1, and begin with
the case of end-branching. Then one readily shows that the
probability of having no branches before subunitm along
the filament is proportional to exp(2mkbranch), so the prob-
ability of having the first branch at subunitm is proportional
to kbranchexp(2mkbranch). The average distance to the first
branch is thus

m# 5
Om950

l m9 exp~2m9kbranch!

Om950
l exp~2m9kbranch!

. (7)

By converting to an integral, which is appropriate because
kbranch,, kon andkcap ,, kon, we obtain

m# 5
kon

kbranch
F1 2

nbranch

exp~nbranch! 2 1G , (8)

where nbranch 5 kbranch/kcap is the average number of
branches per filament and we have gone to a general value
of kon. This result reduces tom# 5 kon/kbranch[1 2 nbranch

exp(2nbranch)] for nbranch .. 1, the limit of interest here.
This result is plotted in Fig. 6a. It is seen that the prediction
has roughly the correct magnitude and rate of dropoff with
increasingkbranch. However, the rate of increase at small

kbranch is lower in the numerical data. I believe that this is
partly due to the finite size of the obstacle, which prevents
an infinite branch spacing even askbranchgoes to 0. For the
kbranchparameters used in Fig. 7a the theory predicts 30%
and 20% reductions atkcap 5 0.025kon for models B1 and
B2, respectively. The corresponding reductions from the
simulation data are 35% and 25%.

For the side-branching models I follow the same theory,
replacingkbranchby Nkbranchas above. This yields capping-
induced reductions of 25% for model A1 and 10% for
model A2. This ordering is consistent with the corrections
seen in Fig. 7a, but the predicted correction for model A2
is substantially smaller than that obtained in the simulations.

Network density

Figs. 8 and 9 show the dependence of the density onkbranch

and kcap. It is averaged over the same box as the branch
spacing. In all cases the density increases withkbranch, as
expected. The increase is roughly linear. Fig. 9a andb show
that increasingkcap reduces the network density, which is
also expected because of the reduced average filament
length. The effect seen in Fig. 9b is smaller, as expected.
Comparison of Figs. 8 and 4 indicates that over a range of
values of kbranch the network density increases, but the
velocity is essentially unchanged. This is consistent with

FIGURE 6 Dependence of average branch spacing onkbranch, at kcap 5
0.01 kon. kbranch is given in units ofkon. (a) Models A1 (circles), A2
(squares), B1 (diamonds), and B2 (triangles). (b) Models C1 (circles), C2
(squares), D1 (diamonds), and D2 (triangles). The dashed curve in (a) is
analytic theory described in text.

FIGURE 7 Dependence of average branch spacing onkcap, with branch
spacing of 15 subunits atkcap 5 0.01kon. kcap is given in units ofkon. (a)
Models A1 (circles), A2 (squares), B1 (diamonds), and B2 (triangles). (b)
Models C1 (circles), C2 (squares), D1 (diamonds), and D2 (triangles).
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studies of latex beads (Cameron et al., 1999), whichfound
that changing the bead coverage by ActA had a pronounced
effect on the density but little effect on the velocity.

Developing a theory of the steady-state polymerized-
actin density at the obstacle is difficult because the exis-
tence of a steady-state density is inherently a nonlinear
effect due to the interactions between filaments, either direct
or mediated by the obstacle. To see this, note that the
simplest linear theory of the time evolution of the density in
the case of end branching, in the frame of reference of the
moving obstacle, would have the form

r

t
5 kbranchr 1 Vobst

r

z
, (9)

wherer is the density of filament ends and the second term
on the right-hand side is a convective derivative. This equa-
tion models the autocatalytic growth behavior ofr. For a
linear equation such as this, or a more complex linear
equation, the solution at large times is a linear function of
the initial conditions. Thus there can be no well-defined
steady-state density at large times, independent of the initial
conditions. In the simulations I find that there is such a
density, which does not depend on how many filaments are
used to seed the system. Therefore, nonlinear terms inr are
necessary, which correspond to interactions between filaments.

Two possibilities for these nonlinear interaction terms
come to mind. The first is the steric exclusion effects. I feel
that these are not the dominant effect here. As mentioned
above, expanding the exclusion volume around a subunit by
up to a factor of 2.5 changes the steady-state density by only
20%. Furthermore, by using obstacles with extremely low
mobilities, I have achieved network densities nearly 10
times higher than the highest ones obtained in the low-force
limit. Therefore, steric exclusion effects are still fairly small
in the cases treated here. Another possibility for the non-
linear interaction terms determining the actin density is an
effective interaction mediated by the obstacle. As one fila-
ment grows, it pushes the obstacle forward so that it has less
likelihood of nucleating new branches on other filaments.
The higher the density of filaments, the faster will be the
leading filaments, and the larger the probability that an
average filament will leave the branching region before
branching. Effectively, the average branching rate is re-
duced by a high density of filaments. The sensitivity of the
density to the obstacle mobility, which I find below, is
consistent with a filament-filament interaction mediated by
the obstacle.

Effect of varying force

Fig. 10 a shows the effect of the obstacle force on the
growth velocity. The force is varied by changing the mo-

FIGURE 8 Dependence of network density onkbranch, atkcap5 0.01kon.
(a) Models A1 (circles), A2 (squares), B1 (diamonds), and B2 (triangles).
(b) Models C1 (circles), C2 (squares), D1 (diamonds), and D2 (triangles).

FIGURE 9 Dependence of density onkcap, with density of 1 mM atkcap

5 0.01 kon. kcap is given in units ofkon. (a) Models A1 (circles), A2
(squares), B1 (diamonds), and B2 (triangles). (b) Models C1 (circles), C2
(squares), D1 (diamonds), and D2 (triangles).
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bility of the obstacle. It is seen that the effect on the growth
rate is quite small, which is surprising given that single
filaments obey an exponential decay law. As the force
increases, the force per filament in fact remains rather
constant as the number of filaments in contact with the
obstacle increases. In other words, a self-regulating effect is
controlling the velocity. This is illustrated in Fig. 10b,
which shows the force dependence of the network density.
The density is quite linear as a function of the force. I
believe that this effect is due to the fact that as the force
increases, the leading filaments will push into the obstacle
(or bend, actually), allowing other filaments to remain in
contact with the obstacle and thus to keep branching and
growing.

CRITIQUE OF MODEL

There are several approximations made in the model that
prevent it from providing a complete description of the
phenomena described. In this section I go through the major
approximations and assess the impact that they are likely to
have on the calculations.

Neglect of electrostatic interactions
between filaments

Actin is well known to carry a substantial charge per sub-
unit, exceeding 10 electron charges (Tang and Janmey,

1996) if cation condensation effects are not included. The
effects of these charges are reduced both by the condensa-
tion effects and by Debye-Huckel type screening. It is not
known how strong these effects are. However, under favor-
able circumstances it is possible for actin to self-assemble
into structures (Wong et al., 2000) in which the interfila-
ment spacing is as small as 7.5 nm, or about 3a. Eventually,
the electrostatic interactions will serve to limit the network
density and to cut off the type of increase with applied force
seen in Fig. 10b. It is not known at what densities this effect
becomes dominant.

Neglect of monomer depletion effects

These can arise from depletion in the medium as a whole, or
from diffusion-rate effects. As discussed above, depletion of
the medium could lead to pronounced effects on the depen-
dence of the network properties on the rate constants. For
the purpose of comparing to in vitro experiments, there are
enough biochemical data available that for a given experi-
ment one should be able to evaluate the free-monomer
concentration in the medium. However, establishing the
dependence of parameters such askbranchon this concentra-
tion will require assays that have not been performed yet. In
any case, it should be possible to arrange experiments in
which the monomer concentration is constant.

To assess the magnitude of the diffusion-rate effects I
perform an approximate diffusion calculation. As men-
tioned above, the value of the diffusion coefficient of actin
monomers in the cell cytoplasm has been measured
(McGrath et al., 1998) to be 3–6mm2 s21 and the aqueous
solution value to be 30mm2 s21 (Lanni and Ware, 1984). To
make the estimate we consider actin network growth against
a 0.4-mm square obstacle, as in the simulations. I take a
typical value of the number of growing filament ends, 1370
mm22, from recent standing-wave fluorescence microscopy
measurements (Abraham et al., 1999), which gives 220
filaments pushing against the obstacle. To evaluate the
extent to which the free-actin concentration is depressed by
the growth of the network, I model the area of growth as a
spherical region of radius 0.2mm. The concentration far
away from this region is fixed at the cellular valueca. Using
rate and concentration parameters discussed above, the
monomer current flowing into the polymerization region is
140 s21 3 220 5 30,000 s21. Application of standard
diffusion theory, using the aqueous-solution value of the
diffusion constant, shows that this leads to a depression
dca 5 0.4 mM of the concentration at the edge of the
polymerization region. Use of the cytoplasmic diffusion
constant would give the same value, because the monomer
current would be reduced by the same factor as the diffusion
constant. Sincedca is small in comparison withca, the
approximation of neglecting the diffusion-rate effects is
probably accurate for an obstacle of the size that we are
considering. However, as the obstacle grows in size, the

FIGURE 10 Effects of obstacle force on growth properties for model B2
with kcap 5 0.01kon. (a) Growth velocity; (b) network density.
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monomer current grows proportional to the square of the
obstacle size, which makesdca proportional to the obstacle
size. Therefore, for an obstacle several microns in size, the
diffusion-rate effects would become important.

Similar considerations apply to the concentrations of
capping protein and Arp2/3 complex. The rate of consump-
tion of capping protein is equal to that of actin monomers
divided by the average filament length. If one takes the
above value of 100 subunits for the average filament length
and a value of 70 for the actin/capping protein concentration
ratio, and assumes that the diffusion constant of capping
protein is the same as that of actin, one finds that the
fractional change in capping protein concentration at the
edge of the polymerization region is;70% of that in the
actin concentration. The typical ratio of the concentrations
of free actin and Arp2/3 complex (Pollard et al., 2000) is 20
to 30. Assuming a branch spacing of 15 subunits, this leads
to a fractional reduction in the Arp2/3 concentration of
about twice that for free actin monomers.

Neglect of severing effects

These should affect mainly the large-scale structure of the
networks. They would reduce the probability of having very
long filaments, such as those seen in Fig. 3b.

Neglect of cross-linking effects

The extent of cross-linking varies a great deal among cell
types, and the present model applies only to those where the
cross-linking effects are small. Velocity measurements of
pathogens in pure protein solutions (Loisel et al., 1999) found
only small effects from cross-linking proteins.

Neglect of explicit terms accounting for filament
elasticity and elasticity of branch points

As mentioned above, filament and branch point elasticity
are accounted for, to some extent implicitly, by thedz term
in the energy (Eq. 1). However, long-ranged relaxations of
the actin tail are not included. Even though a one-micron tail
is shorter than the persistence length of actin filaments, a
single filament of this length would easily bend when acted
on by relatively weak forces, but on the scale of the close-up
“snapshots” (Fig. 2), the filaments should be essentially
straight. Although the variationsdu in branching angle
reported in previous studies (Svitkina et al., 1997; Mullins
et al., 1998) are only 10° and 7°, respectively, the freedom
for a filament to bend by an amountdu of this magnitude
could result in significant effects on the growth. For exam-
ple, if the growth of a 20-subunit-long filament of is blocked
by another filament, changing the filament orientation by 7°
would move its end by two subunit sizes, which could easily
be enough to avoid the blockage.

Neglect of orientational preferences in branching

Actin filaments do not have circular symmetry, as assumed
here. The two dimers residing roughly side-by-side at any
point along the filament define an orientation that rotates
along the filament with a periodicity of 36 nm or 13 subunit
spacings. If one assumes that the Arp2/3 complex adopts a
particular orientation with respect to the dimers, then
branches with a spacing corresponding to this filament
periodicity should point in the same direction, rather than
having a random orientation. One would expect this to
enhance the degree of order in the network, but the precise
nature of this ordering is not clear.

Neglect of ATP-ADP conversion

In general, monomers are incorporated into the growing
filament in an ATP-bound state, but gradually convert to the
ADP-bound state. The binding affinity for Arp2/3 to the
filament and the rate of branch detachment are expected to
be dependent on this conversion. Because all the branches
forming in the model are formed near filament barbed ends,
ATP-ADP conversion is likely not relevant for branch for-
mation. In addition, the rate constantkrip for branch detach-
ment may be thought of as incorporating the effects of this
conversion. On the whole, I believe that the lack of explicit
treatment of ATP-ADP conversion in the model does not
have serious consequences.

Neglect of attachment of filaments to
the obstacle

As mentioned above, an attachment mechanism must be
present to maintain contact between the filaments and the
obstacle. I have not included this effect because the details
are too poorly understood. The most illuminating studies of
the effects of filament attachment are provided by recent
laser-tracking studies (Kuo and McGrath, 2000) ofListeria
monocytogenesmoving through COS7 cells. These studies
revealed a stepwise motion of periodicity 5.4 nm (twice the
step size used in our simulations). It was also found that the
fluctuations of the obstacle (the bacterium) are extremely
small, on the order of 0.1 nm. The present model does not
reproduce this behavior. Instead, the motion of the obstacle
is mainly a smooth linear function with a random compo-
nent superimposed; this random component is considerably
larger than 0.1 nm. Inclusion of an attachment mechanism
in the present simulations would definitely reduce the ran-
dom component of the obstacle motion, conceivably to the
level found in the laser-tracking data. Whether it would
reproduce the 5.4 nm step size is unclear. Potential growth
mechanisms that would lead to the discrete step size include
those in which a single filament either leads the growth or
limits it. Discrete steps would also occur if the motion
occurs by concerted growth of several filaments aligned

Growth of Actin Networks 1921

Biophysical Journal 81(4) 1907–1923



with each other. I am not aware of evidence supporting
either of these mechanisms. Another effect of attachment, if
it prevented lateral motion, would be bending of the fila-
ments and orientation of the filaments parallel to the direc-
tion of motion.

CONCLUSIONS

The main results of the above simulations are of two types.
With regard to the three-dimensional structures, the favor-
able comparison of the simulated structures from several of
our models with the lamellipodium ultrastructure studies
suggests the presence of a bias for branch formation in the
growth direction, or barbed-end uncapping effects, or both.
The similarity of the structures obtained with uncapping
effects to ultrastructure studies ofListeria tails, and to some
extent those of lamellipodia, suggests that such uncapping
effects are present in some cases. Studies of tails induced by
other types of bacteria (Gouin et al., 1999; van Kirk et al.,
2000) have shown structures almost entirely dominated by
long parallel filaments. Thus it is possible that the range of
structures shown in such tails means that in some cases
uncapping effects are dominant, in others important, and in
others negligible.

With regard to the quantitative measures of network
properties, I have made specific predictions about the de-
pendences of the growth rate, branch spacing, and density
on the key rate parameters. For comparison with the present
results, it would be desirable to make measurements of these
quantities at fixed concentration of free actin monomers. If
this concentration changes, the rate parameters will vary in
a fashion that is not known. The most directly testable of the
predictions is the dependence of the growth velocity on the
capping rate at fixed branching rate, shown in Fig. 5a and
b. The ratekcap here is proportional to the capping-protein
concentration. One could measure this dependence by using
asymmetrically ActA-coated beads in a protein mixture, in
experiments analogous to those performed on motion of
beads in a cell extract (Cameron et al., 1999). In this case,
one identifies the growth velocity of the network with the
relative velocities of the bead and the treadmilling tail. To
set up an experiment corresponding to the simulations, one
would start with a concentration of activated Arp2/3, and
then adjust the capping protein concentration so thatkon/kcap

5 13lbranch, where lbranch is the average branch spacing.
(This corresponds to scaling thekcap 5 0.005kon points in
Fig. 5, a and b to the value oflbranch in the experiments,
which may not have the value 15 subunits used as the
baseline in this paper.) Then one would increase the cap-
ping-protein concentration by a factor of 5. Under these
circumstances, the models predict rather different decreases
of the growth rate: 35% for A1, 15–20% for A2 and B2,
60% for B1, 0% for C1 and C2, and 10% for D1 and D2.
These differences are large enough to make meaningful
experimental distinctions.

Another useful class of experiments that would serve to
test the whole approach used here involves velocity mea-
surements at a fixedkbranch/kcap ratio. All of the models
predict weak dependences of the velocity on the magnitude
of kbranchandkcapif this ratio is fixed. For example, starting
at akbranchvalue corresponding tolbranch5 15 subunits, and
kcap 5 0.015kon, all of the models predict that increases of
kbranchandkcapby a factor of two or more affect the growth
velocity by ,10%. The approximate invariance of the ve-
locity in the simulations comes from two scaling properties
of the network-growth process. The first is that if all of the
rate parameters are increased by a factora, the growth rate
also increases by the same factor. This is clear because all
steps in the simulation occur at the faster rate. The second
scaling property is that ifkon is increased by a factorb,
leaving kbranch and kcap fixed, then the growth velocity
increases by approximately a factor ofb. This follows
because the average orientation of the filaments impinging
on the obstacle remains the same, but their growth rate is
increased. Using these scaling laws sequentially, and choos-
ing the scaling parameters so thatab 5 1, we find that the
growth velocity is unaffected whenkcap and kbranch are
scaled by the same factor. An experimental finding of a
gross violation of this scaling property would point to the
importance of other energy factors that are not scale-invari-
ant, for example electrostatic energies.

It should also be possible to test the force-velocity and
force-density relations shown in Fig. 10 in bead motility
experiments. I can see two ways of doing this. First, one
could freeze the bead in a laser trap with varying intensities.
By measuring the position of the bead relative to the center
of the trap, one can measure the force acting on it. Alter-
natively, the force can be varied by changing the bead’s
mobility. This can be done by changing its size. However,
this should be done in such a way that the contact area of the
actin network with the bead remains constant; otherwise, the
effects of the varying contact area complicate the interpre-
tation of the experiments. Achieving a fixed contact area
could be accomplished by limiting the region on the bead
coated by ActA to an area that is the same for all the beads.
By evaluating the filament density as a function of the bead
mobility and thus the force, one can establish the limits of
the validity of models of the type presented here.

Future simulation work in this vein should aim to include
the major effects missing here, in particular filament elas-
ticity, correlation of branching orientation with filament
twist, monomer-depletion effects, electrostatic interactions
between filaments, and attachment to the obstacle. In addi-
tion, developing an analytic theory of the steady-state den-
sity and its force dependence would provide support for the
generality of the results obtained here.

I am grateful to John Cooper for stimulating my interest in this project, and
to Saveez Saffarian, Elliot Elson, and Jonathan Katz for informative
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