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ABSTRACT The sarcoplasmic reticulum (SR) Ca21 release channel (RyR1) from malignant hyperthermia-susceptible (MHS)
porcine skeletal muscle has a decreased sensitivity to inhibition by Mg21. This diminished Mg21 inhibition has been attributed
to a lower Mg21 affinity of the inhibition (I) site. To determine whether alterations in the Ca21 and Mg21 affinity of the activation
(A) site contribute to the altered Mg21 inhibition, we estimated the Ca21 and Mg21 affinities of the A- and I-sites of normal
and MHS RyR1. Compared with normal SR, MHS SR required less Ca21 to half-maximally activate [3H]ryanodine binding
(KA,Ca: MHS 5 0.17 6 0.01 mM; normal 5 0.29 6 0.02 mM) and more Ca21 to half-maximally inhibit ryanodine binding (KI,Ca:
MHS 5 519.3 6 48.7 mM; normal 5 293.3 6 24.2 mM). The apparent Mg21 affinity constants of the MHS RyR1 A- and I-sites
were approximately twice those of the A- and I-sites of the normal RyR1 (KA,Mg: MHS 5 44.36 6 4.54 mM; normal 5 21.59 6
1.66 mM; KI,Mg: MHS 5 660.8 6 53.0 mM; normal 5 299.2 6 24.5 mM). Thus, the reduced Mg21 inhibition of the MHS RyR1
compared with the normal RyR1 is due to both an enhanced selectivity of the MHS RyR1 A-site for Ca21 over Mg21 and a
reduced Mg21 affinity of the I-site.

INTRODUCTION

Depolarization of the skeletal muscle plasma membrane
results in the spread of the action potential over the surface
and transverse-tubule membranes. Transverse-tubule depo-
larization effects a structural change in the dihydropyridine
receptor/L-type Ca21 channel that results in the release of
Ca21 from the sarcoplasmic reticulum (SR) via the high-
conductance Ca21 release channel/ryanodine receptor pro-
tein (RyR1). RyR1 is regulated in a complex fashion by
numerous endogenous effectors and, in the absence of other
modulators, is activated by Ca21 concentrations in the
nano- to micromolar range and inhibited by Ca21 concen-
trations in the micro- to millimolar range. Thus, it has been
concluded that the RyR1 has a high-affinity divalent bind-
ing site, which when occupied by Ca21 will activate the
channel (A-site), and a low-affinity divalent binding site,
which when occupied by Ca21 will inhibit the channel
(I-site) (Meissner, 1994).

RyR1 channel opening is inhibited by physiological con-
centrations of Mg21 (Endo, 1977; Meissner, 1994). Mg21

could potentially be a competitive antagonist at the A-site
on the RyR1, be an agonist at the I-site, or inhibit RyR1
channel opening via an independent inhibitory site. Laver et
al. (1997a) and Meissner et al. (1997) have suggested that
Mg21 inhibits RyR1 channel opening via its interaction
with both Ca21 binding sites and that the extent of the
interaction of Mg21 with the two regulatory sites depends
on the Ca21 concentration. Although the regulation of the
RyR1 by Ca21 and Mg21 has been extensively studied, and

the Ca21 affinity of the A- and I-sites estimated (Zucchi and
Ronca-Testoni, 1997; Meissner, 1994), the Mg21 affinity of
these sites has been reported only for frog RyRs (Murayama
et al., 2000). In addition, the apparent affinity of each of
these sites is dependent on the conditions under which the
measurements are made (Fruen et al., 1996; Meissner et al.,
1997). Thus, until the affinities of the two binding sites for
Ca21 and Mg21 are determined under identical conditions,
the potential physiological role of Mg21 at each site cannot
be concluded.

Malignant hyperthermia (MH) is a pharmacogenetic dis-
order originating primarily from mutations in the RyR1.
Although in the human population there are 24 known
RyR1 MH mutations (McCarthy et al., 2000; Jurkatt-Rott et
al., 2000), the primary defect in porcine MH is a single point
mutation (Arg6153Cys) in the RyR1 (Fujii et al., 1991).
RyR1 from MH-susceptible (MHS) individuals exhibits a
decreased sensitivity to inhibition by high concentrations of
Ca21 (Mickelson et al., 1988, 1990; Shomer et al., 1993;
Richter et al., 1997). A greater sensitivity to Ca21 activation
has also been reported (Shomer et al., 1993; Herrmann-
Frank et al., 1996; Richter et al., 1997). Although the Mg21

regulation of these channels also appears to be altered, most
studies have focused on the interaction of Mg21 with the
low-affinity I-site (Mickelson et al., 1990; Laver et al.,
1997a; Owen et al., 1997). In their comparison of RyR1
from normal and MHS pigs, Laver et al. (1997b) reported
that in the presence of 1mM Ca21, a Ca21 concentration
where they had previously found Mg21 inhibition via the A-
and I-sites to be equally important (Laver et al., 1997a), a
higher Mg21 concentration was required to half-maximally
inhibit MHS channels compared with normal channels. Al-
though the reported decrease in the Mg21 sensitivity of the
I-site contributed to the diminished Mg21 inhibition, the
possible involvement of the A-site, via an increased Ca21 or
decreased Mg21 affinity, cannot be excluded.
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The application of caffeine to skeletal muscle can trigger
SR Ca21 release and muscle contraction (Herrmann-Frank
et al., 1999). MHS skeletal muscle is more sensitive to
caffeine-induced contracture than skeletal muscle from nor-
mal individuals, and this enhanced caffeine sensitivity is
integral to the clinical diagnosis of MH (Jurkatt-Rott et al.,
2000). However, whether the MHS RyR1 itself is more
sensitive to caffeine remains controversial (Shomer et al.,
1994; Herrmann-Frank et al., 1996). Shomer et al. (1994)
reported that the MHS RyR1 is no more sensitive to caffeine
than the normal RyR1 and suggested that the increased
caffeine sensitivity of MHS muscle may be secondary to an
elevated resting myoplasmic Ca21 concentration or altered
Ca21 regulation of the RyR1. Although it has been reported
recently that the enhanced caffeine sensitivity of MHS
muscle is mediated by an increase in the resting myoplasmic
Ca21 concentration (Lopez et al., 2000), the effect of caf-
feine on the Ca21 and Mg21 affinities of the A- and I-sites
of the MHS and normal RyR1 have not been rigorously
examined.

We have now estimated the Ca21 and Mg21 affinities of
the normal and MHS RyR1 A- and I-sites under identical
conditions in the presence and absence of caffeine. Com-
pared with the normal RyR1, the MHS RyR1 I-site has a
lower apparent affinity for both Ca21 and Mg21. In con-
trast, compared with the normal RyR1, the MHS RyR1
A-site has a higher apparent affinity for Ca21 but a lower
apparent affinity for Mg21. In addition, caffeine increased
the Ca21 affinity of the MHS and normal RyR1 A-sites to
a similar extent. However, caffeine increased the Mg21

affinity of the normal RyR1 A-site but not of the MHS
RyR1 A-site. Thus, the MH mutation has opposite effects
on the Ca21 and Mg21 affinities of the RyR1 A-site that
would greatly enhance the sensitivity of the MHS RyR1 to
Ca21 activation in intact muscle.

MATERIALS AND METHODS

[3H]Ryanodine binding

Isolation of SR vesicles

Skeletal muscle SR vesicles were prepared from porcine longissimus dorsi
muscle as described previously (Mickelson et al., 1990). Briefly, muscle
was homogenized in 0.1 M NaCl, 5 mM Tris maleate buffer (pH 6.8), and
the membranes collected between 2,600 and 10,0003 g were extracted in
0.6 M KCl, 20 mM Tris (pH 6.8), centrifuged at 100,0003 g, and then
resuspended in 0.3 M sucrose, 0.1 M KCl, 5 mM Tris (pH 6.8) buffer; all
buffers contained a protease inhibitor mixture. SR vesicles were flash-
frozen in liquid nitrogen and stored at270°C.

[3H]Ryanodine binding

SR vesicles (0.2 mg/ml) were incubated at 36°C in media containing 100
mM KCl, 10 mM HEPES, pH 7.4, 100 nM [3H]ryanodine, and a Ca-EGTA
buffer set to give the desired free Ca21 concentration (Brooks and Storey,
1992). In some experiments, the binding media also included 5 mM
caffeine. After 90 min, SR vesicles were collected on Whatman GF/B

filters and washed with 8 ml of ice-cold 100 mM KCl buffer. Estimates of
maximal [3H]ryanodine binding capacity of each SR vesicle preparation
were determined in media that in addition contained 500 mM KCl, 6 mM
ATP, and 10mM Ca21. Nonspecific binding was measured in the presence
of 20 mM nonradioactive ryanodine. Binding experiments were performed
in duplicate using seven normal and nine MHS SR preparations.

Single-channel studies

The RyR1 was purified from SR membrane vesicles as described previ-
ously (Shomer et al., 1993). Muller-Rudin planar lipid bilayers were
formed by painting a lipid mixture (phosphatidylethanolamine, phosphati-
dylserine, and phosphatidylcholine in a 5:3:2 ratio by weight, 50 mg/ml
dissolved inn-decane) across a 250-mm aperture in a Delrin cup. Thecis
chamber was connected to the headstage input of an Axoclamp 200B patch
clamp amplifier (Axon Instruments, Foster City, CA). Thetrans chamber
was held at virtual ground. Data was filtered at 2 kHz with an eight-pole
Bessel filter, recorded at 4.5 kHz, and stored on a Jazz disk drive (Iomega,
Roy, UT). Recording solution consisted of symmetric 100 mM KCl, 10
mM HEPES, pH 7.4, 1 mM EGTA. The Mg21 and Ca21 concentrations
were adjusted by adding small aliquots of concentrated EGTA, CaCl2, and
MgCl2 (Brooks and Storey, 1992). Single-channel data were collected
using a pulsing protocol in which the potential was held at 0 mV for 4 s
between steps of 2-s duration to170 mV (CLAMPEX program, pClamp
software, Axon Instruments, Foster City, CA). Only those channels that
had a conductance of at least 700 pS were used (Shomer et al., 1994).
Single-channel open probability (Po) was calculated from at least 50 2-s
sweeps using FETCHAN and PSTAT analysis programs (pClamp soft-
ware, Axon Instruments). When two channels were present in the bilayer,
indicated by current amplitudes of twice the expected magnitude,Po was
estimated as the averagePo of the two channels, calculated as [Po,level 11
(Po,level 23 2)]/2. Bilayers in which three channels had incorporated were
dealt with similarly; recordings were not made from bilayers containing
more than three channels.

Analysis

The Ca21 and Mg21 affinities of the A- and I-sites of RyR1 were estimated
according to the model of Murayama et al. (2000). The fraction of A-sites
bound with Ca21 (ƒA) and the fraction of I-sites not bound with Ca21 or
Mg21 (1 2 ƒI) were expressed as

fA 5 @Ca21#nA,Ca/$@Ca21#nA,Ca 1 K A,Ca
nA,Ca

3 ~1 1 @Mg21#nA,Mg/K A,Mg
nA,Mg !% (1)

1 2 fI 5 1/~1 1 @Ca21#nI,Ca/K I,Ca
nI,Ca 1 @Mg21#nI,Mg/K I,Mg

nA,Mg!, (2)

whereKA,Ca, KA,Mg, KI,Ca, andKI,Mg are the apparent affinity constants for
Ca21 and Mg21 of the A- and I-sites, respectively.nA,Ca, nA,Mg, nI,Ca, and
nI,Mg are the Hill coefficients for Ca21 and Mg21 of the A- and I-sites,
respectively.

The above parameters were determined in a three-step procedure. First,
KA,Ca, nA,Ca, KI,Ca, andnI,Ca were determined from the Ca21 dependence of
SR vesicle [3H]ryanodine binding (B) in the absence of Mg21 according to
Eq. 3:

B 5 BpeakfA~1 2 fI!

5 Bpeak$@Ca21#nA,Ca/~@Ca21#nA,Ca 1 K A,Ca
nA,Ca

3 $1 2 @Ca21#nI,Ca/~@Ca21#nI,Ca 1 K I,Ca
nI,Ca!%. (3)
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Bpeak in these equations indicates the maximal SR vesicle [3H]ryanodine
binding under the conditions of the experiment. Then, the concentration
dependence of Mg21 inhibition of SR vesicle [3H]ryanodine binding was
measured at a Ca21 concentration much greater thanKA,Ca. At this Ca21

concentration, Ca21 is bound to the A-site and the inhibition by Mg21

occurs via the I-site.KI,Mg andnI,Mg were determined by fitting the data
from these experiments with Eq. 4 and including the values previously
obtained forKA,Ca,nA,Ca,KI,Ca,andnI,Ca:

B 5 Bpeak~1 2 fI!

5 Bpeak$1/11 ~@Ca21#nI,Ca/K I,Ca
nI,Ca 1 @Mg21#nI,Mg/K I,Mg

nI,Mg!%.

(4)

Finally, the concentration dependence of Mg21 inhibition of SR vesicle
[3H]ryanodine binding was measured at a Ca21 concentration nearKA,Ca.
At this Ca21 concentration, competitive inhibition by Mg21 at the A-site
predominates.KA,Mg andnA,Mg were determined by fitting the data from
these experiments with Eq. 5, using values previously obtained forKA,Ca,
nA,Ca, KI,Ca, nI,Ca, KI,Mg, andnI,Mg:

B 5 Bpeak fA~1 2 fI!

5 BpeakH @Ca21#nA,Ca

@Ca21#nA,Ca 1 K A,Ca
nA,Ca~1 1 @Mg21#nA,Mg/K A,Mg

nA,Mg !J
3 H1YS1 1

@Ca21#nI,Ca

K I,Ca
nI,Ca

1
@Mg21#nI,Mg

K I,Mg
nI,Mg DJ. (5)

The model is depicted diagrammatically in Fig. 1 using parameters derived
in the presence of 1 mM Mg21. The Ca21 dependence of the fraction of
channels activated, i.e., SR vesicle [3H]ryanodine binding (solid line), is

the product of the fraction of channels with the A-site bound with Ca21 (fA,
dashed and dotted line) and the fraction of channels with the I-site free of
both Ca21 and Mg21 (1 2 fI, dashed line). As a competitive antagonist of
Ca21 for binding to the A-site, Mg21 effectively increasesKA,Ca, shifts the
Ca21 dependence offA to higher Ca21 concentrations, and increases the
Ca21 required for channel activation. Because Mg21 is an agonist at the
I-site, Mg21 will decrease the fraction of channels with the I-site free of
both Ca21 and Mg21, resulting in a reduction in the number of channels
available for activation. Thus, it is clear that the diagram is drawn as would
occur in the presence of a Mg21 concentration somewhat below theKI,Mg

(at very low Ca21 concentrations, 12 fI . 0.5). It should be pointed out
that in the presence of Mg21, differences in the Ca21 dependence of MHS
and normal RyR1 channel activation could potentially occur via an in-
crease in the Ca21 affinity of the A-site, by a decrease in the Mg21 affinity
of the A-site, or both.

In an initial experiment, to determine whether MHS and normal RyR1s
differ in their sensitivities to inhibition by Mg21, the Mg21 concentration
dependence of MHS and normal SR [3H]ryanodine binding was compared
in the presence of 10mM Ca21. In this experiment the inhibitory effect of
Mg21 could not be attributed to its action at a single site. Therefore, the
half-inhibitory (IC50) concentrations were determined using the Hill equa-
tion. Curve fitting was performed using SigmaPlot 5.0 (SPSS, Richmond,
CA) software. All data are expressed as mean6 SEM. Comparisons
between muscle types or treatments performed were made via two-sample
t-tests with the level of significance set atp , 0.05.

RESULTS

The model used to estimate the Ca21 and Mg21 affinities of
the RyR1 A- and I-sites (Murayama et al., 2000) is depen-
dent on the assumption that Mg21 is a competitive inhibitor
with Ca21 at the A-site and is an agonist at the I-site. This
assumption was confirmed in single-channel studies (Fig.
2). Thus, if channels were activated by low concentrations
of Ca21 (near KA,Ca), the subsequent addition of a low
concentration of Mg21 should compete with Ca21 for the
A-site and decrease the mean single-channel percent open
time. Under these conditions, increasing concentrations of
Ca21 would effectively compete with Mg21 for the A-site
and increase the single-channel percent open time. As
shown in Fig. 2A, a normal RyR1 channel activated by 300
nM cis Ca21 had a mean single-channel percent open time
of 4.19. The addition of 50mM Mg21 to the cis chamber
decreased the percent open time to 0.92. Increasing the
Ca21 concentration in thecis chamber to 3mM increased
the single-channel percent open time to 5.06. Similar results
were obtained in all six experiments, although the sensitiv-
ity of the channels to Ca21 and Mg21 varied (Fig. 2C).
Thus, these single-channel experiments are consistent with
the hypothesis that Mg21 can act as a competitive antago-
nist with Ca21 at the A-site.

Single-channel studies also confirmed the assumption
that at Ca21 concentrations sufficient to saturate the A-site,
Mg21 interacts with the I-site. Thus, the single normal
channel in Fig. 2B, activated by 300mM Ca21 had a mean
single-channel percent open time of 1.23. The addition of 50
mM Mg21 to thecischamber lowered the percent open time
to 1.05. However, in contrast to experiments in 300 nM
Ca21, this channel could not be reactivated by the subse-

FIGURE 1 Diagrammatic representation of the model described in Ma-
terials and Methods used to derive the Ca21 and Mg21 affinities of the
RyR1 A- and I-sites. The Ca21 dependence of channel activation (——) is
the product of the fraction of channels with Ca21 bound to the A-site (fA,
— z z —) and the fraction of channels with the I-site free of both Ca21 and
Mg21 (1-fI, — — —). Because Mg21 is a competitive antagonist with
Ca21 at the A-site, Mg21 will effectively increase theKA,Ca thereby
shifting the Ca21 dependence of channel activation to higher Ca21 con-
centrations. As an agonist at the I-site, Mg21 will decrease the fraction of
channels with the I-site free of Ca21 and Mg21 and thus decrease the
number of channels available for activation. Note that the parameters
illustrated were derived in the presence of 1 mM Mg21.
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quent addition of Ca21. Indeed, the additional 100mM
Ca21 added to thecis chamber further reduced the percent
open time to 0.51. Similar results were obtained with all six
experiments (Fig. 2D). Although the extent of inhibition
was variable, in no case did increasingcisCa21 increase the
percent open time of Mg21-inhibited channels. Thus, when
the Ca21 concentration is greater than that required to
maximally activate the RyR1 (i.e., when the A-site is in the
Ca21 bound state), Mg21 is an agonist at the low-affinity
I-site.

The maximal [3H]ryanodine binding (i.e., in 500 mM KCl,
10 mM Ca21, and 6 mM ATP) for 9 normal (11.66 1.1
pmol/mg protein) and 11 MHS (9.56 0.8 pmol/mg protein)
SR preparations were not significantly different. Both MHS

and normal SR exhibited the characteristic bell-shaped Ca21

dependence of [3H]ryanodine binding. However, compared
with normal SR, MHS SR [3H]ryanodine binding was more
sensitive to Ca21 activation and less sensitive to inhibition by
Ca21 (Fig. 3). TheKA,Ca, nA,Ca, KI,Ca, andnI,Ca of the RyR1
determined for both muscle types according to Eq. 3 are
presented in Table 1. The MHSKA,Cawas significantly smaller
than the normalKA,Ca; in contrast, the MHSKI,Ca was more
than 1.7-fold greater than the normalKI,Ca. Thus, compared
with the normal RyR1, the MHS RyR1 A-site had a higher
apparent affinity for Ca21 whereas the I-site had a lower
apparent affinity for Ca21.

To determine whether the normal and MHS RyR1 also
differ in their sensitivity to Mg21 inhibition, the Mg21

FIGURE 2 Effects of Ca21 and Mg21 in combination on the single-channel activity of the RyR1. Single-channel activity of normal channels was
recorded as described in Materials and Methods. Recording solution contained 100 mM KCl, 10 mM HEPES (pH 7.4), 2 mM EGTA, and CaCl2 and MgCl2
to obtain the indicated ionized Ca21 and Mg21 concentrations. Single-channel currents were obtained with voltage steps from 0 mV to170 mV. The solid
line indicates the closed state of the channels; openings are upward. (A) (a) Single channel activated by 300 nMcis Ca21. Percent open time (%OT)5
4.19, mean open time (OT)5 1.0 ms, and mean closed time (CT)5 8.4 ms; (b) Addition of 50mM cis Mg21 decreased the %OT to 0.92 (OT5 0.9 ms,
CT 5 21.4 ms); (c) Increasingcis Ca21 to 3 mM reactivated the channel (%OT5 5.06, OT5 1.2 ms, CT5 8.8 ms). (B) (a) Single channel activated
by 300mM cis Ca21 (%OT 5 1.23, OT5 1.0 ms, CT5 16.6 ms); (b) Addition of 50mM cis Mg21 decreased %OT to 1.05 (OT5 0.9 ms, CT5 17.2
ms); (c) Increasingcis Ca21 to 400mM further decreased the %OT to 0.51 (OT5 1.0 ms, CT5 32.5 ms). Each color bar inC andD represents a different
experiment. In all experiments, the addition of 50mM Mg21 to thecis chamber reduced the mean single-channel percent open time when the free Ca21

concentration was either 300 nM,n 5 6 (C) or 300mM, n 5 6 (D). (C) When the Ca21 concentration was increased from 300 nM to 3mM in the presence
of Mg21, the %OT increased. (D) When the Ca21 concentration was increased from 300mM to 400 mM in the presence of Mg21, the %OT decreased.
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dependence of SR vesicle [3H]ryanodine binding was de-
termined in the presence of 10mM Ca21, a Ca21 concen-
tration that is more than 30 times theKA,Ca. As shown in
Fig. 4, in the presence of 10mM Ca21 the concentration
dependence of Mg21 inhibition of [3H]ryanodine binding to
MHS SR was shifted to significantly higher Mg21 concen-
trations compared with that of normal SR. The IC50 values,
derived from the Hill equation, for MHS and normal SR
were 652.06 46.5 mM and 304.96 49.6 mM Mg21,
respectively. Thus, [3H]ryanodine binding to MHS SR ap-
pears to be less sensitive to inhibition by Mg21 than is
[3H]ryanodine binding to normal SR.

From the experiments described above, we conclude that
compared with the normal RyR1, the MHS RyR1 A-site has
a higher Ca21 affinity, the I-site has a lower Ca21 affinity,
and the MHS channels are less sensitive to inhibition by
Mg21. However, because Mg21 inhibition occurs via its
binding to both regulatory sites, and there are significant

differences in the Ca21 affinities of both sites, it is not
possible, from the data presented in Fig. 4, to identify the
mechanism responsible for the decreased inhibition of the
MHS RyR1 by Mg21. The MHS RyR1 I-site may have a
reduced Mg21 affinity as suggested by Laver et al. (1997b),
the MHS RYR1 A-site may have a reduced Mg21 affinity,
or both. Furthermore, an increased affinity of the MHS
RyR1 A-site for Ca21, with no change in the Mg21 affinity,
could also result in a decreased competitive inhibition of the
MHS RyR1 by Mg21. To distinguish between these possi-
bilities, we estimated the affinities of the normal and MHS
RyR1 A- and I-sites for Mg21.

We determined the Mg21 dependence of the inhibition of
[3H]ryanodine binding in the presence of 300mM Ca21, a
concentration of Ca21 that is 1000-fold greater than the
RyR1 KA,Ca (Table 1). At this Ca21 concentration the

FIGURE 3 Comparison of the Ca21 dependence of [3H]ryanodine bind-
ing to normal and MHS SR vesicles. [3H]Ryanodine binding to normal (E)
and MHS (F) skeletal muscle SR vesicles was determined as described in
Materials and Methods. Media contained 100 mM KCl, 10 mM HEPES
(pH 7.4), and Ca-EGTA buffer set to provide the indicated free Ca21

concentrations. Data are expressed as percentages of the maximal [3H]ry-
anodine binding capacity of the SR preparations. Solid lines are based on
fits to Eq. 3 (see Materials and Methods). Means6 SEM are of seven
independent experiments performed in duplicate (seven different SR ves-
icle preparations).

FIGURE 4 Inhibition of [3H]ryanodine binding to normal and MHS SR
by Mg21. [3H]Ryanodine binding to normal (E) and MHS (F) skeletal
muscle SR vesicles was determined as described in Materials and Methods.
Media contained 100 mM KCl, 10 mM HEPES (pH 7.4), and 2 mM
EGTA. Ca21 and Mg21 concentrations were adjusted to maintain an
ionized Ca21 concentration of 10mM and various ionized Mg21 concen-
trations as indicated. Data are expressed as percentages of the maximal
[3H]ryanodine binding capacity of the SR vesicle preparations; solid lines
are based on fits to the Hill equation. Means6 SEM are of five indepen-
dent experiments preformed in duplicate (five different SR vesicle prepa-
rations).

TABLE 1 Ca21 and Mg21 parameters for the activation and inhibition sites of normal and MHS RyR1

Ca21 parameters Mg21 parameters

KA,Ca (mM) nA KI,Ca (mM) nI KAMg (mM) nA KIMg (mM) nI

No caffeine
Normal 0.296 0.2 1.86 0.2 293.36 24.2 1.06 0.1 21.596 1.66 1.06 0.1 299.26 24.5 0.86 0.1
MHS 0.176 .01* 1.66 0.1 519.36 48.7* 1.36 0.1* 44.366 4.54* 1.26 0.1 660.86 53.0* 1.26 0.1

5 mM caffeine
Normal 0.0716 .005† 2.16 0.3 376.16 45.8 1.26 0.1 5.596 1.28† 1.26 0.1 285.66 51.5 0.76 0.1
MHS 0.0516 .003*† 1.36 0.1* 584.16 27.2* 1.36 0.1 50.456 1.93* 1.56 0.1*† 531.06 41.5* 1.16 0.1*

*Significantly different from normal,p , 0.05.
†Significantly different from the absence of caffeine,p , 0.05.
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A-sites should be fully occupied by Ca21, and inhibition of
[3H]ryanodine binding by Mg21 should occur primarily via
the I-site. Fitting this data with Eq. 4, using the previously
determined Ca21 affinities and Hill coefficients, allowed us
to estimate the Mg21 affinity of the I-sites of both MHS and
normal RyR1 (Fig. 5; Table 1). This analysis indicated that
theKI,Mg of the MHS RyR1 I-site was approximately twice
that of the normal RyR1 I-site. However, the relative Mg21/
Ca21 affinities for MHS and normal RyR1 were both;1
(Table 2), indicating the MHS mutation decreases the af-
finity of the I-site for both divalent ions in a similar fashion.

Next, we examined the concentration dependence of the
inhibition of SR [3H]ryanodine binding by Mg21 in the
presence of 300 nM Ca21, a Ca21 concentration near the
KA,Ca. At this Ca21 concentration, Mg21 will inhibit RyR1
channel opening primarily via its action at the RyR1 A-site.
Fitting these data in Fig. 5 with Eq. 5 provided values for
KA,Mg. As shown in Table 1, the MHSKA,Mg was approx-
imately twice the value for the normal RyR1. Consequently,
in contrast to its effect on the I-site, the MHS mutation
altered the apparent affinity of the A-site for Ca21 and
Mg21 in opposite ways, increasing the Ca21 affinity and
decreasing the Mg21 affinity. As a result, the selectivity of
the MHS RyR1 A-site for Ca21 over Mg21 was;3.5-fold
greater than the normal RyR1 A-site (Table 2).

If the model described in the methods and derived pa-
rameters in Table 1 are valid, it should be possible to predict
the Ca21 dependence of [3H]ryanodine binding to SR ves-
icles in the presence of various concentrations of Mg21.
Therefore, we determined the Ca21 dependence of ryano-
dine binding to normal and MHS SR vesicles in the pres-
ence of 100mM and 500 mM Mg21 and fit the data
according to Eq. 5 using the parameters given in Table 1
(Fig. 6). If the conditions are established such that Mg21

inhibition occurs primarily as a result of its binding to the
A-site, a shift in the activation side of the Ca21 dependence
curve to higher Ca21 concentrations, with no change in the
inactivation side of the curve would be expected. Thus, 100
mM Mg21, a Mg21 concentration near theKA,Mg increased
the Ca21 concentration required to activate normal and
MHS SR vesicle [3H]ryanodine binding compared with
experiments performed in the absence of Mg21. Half-acti-
vating Ca21 concentrations (EC50) of 0.506 0.03mM and
0.34 6 0.03 mM were derived for normal and MHS SR,
respectively (compare withKA,Ca in Table 1). In contrast,
the Ca21 dependence of RyR1 inhibition was not signifi-
cantly altered in either muscle type. The IC50 values in the
presence of 100mM Mg21 were 344.76 22.6 mM for
normal and 416.36 36.1mM for MHS SR (compare with
KI,Ca in Table 1). Thus, low concentrations of Mg21 (#100
mM Mg21) affect [3H]ryanodine binding primarily via com-
petition with Ca21 for the A-site on the RyR1.

The lower-affinity I-site has a similar affinity for Ca21

and Mg21 (Table 1). Therefore, a Mg21 concentration near
theKI,Ca should inhibit ryanodine binding by acting at both

the A- and I-sites. Accordingly, 500mM Mg21 shifted both
the Ca21 dependence of activation and decreased the max-
imal extent of Ca21 activation (Fig. 6). This concentration

FIGURE 5 Mg21 dependence of [3H]ryanodine binding to normal and
MHS SR in the presence of various concentrations of Ca21. [3H]Ryanodine
binding to normal (A) and MHS (B) skeletal muscle SR was determined as
described in Materials and Methods. Media contained 100 mM KCl, 10
mM HEPES (pH 7.4), and 2 mM EGTA. The concentrations of MgCl2 and
CaCl2 were adjusted to maintain the ionized Ca21 concentration of 300 nM
(F), 10mM (E), or 300mM (�) and Mg21 as indicated in the figure. Data
for 10 mM Ca21 (E) are replotted from Fig. 3 for comparison with 300 nM
and 300mM Ca21. Data are expressed as percentages of the [3H]ryanodine
binding in the absence of Mg21; solid lines are based on fits to Eq. 5 (see
Materials and Methods). Means6 SEM are of five independent experi-
ments preformed in duplicate (five different SR vesicle preparations).

TABLE 2 Relative Mg21 and Ca21 affinities of the activation
and inhibition sites of normal and MHS RyR1

No caffeine 5 mM caffeine

KA,Mg/KA,Ca KI,Mg/KIca KA,Mg/KA,Ca KI,Mg/KIca

Normal 74.5 1.0 78.7 0.8
MHS 260.9 1.3 989.2 0.9
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of Mg21 increased the Ca21 EC50 for both types of SR
(MHS: 5.866 1.06 mM; normal: 6.366 1.32 mM). Like-
wise, the Ca21 IC50 was also increased for both MHS
(740 6 8 mM) and normal (6306 13 mM) SR.

The fitted lines in Fig. 6 derived from Eq. 5 and using the
parameters presented in Table 1 appear to fit the data well
and adequately describe the combined effects of Ca21 and
Mg21 on ryanodine binding to both MHS and normal SR.
Thus, the data presented in Fig. 6 support the validity of
both the model and the derived parameters.

Although MHS skeletal muscle fibers are more sensitive
to caffeine-induced contraction, Shomer et al. (1994) sug-
gested that an increased Ca21 sensitivity of the MHS RyR1

channel, rather than increased caffeine affinity, underlies
the greater responsiveness of MHS muscle to caffeine.
Therefore, we examined the effects of 5 mM caffeine on the
Ca21 and Mg21 affinities of the normal and MHS RyR1
A-and I-sites (Table 1). Caffeine did not significantly alter
the Ca21 or Mg21 affinity of the I-site of either the MHS or
normal RyR1. Caffeine had a similar effect on the MHS and
normal A-site Ca21 affinity, increasing the apparent affinity
approximately 3–4-fold. In contrast, caffeine had divergent
effects on the Mg21 affinity of the MHS and normal A-site.
The caffeine-induced increase in the Mg21 affinity (3.9-
fold) of the normal RyR1 A-site was similar to the increase
in the Ca21 affinity (4.1-fold). In contrast, caffeine did not
significantly increase the affinity of the MHS RyR1 A-site
for Mg21. Thus, 5 mM caffeine increased the Ca21 affinity
of the A-site of both channel types to a similar extent.
However, caffeine increased the selectivity of the MHS but
not the normal A-site for Ca21 over Mg21 (Table 2).

DISCUSSION

In agreement with previous reports (Mickelson et al., 1988;
Shomer et al., 1993; Herrmann-Frank et al., 1996), [3H]ry-
anodine binding to SR from pigs with the Arg6153Cys
RyR1 MHS mutation was more sensitive to Ca21 activation
and less sensitive to Ca21 inhibition than SR from normal
individuals (Fig. 3; Table 1). An increased sensitivity of
Ca21 activation has also been reported for SR isolated from
individuals with the RyR1 Gly24343Arg human MH mu-
tation (Richter et al., 1997) as well as individuals with
positive MH contracture tests but unknown and probably
variable genotypes (Valdivia et al., 1991). Therefore, we
conclude that the porcine Arg6153Cys mutation, its human
homolog, and likely other MH mutations as well, increase
the sensitivity of the RyR1 to activation by Ca21 and
decrease the sensitivity of the RyR1 to inhibition by Ca21.

Consistent with Mickelson et al. (1990), we found that
Mg21 is a less effective inhibitor of [3H]ryanodine binding
to MHS than to normal SR (Fig. 4). Mg21 has also been
shown to be less effective at inhibiting MHS RyR1 channel
opening (Laver et al., 1997b) and Ca21 release in mechan-
ically peeled MHS muscle fibers (Owen et al., 1997).

Because Mg21 competes with Ca21 for binding to the
two divalent cation regulatory sites on RyR1, and the extent
of Mg21 inhibition at each site is dependent on the Ca21

concentration (Figs. 5 and 6), the relative magnitude of the
Mg21 effect at each site has been difficult to assess. This is
of particular importance as it relates to the molecular basis
of MH, as it is now clear that RyR1 channels with the
Arg6153Cys mutation are more sensitive to activation by
Ca21 and less sensitive to inhibition by both Ca21 and
Mg21. Although the decreased sensitivity of the MHS
RyR1 to inhibition by Mg21 has been extensively studied, it
has not been clear whether the decreased inhibition of the
MHS RyR1 by Mg21 is due solely to a decreased affinity of

FIGURE 6 Ca21 dependence of [3H]ryanodine binding to normal and
MHS SR in the presence or absence of various concentrations of Mg21.
[3H]Ryanodine binding to normal (A) and MHS (B) skeletal muscle SR
was determined as described in Materials and Methods. Media contained
100 mM KCl, 10 mM HEPES (pH 7.4), and 2 mM EGTA. The concen-
trations of MgCl2 and CaCl2 were adjusted to maintain an ionized Mg21

concentration of either 0 mM (E, F), 0.1 mM (M, f) or 0.5 mM (‚, Œ)
and Ca21 as indicated in the figure. Data are expressed as percentages of
the maximal [3H]ryanodine binding capacity of the SR vesicle prepara-
tions; solid lines are based on fits to Eq. 5 (see Materials and Methods) and
the parameters presented in Table 1. Data for 0 Mg21 (E, F) are replotted
from Fig. 1 for comparison with 0.1 and 0.5 mM Mg21. Means6 SEM are
of five to seven independent experiments performed in duplicate (five to
seven different SR vesicle preparations).
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the MHS RyR1 I-site for Mg21 or whether alterations in the
affinity of the MHS RyR1 A-site for divalent cations also
plays a role. Either an increase in the affinity of the A-site
for Ca21, or a decreased affinity of the A-site for Mg21

would enhance the ability of Ca21 to compete with Mg21

for the A-site and activate the RyR1. We show here that in
addition to a decreased affinity of the MHS RyR1 I-site for
Mg21, alterations in the MHS RyR1 A-site contribute to the
decreased Mg21 inhibition; i.e., both an increased Ca21

affinity and a decreased Mg21 affinity of the MHS RyR1
A-site contribute to the decreased Mg21 inhibition of the
MHS RyR1.

Although the increased sensitivity of MHS skeletal mus-
cle to caffeine-induced contracture is integral to the clinical
diagnosis of MH (Jurkatt-Rott et al., 2000), the mechanistic
basis for the differential response of normal and MHS
muscle to caffeine has been unclear (Shomer et al., 1994;
Herrmann-Frank et al., 1996). Shomer et al. (1994) reported
no difference in the apparent affinity of the MHS and
normal RyR1 for caffeine and suggested the increased caf-
feine sensitivity of MHS muscle may be due to an increased
resting myoplasmic Ca21 concentration and/or alterations in
the Ca21 affinity of the RyR1. Recent measurements of
intracellular Ca21 in MHS skeletal muscle fibers are con-
sistent with the former hypothesis (Lopez et al., 2000).
However, the effects of caffeine on the Ca21 and Mg21

affinity of normal and MHS RyR1 have not been thoroughly
examined. The data presented suggest that the increased
Ca21 affinity of the MHS RyR1 A-site does indeed con-
tribute to the increased caffeine sensitivity of MHS skeletal
muscle. Because caffeine increased the Ca21 affinity of the
A-site of both the normal and MHS RyR1 to a similar extent
(3–4-fold) the Ca21 affinity of the MHS RyR1 A-site
remained significantly higher than the normal RyR1 A-site
(Table 1). This alone could increase the sensitivity of MHS
skeletal muscle to caffeine-induced contraction. However,
because the extent of the caffeine-induced increase in the
affinity of the normal RyR1 A-site for Ca21 and Mg21 were
similar, the selectivity of the A-site for Ca21 over Mg21 did
not change. In contrast, caffeine did not alter the affinity of
the MHS A-site for Mg21; thus, caffeine further increased
the selectivity of the MHS A-site for Ca21 over Mg21

(Table 2). Thus, both an increased Ca21 affinity of the MHS
RyR1 A-site and a greater selectivity of the MHS A-site for
Ca21 over Mg21 contribute to the enhanced caffeine sensi-
tivity of MHS skeletal muscle.

The extent of RyR1 channel activation reflects the prod-
uct of the fraction of channels with Ca21 bound to the A-site
(fA) and the fraction of channels with the I-site free of both
Ca21 and Mg21 (1 2 fI). Mg21 shifts the Ca21 dependence
of fA to higher Ca21 concentrations, and decreases 12 fI at
all Ca21 concentrations (Murayama et al., 2000). Conse-
quently, Mg21 decreases the maximal Ca21 activation of
the RyR1 and shifts the Ca21 dependence of activation to
higher Ca21 concentrations (see Fig. 8. of Murayama et al.,

2000). The Arg6153Cys RyR1 mutation opposes the ef-
fects of Mg21 on RyR1. Thus, in a manner similar to
caffeine, in the presence of Mg21, the MH mutation shifted
the Ca21 dependence offA to lower Ca21 concentrations
(Fig. 1). However, in contrast to caffeine, at low Ca21

concentrations, the MH mutation also increased 12 fI (Fig.
1). As a result, maximal Ca21 activation of the MHS RyR1
is increased and the Ca21 dependence of activation is
shifted to lower Ca21 concentrations compared with the
normal RyR1.

The concentration of free Mg21 present in the myoplasm
is sufficient to inhibit activation of the RyR1 by Ca21 in
intact muscle (Endo, 1977). Indeed, based on the parameters
given in Table 1, and using Eqs. 1 and 2, at a resting Ca21

concentration of 0.1mM and 1 mM Mg21 (Konishi, 1998)
the I-sites of normal and MHS RyR1 are predicted to be
partially occupied (;86% and 72%, respectively) by Mg21.
Mg21 is predicted to occupy.99% of the A-sites of both
normal and MHS RyR1. Thus, at physiological levels of
Mg21 both MHS and normal RyR1 channels can be par-
tially activated (;15% and 30%, respectively) by increas-
ing the Ca21 concentration. If the channels are to be max-
imally activated, the Mg21 inhibition at the I-site must be
removed. At the same time, Ca21 must replace Mg21 oc-
cupying the A-site. However, the resting myoplasmic Ca21

concentration is not sufficient to activate RyR1 channel
opening. Therefore, if maximal SR Ca21 release is to occur,
the Ca21 sensitivity of the RyR1 A-site must be increased
concurrent with the removal of the Mg21-dependent inhi-
bition of the RyR1. The increased Ca21 affinity of the
A-site could depend in part on other endogenous effectors
of the RyR1, such as ATP (Meissner, 1994) and calmodulin
(Fruen et al., 2000), or alternatively on the interaction of the
RyR1 with the dihydropyridine receptor.

The single point mutation in the porcine MHS RyR1
results in an increased sensitivity of the muscle to voltage
activation (Gallant et al., 1982; Dietze et al., 2000). Al-
though the mechanism by which this occurs is unclear,
Dietze et al. (2000) suggested the MHS mutation alters the
equilibrium for a voltage-independent transition of the
RyR1 from the closed to the open state. The association of
the increased voltage sensitivity of MHS SR Ca21 release
with the enhanced sensitivity of the MHS RyR1 to activa-
tion by Ca21 raises the possibility that endogenous effectors
may modulate the voltage-independent transition. Thus, the
3.5-fold increase in the selectivity of the MHS RyR1 A-site
(KA,Mg/KA,Ca, Table 2) for Ca21 over Mg21 might provide
the basis for the enhanced sensitivity of MHS muscle to
voltage activation.

The Arg6153Cys mutation likely alters the affinity of the
A- and I-sites via a conformational change transmitted over
a significant distance because the mutation is a substantial
distance along the primary sequence from putative locations
of the A- (near amino acid 3885 of RyR3) (Chen et al.,
1998) and I-sites (between amino acids 3726 and 5037) of
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RyR1 (Du and MacLennan, 1999). The proposal that Arg615

is not located in either of the RyR1 Ca21/Mg21-binding
sites is supported by the observation that the human MH
mutation, Gly24343Arg, has a similar effect on the Ca21

sensitivity of activation and inhibition of the RyR1 (Richter
et al., 1997). Although it is difficult to envision how resi-
dues 615 and 2434 could form part of both the high- and
low-affinity Ca21-binding sites, the mechanism by which
these and other MH mutations alter RyR1 function will
remain a matter of speculation until the relationship of the
primary sequence to the tertiary structure of the RyR1 is
resolved in detail.

In summary, we have determined the Ca21 and Mg21

affinities of the A- and I-sites of both the MHS and normal
RyR1. Although the I-site displayed no preference for Ca21

over Mg21, the affinity of the MHS RyR1 I-site for these
ions was reduced nearly twofold compared with the normal
RyR1. The A-site of the normal RyR1, however, had;75-
fold higher affinity for Ca21 compared with Mg21, whereas
the MHS A-site had more than a 250-fold greater preference
for Ca21 over Mg21. This significant increase in Ca21

selectivity over Mg21 may contribute not only to the in-
creased voltage sensitivity of MHS skeletal muscle but also
to the increased sensitivity of MHS muscle to caffeine and
other pharmacological activators.
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