Abstract
Hemoglobin function is modulated by several non-heme ligands; among these effectors, organic phosphates generally bind to heterotropic sites with a one-to-one stoichiometry. The phosphate binding site of human hemoglobin is located at the interface between the two beta chains. An additional binding site for polyanions has been studied at the molecular level (Tamburrini, M., A. Riccio, M. Romano, B. Giardina, and G. di Prisco. 2000. Eur. J. Biochem. 267:6089-6098) in the hemoglobins of the south polar skua (Catharacta maccormicki). It is formed by a cluster of six positive charges of both alpha chains (Val-1, Lys-99, Arg-141); the two Lys-99alpha have an essential role in the site structure. The present investigation, carried out on skua deoxyhemoglobins by using a molecular dynamics approach, confirms the structural feasibility of the additional site, possibly having the role of an entry-leaving site, and leads to the proposal of a novel migration pathway for phosphate along the central cavity of hemoglobin from one binding site to the other, occurring according to the hypothesis of a site-site migratory mechanism, which may assign a functional role to the central cavity. The role of Lys-99alpha was further confirmed by molecular dynamics experiments on the mutant Lys-99alpha-->Ala in which, at the end of the simulation, the phosphate was external to the additional site.
Full Text
The Full Text of this article is available as a PDF (792.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amiconi G., Bertollini A., Bellelli A., Coletta M., Condò S. G., Brunori M. Evidence for two oxygen-linked binding sites for polyanions in dromedary hemoglobin. Eur J Biochem. 1985 Jul 15;150(2):387–393. doi: 10.1111/j.1432-1033.1985.tb09032.x. [DOI] [PubMed] [Google Scholar]
- Arnone A., Perutz M. F. Structure of inositol hexaphosphate--human deoxyhaemoglobin complex. Nature. 1974 May 3;249(452):34–36. doi: 10.1038/249034a0. [DOI] [PubMed] [Google Scholar]
- Bowie J. U., Lüthy R., Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science. 1991 Jul 12;253(5016):164–170. doi: 10.1126/science.1853201. [DOI] [PubMed] [Google Scholar]
- Fermi G., Perutz M. F., Shaanan B., Fourme R. The crystal structure of human deoxyhaemoglobin at 1.74 A resolution. J Mol Biol. 1984 May 15;175(2):159–174. doi: 10.1016/0022-2836(84)90472-8. [DOI] [PubMed] [Google Scholar]
- Guenot J., Kollman P. A. Molecular dynamics studies of a DNA-binding protein: 2. An evaluation of implicit and explicit solvent models for the molecular dynamics simulation of the Escherichia coli trp repressor. Protein Sci. 1992 Sep;1(9):1185–1205. doi: 10.1002/pro.5560010912. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knapp J. E., Oliveira M. A., Xie Q., Ernst S. R., Riggs A. F., Hackert M. L. The structural and functional analysis of the hemoglobin D component from chicken. J Biol Chem. 1999 Mar 5;274(10):6411–6420. doi: 10.1074/jbc.274.10.6411. [DOI] [PubMed] [Google Scholar]
- Luisi B., Liddington B., Fermi G., Shibayama N. Structure of deoxy-quaternary haemoglobin with liganded beta subunits. J Mol Biol. 1990 Jul 5;214(1):7–14. doi: 10.1016/0022-2836(90)90139-d. [DOI] [PubMed] [Google Scholar]
- Lüthy R., Bowie J. U., Eisenberg D. Assessment of protein models with three-dimensional profiles. Nature. 1992 Mar 5;356(6364):83–85. doi: 10.1038/356083a0. [DOI] [PubMed] [Google Scholar]
- Richard V., Dodson G. G., Mauguen Y. Human deoxyhaemoglobin-2,3-diphosphoglycerate complex low-salt structure at 2.5 A resolution. J Mol Biol. 1993 Sep 20;233(2):270–274. doi: 10.1006/jmbi.1993.1505. [DOI] [PubMed] [Google Scholar]
- Tamburrini M., Riccio A., Romano M., Giardina B., di Prisco G. Structural and functional analysis of the two haemoglobins of the antarctic seabird Catharacta maccormicki characterization of an additional phosphate binding site by molecular modelling. Eur J Biochem. 2000 Oct;267(19):6089–6098. doi: 10.1046/j.1432-1327.2000.01699.x. [DOI] [PubMed] [Google Scholar]
- Ueno H., Manning J. M. The functional, oxygen-linked chloride binding sites of hemoglobin are contiguous within a channel in the central cavity. J Protein Chem. 1992 Apr;11(2):177–185. doi: 10.1007/BF01025223. [DOI] [PubMed] [Google Scholar]
- Waller D. A., Liddington R. C. Refinement of a partially oxygenated T state human haemoglobin at 1.5 A resolution. Acta Crystallogr B. 1990 Jun 1;46(Pt 3):409–418. doi: 10.1107/s0108768190000313. [DOI] [PubMed] [Google Scholar]
- Walshaw J., Goodfellow J. M. Distribution of solvent molecules around apolar side-chains in protein crystals. J Mol Biol. 1993 May 20;231(2):392–414. doi: 10.1006/jmbi.1993.1290. [DOI] [PubMed] [Google Scholar]
- Weber R. E., Jensen F. B. Functional adaptations in hemoglobins from ectothermic vertebrates. Annu Rev Physiol. 1988;50:161–179. doi: 10.1146/annurev.ph.50.030188.001113. [DOI] [PubMed] [Google Scholar]
- Zhang J., Hua Z., Tame J. R., Lu G., Zhang R., Gu X. The crystal structure of a high oxygen affinity species of haemoglobin (bar-headed goose haemoglobin in the oxy form). J Mol Biol. 1996 Jan 26;255(3):484–493. doi: 10.1006/jmbi.1996.0040. [DOI] [PubMed] [Google Scholar]
- Zuiderweg E. R., Hamers L. F., Rollema H. S., de Bruin S. H., Hilbers C. W. 31P NMR study of the kinetics of binding of myo-inositol hexakisphosphate to human hemoglobin. Observation of fast-exchange kinetics in high-affinity systems. Eur J Biochem. 1981 Aug;118(1):95–104. doi: 10.1111/j.1432-1033.1981.tb05490.x. [DOI] [PubMed] [Google Scholar]