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ABSTRACT To assess local elasticity in the red cell’s spectrin-actin network, nano-particles were tethered to actin nodes
and their constrained thermal motions were tracked. Cells were both immobilized and controllably deformed by aspiration into
a micropipette. Since the network is well-appreciated as soft, thermal fluctuations even in an unstressed portion of network
were expected to be many tens of nanometers based on simple equipartition ideas. Real-time particle tracking indeed reveals
such root-mean-squared motions for 40-nm fluorescent beads either tethered to actin directly within a cell ghost or
connected to actin from outside a cell via glycophorin. Moreover, the elastically constrained displacements are significant on
the scale of the network’s internodal distance of �60-80 nm. Surprisingly, along the aspirated projection—where the network
is axially extended by as much as twofold or more—fluctuations in the axial direction are increased by almost twofold relative
to motions in the unstressed network. The molecular basis for such strain softening is discussed broadly in terms of
force-driven transitions. Specific considerations are given to 1) protein dissociations that reduce network connectivity, and 2)
unfolding kinetics of a localized few of the red cell’s �107 spectrin repeats.

INTRODUCTION

When a simple linear chain—in a network or not (Discher et
al., 1998)—is stretched to a length comparable to its con-
tour, it generally exhibits a nonlinear stiffening response as
thermal fluctuations are suppressed. A multidomain protein
such as spectrin, in contrast, can be “over”-stretched
through domain unfolding, at least at the single molecule
level in vitro (Rief et al., 1998; Lenne et al., 2000; Carl et
al., manuscript in preparation). As a result of such transi-
tions, the stress response of the chain or network can be
effectively softened. Perhaps suggestive of such a process or
other semi-reversible disruptions in the red cell’s spectrin-
actin network was an early report of progressive force
relaxation during micropipette aspiration (Markle et al.,
1983). The network has also been shown to soften with
increasing temperature T, i.e., the shear modulus �(T) de-
creases (Waugh and Evans, 1979), appearing at odds with
the simplest entropic elasticity models (� � kBT �
crosslink density) that otherwise provide first estimates for
� � 0.001-0.01 pN/nm (Evans and Skalak, 1980; Discher et
al., 1998). Whether spectrin unfolding or other mechanisms
of network softening occur, for example, in hyperextended
regions of the spectrin-actin network in situ is among cur-
rently unanswered questions. Toward addressing this, we
present a nano-resolution bead-tracking approach to probe
local elasticity through thermal fluctuations in the intact
network.

Motivation for understanding the nanoscale motions of the
network is further found in the influence that it has on the
dynamic organization of other important membrane compo-
nents. A number of proteins that contribute to the red cell
glycocalyx, such as the GPI-linked protein CD-59, are cer-
tainly mobile on the cell surface, and have only fleeting steric
interactions with network-linked components (Discher et al.,
1994). However, the network-linked components that include
glycophorins and much of band 3 are often described as
predominantly “immobile,” based on micron-resolution meth-
odologies that utilize fluorescence and/or photobleaching (e.g.,
Golan and Veatch, 1980; Discher et al., 1994). The nanoscale
mobility that these linked components truly possess, in defin-
ing a time-averaged radius of gyration, no doubt underlies
glycocalyx function on time scales important to, for instance,
intercellular adhesion or its inhibition.

To address issues of constrained mobility, elasticity, and
strain-softening or stiffening, we have measured the thermal-
average displacements, �u��, of network-linked beads in the
plane of the membrane (Fig. 1). Collective bending undula-
tions of the membrane are suppressed through tensions im-
posed by aspirating a cell or resealed ghost into a micropipette.
The micropipette also enables examination of thermal motions
in both unstrained or highly extended regions of the network.
Wherever the bead, its fluctuations are both driven by kBT
(�4.1 pN nm) and constrained by network elasticity (e.g.,
Chaikin and Lubensky, 1995). In the equilibrated state, �u��
should thus vanish, but the mean-squared displacements, �u�2�,
should prove non-zero. Relatively recent microrheology meth-
ods exploit the equipartition principle—where kBT drives each
mode—through a generalization to viscoelastic materials in-
cluding gels and cytoskeletal networks. The methods have
typically quantified the fluctuations of micron-diameter col-
loids either embedded in (Gittes et al., 1997; Yamada et al.,
2000) or directly bound (McGrath et al., 2000) to a probed
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material. The erythrocyte membrane, being two-dimensional,
allows no choice but to biochemically attach molecule-tracking
beads, while the softness of the network, as pointed out from
simulation (Discher et al., 1998), should make root-mean-
squared (r.m.s.) fluctuations more than large enough to be
measured by nanometer-resolution video particle-tracking
(Sheetz et al., 1989; Hicks and Angelides, 1995; Tomishige
and Kusumi, 1999).

METHODS

Nanometer-resolution fluorescent multiparticle
tracking system

An intensified CCD camera (Hamamatsu #500) is used for video imaging
of particles through an oil immersion 60�, 1.4 NA objective on a Nikon

TE-300 microscope. The highly magnified image is directly fed to a high
throughput frame-grabber (National Instruments 1400, Austin, TX) in a
200 MHz PC. Custom software written for IMAQ-LabView (National
Instruments) identifies the particle centroids through either a real-time
binary mask weighting scheme or a post-experiment Gaussian fit of par-
ticle image intensities. The xi coordinates (i � 1, 2) at each 33.3-ms
interval were stored in an accessible spreadsheet. Table 1 shows that the
percentage difference between the two methods, involving real-time or
off-line analysis, is �3% for various experimental setups.

Particle tracking and mechanical stability of
the apparatus

Tracking experiments were performed simultaneously with holding a red
cell or ghost “stationary” in a micropipette that was cantilevered into a
water-filled microscopy chamber. While minimizing possible artifacts that
could arise from either cell adhesion to a coverslip or convection currents
in the chamber, the use of a holding micropipette required a zero-point
motion calibration before each experiment: a 40-nm fluorescent bead on
the micropipette was tracked (Fig. 2). Centroidal fluctuations (SD) gener-
ally ranged from 5 to 8 nm (e.g., Table 1); similar zero-point stability in
related particle-tracking systems has been reported by others (Hicks and
Angelides, 1995; Simson et al., 1998).

Fluorescent beads affixed to glycophorin C

Neutravidin-coated 40-nm red fluorescent beads (Molecular Probes, Eu-
gene, OR) were prepared for specific labeling to cells by suspending beads
(2 �l, 5.7 � 1014 beads/ml) in phosphate-buffered saline (PBS) (10 �l) that
contained bovine serum albumin (BSA) (30 mg/ml) plus dextran (20
mg/ml) and biotin (2 �g/ml). The BSA and dextran were added to suppress
nonspecific binding, and biotin was added to titrate the neutravidin binding
sites down to just a few per bead.

Bead labeling of the extracellular domain of glycophorin C was
achieved through a chain of two antibodies: fluorescein isothiocyanate-
labeled anti-glycophorin C (FITC-anti-glyC) (International Blood Group
Reference Laboratory, Bristol, UK) was coupled to biotinylated-anti-fluo-
rescein (biotin-anti-FL) (Molecular Probes) as illustrated schematically in
Fig. 1 A. Packed red cells (5 �l) were first suspended in PBS (15 �l), and
FITC-anti-glyC was added (up to 0.02 �g/ml). Labeling was verified by
fluorescence microscopy at this stage or later. After 5 min, excess FITC-
anti-glyC was removed with the supernatant after centrifugation. Labeled
cells were resuspended in PBS (15 �l), and biotin-anti-FL was added (3
�g/ml) for a short incubation (5 min). Beads were subsequently added (1 �
1010 beads/ml) and, after 5 min, the suspension was centrifuged (1200 �
g) to remove excess beads with the supernatant. Specificity of bead-
labeling was demonstrated by quantifying the number of beads bound per
cell membrane at several concentrations of both antibodies used. As shown
in Fig. 3 A, only a few beads bound to glycophorin C and in approximately
logarithmic proportion to low concentrations of FITC-anti-glyC under a
comparative excess of biotin-anti-FL. Without biotin-anti-FL, no beads

FIGURE 1 Scaled schematic of nano-particle attachments to the red cell
membrane. (A) In one approach, a neutravidin-coated, red fluorescent bead is
bound to the extracellular domain of glycophorin C through FITC-anti-glyC
coupled to biotin-anti-FL. In a second approach, a neutravidin-coated, red
fluorescent bead inside a ghosted cell is bound to skeletal F-actin protofila-
ments through biotin-phalloidin. Both beads are �40 nm in diameter, which is
approximately the same length as the 35-nm-long actin protofilaments (Byers
and Branton, 1985; Shen et al., 1986; Ursitti and Fowler, 1994) that lie tangent
to the bilayer (Picart and Discher, 1999; Picart et al., 2000). The spectrin-actin
nodes attach to the lipid bilayer via protein 4.1-mediated interactions with
glycophorin C (Chasis and Mohandas, 1992). (B) The network acts as an
effective spring that constrains the thermal motions of network-attached beads.

TABLE 1 Direction-averaged root-mean-squared
displacements, ��u2�, of beads determined by both real-time
binary-mask and Gaussian-fit algorithms

Experiment ��u2� (nm)
% Difference between

Tracking Methods

Immobilized beads on
coverslip (10 beads)

6.1 2.6

Immobilized beads on
micropipette (12 beads)

7.4 1.4
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bound to the cell membranes. Tracking experiments were generally done in
diluted PBS (�200-270 mOsm).

Fluorescent beads affixed to cytoskeletal F-actin

Beads were also bound to actin protofilaments inside cell ghosts (Fig. 1 A).
Red cells were reversibly permeabilized by cold, hypotonic lysis, allowing
biotin-phalloidin in the lysis buffer to diffuse into the permeabilized cell
and bind (Takakuwa et al., 1986; Lieber and Steck, 1989; Discher et al.,
1995). Labeling of cytoskeletal actin with fluorescent phalloidins has been
described previously (e.g., Discher et al., 1995). Open cell ghosts were
washed three times (centrifuging at 1200 � g) to remove excess biotin-
phalloidin; and packed; labeled membranes were then resuspended (15 �l)
in cold lysis buffer (10 mM phosphate, pH 7.4) containing a trace amount
of the bead suspension (�0.5 �l, giving 2 � 1011 beads/ml). After 5 min,
ghosts were resealed with 100 mM KCl and 1 mM MgCl2 by warming at
37°C for 20-60 min. Bead-labeled ghosts were finally sedimented by
centrifugation (1200 � g) and excess beads in the supernatant were
removed; experiments were done in diluted PBS (�200 mOsm). Specific-
ity of beads attaching to F-actin via biotin was demonstrated by either
varying the concentration of biotin-phalloidin or omitting permeabiliza-

tion. In the absence of biotin-phalloidin, nonspecific binding was found to
be �10% of specific binding (Fig. 3 B); nonspecific binding was probably
due in part to beads being trapped inside the cell ghost after membrane
resealing. When cells were not lysed, no beads bound to the cells even with
biotin-phalloidin in the buffer. To suppress nonspecific binding, dextran
and BSA were added to all labeling buffers. To reduce crosslinking,
neutravidin-coated beads were preincubated with appropriate amounts of
biotin.

RESULTS

Thermal motions of F-actin and glycophorin C in
unstrained regions of network

A typical particle tracking experiment was begun by pulling
a bead-labeled cell into a micropipette. The cell was then
slowly aspirated in-and-out to position the bead near the
center of the spherical contour of membrane external to the
pipette (Fig. 4 A). In this central location the bead fluctuates
on an essentially flat surface, with relevant geometric cor-
rections being well below measurement noise. Importantly,
in-plane strains in this outer region of the deformed network
are also known to be extremely small (Discher et al., 1998),
even though bending undulations of the membrane are
largely suppressed (Evans and Rawicz, 1990) by the aspi-
ration-imposed bilayer tension of �1 mN/m.

FIGURE 2 The centroid of a 40-nm fluorescent bead adsorbed onto a
micropipette was tracked (see Methods) for 	4 s and is shown as both a
scatterplot (A) and as a distribution projected onto the x1-axis (B). The inset
shows a superposition of fluorescence and bright-field images. The scat-
terplot shows that no datapoints—depicted as circles of radius set by the
root-mean-squared (r.m.s.) displacement of �5 nm—are 	15 nm away
from the origin. Consistent with random noise, the parabolic fit of the
measurement frequency on a logarithmic scale shows the reasonableness of
a Gaussian fit to the data. Comparable fits were found in both the 1- and
2-directions, suggesting that the pipette glass introduces little to no optical
distortion.

FIGURE 3 Specificity of methods for membrane labeling with neutra-
vidin-covered beads. (A) Bead binding to glycophorin C was verified by
varying the concentration of either FITC-anti-glyC or biotin-anti-FL. Cell
concentration was 30% by volume of packed cells. (B) Bead binding to
F-actin was effected during hypotonic lysis of cells in which small probes,
either beads or biotin-phalloidin, can diffuse in. Biotin phalloidin is a
well-known ligand for F-actin. Beads were added to packed cells (30% by
volume). Nonspecific binding is �10% or less of specific binding. In all
labeling procedures, beads were precoated with dextran and BSA to sup-
press the nonspecific binding.
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In each of the two xi directions beads on both F-actin and
glycophorin C exhibit nanoscale displacements consistent
with a solid-like network. Presumably due to the tight
interconnections between molecules, bead trajectories scale
trivially with time, t, for 10 s or more of tracking (i.e., xi �
t��0) as opposed to exhibiting, for example, simple diffu-
sion for which � � 0.5. Over a given time interval (typically
10 s), �xi� is well-defined and allows determination of the
relative bead displacement as ui � xi 
 �xi�. Although �ui�
� 0, bead fluctuations about this average origin are not
suppressed because the network is soft (Fig. 4 B): �ui

2� �
�xi

2� 
 �xi�
2 � 0. Root-mean-square displacements, ��ui

2�,
were direction-averaged by summing over i � 1, 2 and

dividing by two, giving ��u2�. Beads tethered to either
glycophorin C or F-actin show nearly identical distributions
for this mean (Fig. 5) with 	90% of the data in a peak
centered at 30-40 nm; a second small peak at higher values
could reflect artifacts in labeling or instrument noise. Gauss-
ian fits made to the major peaks yield mean values of ��u2�
� 34-36 nm (Table 2). Based on both near-identical aver-

ages and near-identical standard deviations (SD) for ��u2�,

a bead certainly appears to undergo similar thermal motions
when affixed to either an F-actin node or an extracellular
glycophorin C domain. This is fully consistent with the
4.1-mediated connectivity between these proteins (Fig. 1
A). Moreover, the network appears homogeneous in its
elasticity because the SDs are small compared to the aver-
ages, and are also essentially the same as for immobilized
beads.

The scale of measured fluctuations appears consistent
with known structural features of the network. Spectrin
should be flexible; it has a small persistence length, lsp, of
�5-20 nm (Stokke et al., 1986; Discher et al., 1998) relative
to both its contour length (Lsp � 200 nm for the folded

TABLE 2 Average root-mean-squared displacements, ��u2�,
of beads on unstrained portion of cell with maximum
corrections for bead wobble (see Appendix 1) and possible
zero-point noise

Experiment

��u2� (nm)

Measured
(�SD)

Wobble-Corrected
Average

Zero Point-
Corrected
Average

Glycophorin C
(	40 beads)

36 � 6.6 26 19

F-actin (	40 beads) 34 � 6.6 24 17

FIGURE 4 Nanoparticle tracking. (A) Superposition of cell (bright field)
and bead (fluorescent) images showing the position of a single bead on the
aspirated cell surface. The swollen cell was immobilized with a micropi-
pette. (B) Constrained displacements of the bead over time. The fluctuation
amplitude is seen to be a significant fraction of the network’s internodal
distance, which transmission electron microscopy (TEM) (e.g., Byers and
Branton, 1985) and atomic force microscopy (AFM) (Takeuchi et al.,
1998) have suggested to be � � 60-80 nm (Byers and Branton, 1985).
Tracking was done only when the bead was centrally located in the outer
spherical contour.

FIGURE 5 The r.m.s. displacements of beads located on the outer spher-
ical contour of aspirated cells. Beads were attached to either (A) F-actin or
(B) glycophorin C and results for 	50 cells are cumulated. More than 90%
of both datasets show r.m.s. fluctuations �54 nm. The beads giving these
results are considered to be specifically bound in the sense of Fig. 3 and
are, therefore, fit to Gaussians with respective means (�SD) of 34 � 6.6
nm and 36 � 6.6 nm for F-actin and glycophorin C.
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tetramer) and the average inter-actin spacing (� � 60-80
nm; e.g., Byers and Branton, 1985). Such values are in
general agreement with in situ stretches of the network
which are estimated to reach �max � Lsp/� � 2-3.

Table 2 also gives corrections for a maximum bead
wobble that is conceivably introduced by the finite length
tether used here (see Appendix 1). Another systematic cor-
rection that might well be considered is the “zero-point”
fluctuations of �7 nm for immobilized beads (Table 1).
Altogether, measurements of ��u2� with or without wob-
ble- and zero-point corrections yield final averages of

��u2� � 18* � 35 nm. (1)

Where the asterisk (*) denotes the maximally corrected
average. Despite the range, such fluctuations are compara-
ble to Lact and are certainly significant on the scale of the
network mesh size � � 60-80 nm.

Thermal fluctuations in the network are thus constrained,
if only weakly, by the structured softness or elasticity of the
network. Given that triangulated networks have sixfold
symmetry and therefore should appear isotropic to quadratic
order in their elasticity (e.g., Landau and Lifshitz, 1959;
Discher et al., 1997) any anisotropy in the fluctuations can,
in principle, provide further insight into network structure.
Fig. 6 shows histograms and simple Gaussian fits of the
isotropy measure �  [��u1

2�/�u2
2� 
 1]. The determined

averages are dominated by standard deviations of 10-20%
on this normalized scale and are at or below the noise level
of the present measurements. Hence, the elastic properties
of the undeformed network appear essentially isotropic.

Elastic modulus estimates based on
thermal fluctuations

Autocorrelation analyses of the video-rate data (e.g., Fig.
4 B) show a discontinuous jump from a finite value to zero
within the period of a single video frame (not shown). Time
constants for thermal motions of the bead are therefore well
below the collection rate of the intensified camera, making
the frequency response of the network and its dynamic
viscoelasticity inaccessible by the present approach. A time
series of displacement datapoints would nonetheless appear
to constitute a statistically independent ensemble and can
thereby provide insight into the frequency-independent elas-
ticity.

Application of the equipartition theorem to a strictly
two-dimensional and isotropic (or sixfold symmetric) elas-
tic solid is a classical problem of equilibrium statistical
mechanics (Chaikin and Lubensky, 1995). Starting with a
general correlation function for displacements and a suitable
Fourier transform of the small-strain Hamiltonian for a
finite segment of solid, Appendix 2 summarizes the relevant
equipartition theorem applied to normal elastic modes. The
calculation concludes with an integral transformation back
to real space that ultimately relates the effective spring
constant of the network to both the thermally averaged
displacement vector, �u�2�  �u1

2 � u2
2�, and the wavenumber

cutoffs for both small fluctuations, �a
1 and large fluctu-
ations, ��
1:

keff � kBT
ln��/a�

2�
�u�2�
1 (2)

The effective elastic constant is further shown (Appendix 2)
to be related, in general, to the shear elastic modulus, �, and
the bulk modulus, Ka, of the elastic solid through keff �
[�(Ka � �)]/(Ka � 2�). Because the network is both
embedded in and attached to incompressible fluids (i.e.,
cytosol and lipid bilayer), one could consider the dilational
modes of the network fluctuations to be minimal compared
to the in-plane shear modes; in this case, keff � �. Previous
work on the red cell network has suggested, however, that
Ka/� 	 2 (Discher et al., 1994; Mohandas and Evans, 1994;
Boey et al., 1998; Discher et al., 1998); in such a case, � 

1.33 keff.

Additional uncertainty arises with numerical estimates
for the integration limits or cutoffs. To start with, a could
range from the persistence length of spectrin lsp to other
local length scales, notably �; these quantities were listed as
ranging from 5 to 80 nm. Our finding that bead fluctuations
are essentially isotropic on the spherical contour of mem-

FIGURE 6 Directional dependence of network fluctuations for individ-
ual beads on the outer spherical contour of aspirated cells. If fluctuations
are isotropic, �  0. It is found that � � 0.07 � 0.10 for glycophorin C (A)
and � � 0.003 � 0.19 for F-actin (B).
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brane (of measured diameter range Ds � 4-6 �m), indicates
that the aspirated projection of membrane (of length L �
(0.2 
 1.5)Ds in these experiments) is not a significant
perturbation to either a or �. This further implies that a
relevant measure of � is certainly no larger than the outer
spherical contour, Ds. Physically, the longest relevant wave-
length would seem likely to be set by over-damped viscous
coupling. A range for [ln(�/a)/2�] � 0.6-1.1 is thus esti-
mated. Substituting this and additional quantities above into
Eq. 2 allows an estimate of the shear modulus:

� � �0.6 –1.5�kBT�u�2�
1 (3)

Measured fluctuations (Eq. 1) thus lead to a very reasonable
if broad range for �:

� � 0.001– 0.01* pN/nm (4)

The lower value is obtained with uncorrected measures of
the thermal motions and, effectively, an incompressible
network having normal modes bounded by both the network
mesh size a � � and � � Ds � 4 �m. The upper range not
only includes fully corrected measures of the thermal mo-
tions (denoted by the asterisk per Eq. 1) and a finite Ka, but
also normal modes bounded by both the persistence length
of spectrin, a � lsp, and � � Ds � 6 �m. Clearly, the
two-dimensional shear modulus estimates of Eq. 4 are con-
sistent with the order of magnitude estimate given in the
Introduction.

The estimations preceding Eq. 4 highlight both the rea-
sonableness of the measurements and limitations of inter-
pretation. Beyond better methods, a better statistical me-
chanical model that clarifies relevant length scales (notably
a and �) and perhaps dissipative couplings needs to be
developed. Some progress in both directions has recently
been made by Helfer et al. (2000) through the use of
micron-size beads that would, unfortunately, be inappropri-
ate for the present membrane studies.

Micropipette-deformed network: anisotropic
strain state

To more fully probe and understand network fluctuations
in a micropipette-deformed membrane, an accurate pic-
ture of the network’s deformation state is needed. Fortu-
nately, a relatively clear, experiment-rooted understand-
ing of membrane network deformation within micron-
diameter pipettes has recently emerged. Early theories
(Evans, 1973) were based on a simplifying assumption of
surface incompressibility and suggested that the network
was stretched in the axial (1-) direction of the micropi-
pette by a factor of 2 to 3 along much of the aspirated
projection. However, a finite Ka for the network was
more recently demonstrated by use of fluorescence-

imaged microdeformation wherein the network was pre-
labeled with various fluorescent probes before cell aspi-
ration (Discher et al., 1994). Subsequent analyses (Dis-
cher and Mohandas, 1996; Discher et al., 1998) together
with photobleaching experiments (Lee et al., 1999) lead
to axisymmetric profiles for spectrin network stretching
(�1 and �2) that indeed reached maximum values of 2 to
3 along much of a typical aspirated projection (Fig. 7 A
and B). Furthermore, circumferential contractions in the
2-direction (�2 � 1) suggested a simple and useful mea-
sure of the local, anisotropic strain state: Es  �1/�2 
 1
(per Evans and Skalak, 1980). This local measure of
post-deformation aspect ratio or shear strain additionally
shows that strain profiles versus (z�/Rp) from multiple
experiments and simulations can be collapsed onto a
single, nearly straight curve (Fig. 7 C). As a static mea-
sure of network anisotropy, Es is analogous to the previ-
ously defined � (Fig. 6) that characterizes anisotropy in
thermodynamic fluctuations. However, � is certainly
more revealing of the spectrin-actin network’s intrinsic
rather than externally imposed response.

FIGURE 7 Deformation state of the network in aspiration. (A) Simulated
network from Discher et al. (1998). (B) Experimentally determined relative
density and direction-dependent extension or stretch profiles along the
aspirated projection (Discher and Mohandas, 1996). (C) Superposition of
shear strain profiles from both experiment and simulation. Collapse of the
various results on to a single curve, within 10% error typical of experiment,
indicates that the strain anisotropy measure Es is nearly independent of
projection length. Two small black parallelepipeds schematically indicate
the local deformation state of the network.
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Micropipette-deformed network:
anisotropic fluctuations

To explicitly connect local strain anisotropy Es to fluctua-
tion anisotropy �, thermal motions of fluorescent beads
affixed to F-actin were tracked in cell ghosts at various
points along a micropipette-aspirated projection (Fig. 8 A).
Near the tip of the aspirated projection, particle fluctuations
such as those shown in the rightmost panels of Fig. 8 B
appeared isotropic and very similar in magnitude to those on
the outer contour of membrane. The network is known to be
isotropically dilated at the projection’s tip (Discher et al.,
1994), but the maximum extensions at the tip are always
intermediate to the extensions further back, along the length
of the projection. Even simulations (e.g., Fig. 7 A) with a
strain-stiffening spectrin tether model suggest minimal im-
pact on network fluctuations at or near the projection’s tip.

In contrast, sample trajectories of particles near the en-
trance of the micropipette (left panels in Fig. 8 B) reveal
strongly anisotropic fluctuations with axial fluctuations con-
siderably increased. The trend of increasing fluctuations
with increasing distance, z�/Rp, from the aspirated projec-
tion’s tip is highly reproducible between cell ghosts (Fig.
8 C). The similar trends in ��u1

2� and �1(z�) of Fig. 7 B are
also striking, and the fact that the glass micropipette and the
aspirated projection have a constant shape or curvature over
this length from 1 � z�/Rp � L/Rp argues against systematic
optical distortions. Numerically, the maximum fluctuations
are found, either with corrections (denoted by *) or without
corrections, to be 38* or 55 � 7 nm (near z�/Rp � 9-10);
these values are �20 nm or 1.5-2.1*-fold higher than fluc-
tuations on the unstrained contour of membrane (Eq. 1).

Plots of the anisotropy measure � against z�/Rp show a
significant and near-linear increase analogous to the shear
strain measure Es (Fig. 7 C). Direct plots of r.m.s. displace-
ments (Fig. 8 C) nonetheless appear more revealing and
certainly suffer less from possible systematic errors, such as
particle wobble (Appendix 1). The correspondence between
axial extension profiles and axial fluctuations is mirrored in
a trend of weakly suppressed circumferential fluctuations
(Fig. 8 C), which compares well with circumferential con-
tractions (�2 � 1 of Fig. 7 B). However, by any statistical
measure, individual ��u2

2� do not differ significantly from
fluctuations on the unstressed outer contour of membrane
(Table 2) as represented in Fig. 8 C by a dashed line for the
mean and a gray zone for S.D.

Micropipette-deformed network: directional
elastic constants

To highlight the anisotropy, spatial-dependence, and quasi-
Gaussian nature of particle fluctuations, representative dis-
tributions P(u1) are plotted in Fig. 9. The distributions are
shown on a logarithmic scale and inverted compared to the
distribution of Fig. 2 B. Note that P(u1) is a binned proba-

FIGURE 8 Motions of 40-nm fluorescent beads attached to F-actin and
located on the aspirated projection of a micropipette-deformed red cell ghost.
(A) Beads were tracked at various positions along the projection, displaying
(B) fluctuations that are dependent in magnitude on both direction and position
(C) on the aspirated projection. In particular, near the micropipette entrance,
fluctuations in the axial direction are almost twice those near the aspirated
projection’s tip. Fluctuations in the circumferential direction, again near the
micropipette entrance, are more weakly affected but appear slightly suppressed
compared to those near the tip. The upper inset emphasizes the trend by
showing that bead fluctuations (uncorrected) are isotropic near the aspirated
projection’s tip but are increasingly anisotropic toward the entrance of the
micropipette. For the 12 cell ghosts examined, the range of projection lengths,
L, was 7–10 Rp, where Rp is the radius of the micropipette (0.7-0.9 �m). The
gray region corresponds to the �6.6 nm error in the measurements of bead
motions on the unstrained portion of the cell. Error bars in (C) correspond to
standard deviations for the indicated number of cell ghosts; datapoints that
have 95% confidence intervals which do not overlap with the gray region are
highlighted with a dagger.
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bility with bin size set by system noise limits of ��5 nm
(per Fig. 2). Distributions are illustrated for a bead either on
the unstrained outer sphere or in a highly strained region of
the aspirated projection, near the micropipette entrance (re-
spectively, Fig. 9 A, and B). Scaled by kBT, this inverted-log
representation generically defines an effective potential

Vi�ui� � �constant � kBT ln P�ui�� (5a)

which we approximate as a harmonic function and apply the
equipartition theorem (per Eq. 3):

1
2

ki,eff�ui
2� � 1

2
kBT (5b)

The results of Fig. 8 C for average r.m.s. directional dis-
placement are used to estimate effective elastic constants.
Comparing the 1- versus 2-directions at the same distance
from the tip, the difference between the local compliances—
with maximum corrections made for particle wobble and the
zero-point anomaly—can reach 10-fold near the micropi-
pette entrance for projection lengths of L/Rp � 8-10. With-
out correction, this difference averages nearly fivefold. As
plotted in Fig. 10 versus estimated extension ratios (using
Fig. 7 B), calculations of elastic constants either with cor-
rections (denoted by *) or without corrections show that the
maximum measured increase in compliance relative to the

unstrained contour of membrane is found (near z�/Rp �
9-10) to be 2.25 or 4.4(*). The network is directionally
strain-softened (Fig. 10, inset). For perspective, orthogonal
stiffnesses in the spectrin-actin cortex of the outer hair cell
have been measured (Tolomeo et al., 1996) to be in a ratio
of (0.0030 pN/nm / 0.0005 pN/nm) � 6, which is credibly
attributed to stiff actin filaments that are crosslinked in a
perpendicular direction by much softer spectrin chains. Al-
though remarkably similar in magnitude, the anisotropic
elasticity elucidated here is clearly distinct in that it reflects
a strain-induced softening.

DISCUSSION

Motivated in part by the pathological consequences of net-
work defects such as spectrin deficiencies (Waugh and
Agre, 1988; Mohandas and Evans, 1994), a number of
experimental techniques and theoretical analyses have been
developed to quantify network elasticity. Micropipette
methods emerged early: incremental aspiration of a projec-
tion of membrane has led to shear modulus estimates in the
range of � � 0.004 to 0.010 pN/nm (Evans, 1973; reviewed
in Hochmuth and Waugh, 1987), with the most accurate

FIGURE 9 Effective potentials obtained from uncorrected thermal dis-
placement probabilities per Eq. 5. In (A) the bead was located on the
unstrained, spherical portion of the cell outside of the micropipette. In (B)
the bead was located in the highly strained region at the base of the
projection where the fluctuations are greatest. In both cases, thermal
motions were binned in intervals �10 nm wide, yielding continuous
probability distributions. Effective spring constants, k1,eff, were determined
from quadratic fits to the effective potentials: for (A), k1,eff � 0.004 pN/m
and for (B) k1,eff � 0.0015 pN/nm.

FIGURE 10 Effective spring constant versus estimated network exten-
sion ratio (�i). Network stretches in the 1- or 2-directions were estimated
(together with �SD) from results of the type illustrated in Fig. 7 and were
applied to each datapoint of measured fluctuations (Fig. 8). Directional
spring constants were determined from the equipartition theorem per Eq.
5b either with or without noted corrections of the r.m.s. displacements (see
Appendix 1). The gray region corresponds to the elasticity error introduced
by the �6 nm SD in the measured bead motions on the unstrained portion
of the cell; the vertical error bars of Fig. 8 are otherwise omitted. The inset
sketch of force versus extension schematically indicates the continuous
strain softening that is clearly implicated by the reduced spring constant
(kSP � df/d�).

Strain-Enhanced Fluctuations and Unfolding 3185

Biophysical Journal 81(6) 3178–3192



measures reportedly being at the upper end of this range
(Evans et al., 1984). A somewhat lower � (�0.002-0.003
pN/nm) was recently estimated from laser tweezer-imposed
stretching of red cells (Hénon et al., 1999). Still lower
values of �, renormalized by thermally excited membrane
bending modes, have also been estimated from equipartition
analyses of undulations (Strey et al., 1995). Important dis-
tinctions in strain regimes should be pointed out. Maximum
network strains or extension ratios (�max) in the cell network
typically reach values of two or more toward the base of a
micropipette-aspirated projection of membrane (Discher
and Mohandas, 1996; Lee et al., 1999), whereas laser twee-
zer and undulation measurements appear confined to small
strain regimes and certainly include significant membrane
bending contributions. Nonetheless, the present estimates
here of � � 0.001-0.010 pN/nm (Eq. 4) are consistent with
small-strain and large-strain measurements.

Although local determinations of ki,eff on a micropipette-
aspirated projection ignore all boundary conditions and any
wavelength cutoffs, geometrically accurate Monte Carlo
simulations of the type shown in Fig. 7 A predicted sup-
pressed fluctuations in the circumferential direction (Dis-
cher et al., 1998). This is in qualitative agreement with
experiment and had been explained as arising from inter-
chain sterics. Moreover, the effective strain-stiffening in the
strongly contracted circumferential direction may well be
the origin of the higher � value reported with micropipette
methods. Unlike experiments, however, no softening was
seen in simulation in the strongly stretched axial direction.
The difference likely reflects the use, in simulations, of a
strain-stiffening molecular tether model (i.e., worm-like
chain). The finding that the extensional forces on spectrin
chains near the micropipette entrance are distributed over a
range of �1-10 pN may nonetheless prove realistic. Indeed,
previous aspiration experiments (Waugh and Evans, 1979)
show that the aspiration pressure (�P) and aspirated pro-
jection length (L/Rp) are nearly proportional, allowing ex-
trapolation to L/Rp � 8, where fluctuations become signif-
icantly deformation-enhanced (Fig. 8 C). Thus, the average
force on spectrin in the axial direction could be as high as
f�max � (1⁄2 �PRp) � � 4 pN. Whether such forces, on
experimental time scales, are sufficient to drive either in-
termolecular or intramolecular network disruptions is dis-
cussed next.

Inter and intramolecular transitions as possible
bases for deformation-enhanced fluctuations

The spectrin-actin network is clearly a supramolecular as-
sembly of both inter and intramolecular interactions (Fig.
1), any of which might be disrupted under strain. Among
protein-protein interactions, some associations more than
others seem likely candidates for shifts in equilibrium to-
ward dissociated states (Fig. 11) that collectively generate a
softer network. A first candidate to consider for dissociation

is spectrin’s interaction with actin, which has long been
estimated to be weak, with a dissociation constant (Kd) of
only �0.2 mM (Ohanian et al., 1984). However, the lack of
any mechanokinetic data together with known stabilizing
interactions between spectrin-actin and protein 4.1 (Discher
et al., 1995) precludes any detailed consideration of such a
forced-dissociation. Purely mechanical arguments for trian-
gulated networks (Appendix 3) nonetheless suggest that the
observed softening of 2.25-4.4*-fold (see Results) requires
only modest shifts in connectivity: only �25% fewer spec-
trin-actin associations (neglecting 4.1) are required to the-
oretically explain the enhanced fluctuation data. Qualita-
tively similar effects might be postulated for shifts in
spectrin head-to-head associations (i.e., �-spectrin associat-
ing with �-spectrin) and other so-called “horizontal” asso-
ciations within the effective plane of the network. In the
transverse, or “vertical” direction, slightly more subtle tran-
sitions might have similar effects. For example, stretch-
straightened spectrin chains might disrupt band 3’s associ-
ation with ankyrin, or else ankyrin’s association with
spectrin. Intuitively, such reduced constraints on spectrin
should enhance conformational freedom, and thereby fluc-
tuations. Analyses of such processes are again limited by
lack of mechanokinetic data for dissociation or re-associa-
tion.

Distinct from protein-protein interactions, intramolecular
transitions might also be considered as contributing to net-
work softening. Side-to-side interactions between spectrin’s
two �- and �-chains have been speculated to be susceptible
to disruption by pico-Newton forces (A. Kusumi and co-
workers, personal communication). Moreover, single mol-
ecule studies using AFM suggest that any one of the many
triple-helical domains in the �- and �-chains of tetrameric
spectrin (m  76 domains) can reversibly unfold, either

FIGURE 11 Free energy landscape for a two-state transition under force.
Applied force tilts the profile from, for example, the associated state to the
dissociated state. To the right of the indicated breaks are states irrelevant
to protein dissociation but important to protein unfolding. The transition
state (*) is separated, in this 1D model, from the two most energetically
important states by the indicated linear distances.
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fully (Rief et al., 1999) or partially (Lenne et al., 2000).
Given that a red cell contains �105 spectrin tetramers and
almost 107 triple-helical spectrin domains, the presence of a
few unfolded domains existing at any instant, in even an
undeformed red cell, seems reasonable. An increased num-
ber of unfolded domains under a significant stretch of the
network seems equally reasonable. Starting with mechano-
kinetic considerations below, general criteria for transitions
will be outlined. Subsequent discussion will quantitatively
illustrate the criteria with detailed though data-limited anal-
yses of �, �-spectrin head-to-head dissociation and spectrin
domain unfolding.

Assessing the possibilities: two-state kinetic
considerations of single molecules under force

Tension-biased transitions in molecular interactions have
been well-documented for irreversible detachment in cell
adhesion (e.g., Evans et al., 2001) and for the reversible
unfolding of a number of cytoskeletal and adhesion proteins
(e.g., Rief et al., 1997; Carl et al., 2001) plus nucleic acid
chains (e.g., Liphardt et al., 2001). The kinetics of a two-
state transition of a molecule in an external field f takes a
familiar form applied, per recent example, by Bustamante
and co-workers (Liphardt et al., 2001) to the reversible
disruption of single RNA hairpins:

k̃132�f� � kmk132
o exp�f�x*132

kBT � (6)

In Eq. 6 the tilde denotes the force-dependence of the rate
and km supposedly captures specific mechanical effects of
couplings to the molecule. The spontaneous (force-free)
transition rate is given by k132

o , and the path length from
state 1 to the key transition state en route to state 2 is
defined as �x*132 (see Fig. 11). The exponential term in Eq.
6, as described by Evans and Ritchie (1999), decrements the
free energy of the transition state by tilting the free energy
landscape away from state 1, thus favoring state 2 (Fig. 11).

A critical implication of Eq. 6 to deformation-enhanced
network fluctuations is that, for a postulated reaction to
occur, the spontaneous rate k132

o and �x*132 must be high
enough that imposed forces of �pico-Newton magnitude
cause transitions on experimentally relevant time scales. In
terms of inverse time scales or rates, the relevant range here
is bounded by the duration of aspiration (min � 10
2 s
1)
and the video rate of measurement (max � 10 s
1). The
spectrin head-to-head interaction appears to be at least one
complex that can be explicitly considered: monomeric
�-binding to monomeric �-spectrin is well-characterized
both structurally and in terms of activation energy profiles
(DeSilva et al., 1992). Using recombinant peptides, the
dissociation rate of this interaction has been determined to
be k�,�-dissocn

o � 3.4 � 10
4 s
1 (23°C). Furthermore, this
complex is known to involve helices (of length �5) nm and

interactions that qualitatively resemble those of spectrin’s
triple helical folds for which Rief et al. (1999) estimated
�x*132 � 1-3 nm from simulated fits of unfolding. Based on
these numbers and the pico-Newton forces on spectrin dur-
ing aspiration, Eq. 6 would suggest that the bare rate is too
slow to be accelerated to a relevant rate (	min � 10
2

s
1). However, having already postulated that the �,�-
spectrin dissociation might well resemble domain unfolding
because of the common helix-helix interactions, the fact that
each spectrin tetramer contains m � 76 triple-helical do-
mains heightens, in comparison, the probability of unfold-
ing.

Before concluding this discussion section by explicitly
including the number of unfoldable spectrin domains in Eq.
6, we note that the forward (1 3 2) process of Eq. 6 also
generally implies the existence of the reverse 2 3 1 tran-
sition (see Fig. 11). For this, the same question of time scale
applies, of course, but if forward and reverse rates (further
qualified below) are as fast as the measurement resolution,
the 13 23 13 23 1 . . . process will naturally introduce
system fluctuations.

Spectrin domain unfolding and
micro-ensemble fluctuations

Spectrin domain unfolding under chain extension certainly
appears well-demonstrated, but it has only been docu-
mented at relatively high extension rates (of �nm/ms) and
not yet under a constant, time-invariant force, as would be
most useful for straightforward assessments using Eq. 6.
Furthermore, “force-clamp” loading would also seem the
most insightful and relevant to fluctuations in sustained
network deformations, such as those on a cell projection
held at fixed �P.

Force-clamp measurements of single molecule transitions
have only recently been made. Individual RNA hairpins that
are ordinarily zipped up (folded) via a series of hydrogen
bonds (	30) have been studied under a fixed force imposed
by an optical trap (Liphardt et al., 2001). The many hydro-
gen bonds in an RNA hairpin are qualitatively similar to
those in the three �-helices of each spectrin domain, and so
the unfolding-refolding of RNA is illustrative of what might
be found with spectrin. With RNA, it was shown that under
a set force of only f1/2 � 14.5 pN, the hairpin spends half of
its time unfolded or unzipped and half of its time fully
folded; equivalently, k̃132(f1/2) � k̃231(f1/2) per Eq. 6. Al-
though the 18-nm-length jumps between folded and un-
folded states were “unresolvably fast (�10 ms),” (Liphardt
et al., 2001), the time spent in either state appeared expo-
nentially distributed and lasted as long as seconds. Such
slow fluctuations contrast with the rapid axial fluctuations
elucidated by our molecular scale beads in the highly
strained spectrin network (top left panel of Fig. 8 B). In
addition to the obvious RNA versus protein difference,
system size differences must not be overlooked: the spectrin
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network, in the crudest approximation, is a finite system of
N two-state systems, all undergoing noncooperative transi-
tions. For such a system, any given overall extension-state
will then be much shorter-lived than the single domain
substates. The important, intuitive conclusion is that fluc-
tuation frequencies at the ensemble scale (in a force-clamp
at least) grow with system size N.

The equipartition theorem of Appendix 2 explicitly in-
corporates maximum system size through the cutoff wave-
length � and also suggests working definitions of the net-
work micro-ensemble probed by the fluctuating bead. In a
first approximation, N should be the number of spectrin
domains within an area delimited by �2 (as large as �m2 in
scale); however, as Hill points out (Hill, 1985), the physi-
cally cooperative statistical mechanics of two-dimensional
multistate systems such as the network generally require
computational methods for accurate descriptions. Given the
directional nature of the deformation-enhanced fluctuations,
N might be crudely divided by �2 for the two orthogonal
directions. Regardless, relevant system sizes span a consid-
erable number of folded spectrin domains since each spec-
trin tetramer contributes m � 76 triple helical domains each
capable of two or more transitions. In terms of the number
of spectrin tetramers, n � N/m, the system size needed for
unfolding to contribute to network fluctuations can be op-
erationally defined using Eq. 6:

n �
1

m
max/kmk132

o exp�f�x*132

kBT � (7)

In addition to estimating �x*132 � 1-3 nm, Rief et al’s
simulated fits of average forces for full unfolding provide
values for kmk132

o that range from 2.5 � 10
3 s
1 to 1.7 �
10
7 s
1. (Note that the previous k�,�-dissocn

o � 3.4 � 10
4

s
1 is within this broad range and consistent with like
interactions in spectrin unfolding and association). For f �
0 pN, Eq. 7 yields the minimal number of spectrin tetramers
for which unfolding enters the measurements (without yet
considering refolding): nf�0 � 4 � 101-5. Under aspiration-
imposed forces that could locally reach f�max � 4 pN (see
Results), the exponential term in Eq. 7 decreases n by up to
20-fold to: nf�max

� 2 � 100-4. The lower range is obviously
very local, on a length scale of just the mesh size �, whereas
the upper range is 10-fold smaller than the number of
spectrin tetramers per red cell (e.g., Byers and Branton,
1985). Assuming for now that domain refolding is not
rate-limiting, unfolding under force could thus enhance
fluctuations, and on the fastest time scale of experimental
detection. Fluctuation amplitudes can also be shown con-
sistent with a very moderate amount of unfolding. Depend-
ing on the force, reported length gains in unfolding single
spectrin domains range from about 15 to 30 nm for partial
or full unfolding, respectively. In comparison, the maxi-
mum measured increase in fluctuations was shown in Fig.
8 C to be ��u1

2� 
 �u�2 � 55 nm 
 35 nm � 20 nm.

Discussion of spectrin domain unfolding requires further
qualification. First, partial unfolding is intuitively antici-
pated to be more labile than full unfolding. Although Rief et
al. (1999) reported that “no intermediate states can be seen,”
thus calling into question the numerical accuracy of the
earliest forced unfolding measurements, partial unfolding
indeed appears to require �1⁄3 less force at a given rate
(Lenne et al., 2000). Kinetic parameters have not yet been
estimated, however. It is also not yet firmly established how
an AFM cantilever of typical stiffness 10 pN/nm, or
�10,000-fold stiffer than the spectrin network, influences
the measured rate constants (e.g., through km in Eq. 6).
Evans and Ritchie (1999) have concluded that measurement
system compliance in single molecule experiments can have
a considerable effect on rate-dependent transition forces.
Given the present caveats on spectrin unfolding, it is in-
triguingly plausible that local unfolding of a few of the red
cell’s �107 triple-helical domains underlies deformation-
enhanced fluctuations. Appendix 4 elaborates more fully on
equilibrium fluctuations in unfolding of a single spectrin
chain: refolding (which takes “less than a second” (Rief et
al., 1999)) and other key remaining issues are considered
there. The calculations ultimately emulate the strain-soft-
ened increase in extensional forces illustrated in the inset to
Fig. 10. The calculations are intended, however, to be
illustrative and generally relevant—with different parame-
ters—to mechanochemical equilibria such as spectrin het-
erochain dissociation and re-association under tension.

CONCLUSIONS

Thermal fluctuations of actin protofilament nodes, as mea-
sured by nano-particle tracking, appear highly localized and
consistent with the macroscopic elasticity of the erythrocyte
network. The in-plane fluctuations sweep out a projected
area that is a significant fraction of the network’s internodal
spacing. The fluctuations are also 2D isotropic, suggesting
that defects in the network are not extreme. Moreover, cell
deformation in a micropipette directly affects network fluc-
tuations, and in a manner that directly parallels the local
deformation state of the network within the pipette. In the
contracted circumferential direction fluctuations are rela-
tively suppressed, whereas in the extended axial direction
fluctuations are measurably enhanced and indicative of net-
work strain-softening. Deformation-enhanced fluctuations
could reflect a range of molecular processes, including
dissociations that reduce connectivity and forced-equilib-
rium processes such as full or partial unfolding of a few of
the red cell’s �107 spectrin repeats. Kinetic considerations
and an analytical two-state model partially quantifies such
possibilities, although additional single molecule results and
biochemical data are certainly needed.
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APPENDIX 1

Wobbling of a molecularly tethered nano-particle

In terms of a tether length, lt, particle radius, R, and angle, �, between the
tether and the planar membrane surface, the projected distance between the
tethering origin and the particle centroid is simply s � (lt � R) cos �. This
distance has a variance

�s
2 � ��cos2 �� � �cos ��2��lt � R�2 (A1.1)

Since �cos �� � 0, �cos2 �� � ��min
�
�min cos2 � � d�, and �min � sin
1

(R/(lt�R)), we obtain

�cos2 �� �
1

2�� � 2sin
1� R

lt � R�� (A1.2)

The r.m.s. error due to the “wobble” effect is estimated to be

��s
2 � �lt � R���cos2 �� (A1.3)

Assuming lt � 10 nm, R � 20 nm, ��s
2 � 10 nm. This is comparable to

the system noise (Table 1) and is much smaller than r.m.s. fluctuations of
network-attached beads. Moreover, since the calculation is for a bead
constrained to fluctuate in a plane rather than a half-space, it is also a
worst-case estimation.

APPENDIX 2

Elasticity and fluctuations in a two-dimensional
isotropic solid

Following Chaikin and Lubensky (1995), the correlation function for
material displacements is generically denoted in Fourier space as Gij(q) �
A
1 �ui(q)uj(q)�, where A reflects the size of the system. This thermal
average is evaluated by use of the Fourier-transformed strain energy or
Hamiltonian Helastic(q) which, for a two-dimensional elastic solid, is ex-
pressed in terms of just two elastic moduli, the bulk modulus, Ka, and the
shear modulus, �. The equipartition theorem is then used, assigning kBT
per normal mode to arrive at:

Gij�q� � kBT�Ka � ��
1q
2q̂iq̂j � kBT�
1q
2��ij � q̂iq̂j�

(A2.1)

The first term consists of the longitudinal fluctuations, and the second term
consists of the transverse fluctuations. Defining the displacement vector as
�u2�  �u1

2 � u2
2�, we transform back into real space:

�u2� � �� d2q

�2��2 Tr�Gij�q��

� kBT��Ka � 2��/���Ka � ����
1

2��
�/�

�/a q � dq
q2

� kBT�Ka � 2�����Ka � ���
1
ln��/a�

2�
(A2.2)

The integration limits a and � are introduced as fluctuation cutoffs,
ensuring convergence of the integration as needed for a finite size system.

APPENDIX 3

Reductions in network connectivity and elasticity

Local shifts in the equilibrium number of crosslinks toward dissociation
(Fig. 11) and away from the unstrained natural state (of crosslink density
�0) result in a decreased network connectivity or crosslink density �. This
quantity is most simply proportional to network elasticity for cytoskeletal
gels (Stokke et al., 1986) and might even be directionally reduced under
local forces or strains. For example, the projected crosslink density, �1

o, in
the 1-direction would decrease with force. Assuming a nearly perfect
lattice to start with, the elasticity is typically found to be in offset propor-
tion to crosslink density, i.e.,

k1,eff � b � m�1 (A3.1)

In this, b � 
m�1c and m � k1,eff/(�1
o 
 �1c) are both set by a rigidity

percolation limit, �1c, that depends, in general, on the particular network
Hamiltonian (Feng and Sen, 1984). In the present Results, k1,eff, was shown
to be reduced by as much as 2.25 
 4.4-fold under deformation. For a
range of triangulated spectrin-like networks of Hookean springs (Hansen et
al., 1997; Boey et al., 1998) �1c � 2⁄3 �1

o so that �1 � (0.74-0.81)�1
o. Such

a network is still well-connected with the local equilibrium shifted only
modestly (by 19 to 26%) toward the dissociated state.

APPENDIX 4

Further considerations of equilibrium fluctuations
under tension of a spectrin-like chain with N
internal two-state transitions

Whether multidomain proteins such as spectrin, titin, or Ig-cell adhesion
molecules (Carl et al., 2001) unfold within their normal function is among
the central questions raised by the dozens of recent reports of single
molecule extension and unfolding. In micropipette deformation of the red
cell, it appears clear that the spectrin network sustains average extensional
forces that reach pico-Newtons in magnitude. From in vitro experiments, it
is also clear that spectrin undergoes unfolding, both full (Rief et al., 1999)
and partial (Lenne et al., 2000), as well as refolding. Additional intra-
spectrin transitions might include �, � strand separation (Tomishige et al.,
in preparation). From the rate-dependent studies done to date on single
chains, however, it is not yet clear whether intra-spectrin transitions, both
forward and reverse, can occur on experimental time scales under constant
tensions of pico-Newton magnitude. In what follows, the unfolding-refold-
ing of spectrin that is equilibrated under a fixed imposed tension will be
coupled analytically to a polymer elasticity model. The approach is closely
related to nonequilibrium numerics of Rief et al. (1998) and an equilibrium
Ising model calculation for a stretch transition in DNA (Ahsan et al., 1998).
Only two-state unfolding rather than multistate unfolding is considered due
to the lack of experimental numbers for the latter.

Prior discussion of the full unfolding of spectrin domains under pico-
Newton forces demonstrates that transition rates—based on values of k132

o

and �x*132 (see Eq. 6) from AFM—could be faster than the measured
frequency of deformation-enhanced fluctuations (Fig. 8 B). A considerable
number, N, of spectrin domains had to be considered, but it was empha-
sized that each spectrin tetramer contains and thus contributes m � 76
triple helical domains. Discussion of refolding rates requires, in compari-
son, more speculation because experimental determinations of k231

o and
�x*231 are not yet available. Equilibrium considerations for a stable protein
fold clearly require, however, that k231

o 		 k132
o , so that refolding is

strongly favored. Second, given the condensed nature of folded proteins,
the key transition state (Fig. 11) may well be closer to the folded state than
the unfolded state, but the separation of these key states is not so great, i.e.,
��x*231� � �x*132. Careful AFM-refolding studies of titin’s I27 domain
indeed identify a key condensed denatured state that is separated from the
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transition state by 2-3 nm (Carrion-Vazquez et al., 1999). Thus, in later
calculations, we will suppose that �x*231 � 
2.5 nm for full unfolding of
spectrin; in absolute value, this is in the upper range of spectrin’s �x*132 �
1-3 nm, and the negative sign for �x*231 leads to a decrease in k̃231 (f) with
increasing extensional force (f � 0).

Extension of the unfolded chain beyond the condensed denatured state
must also be considered as a third factor: it might indeed seem likely that
an unfolded chain that is also stretched would never refold. The basic
length scale that a forcibly extended chain must be compared to is ��x �
�x*132 
 �x*231. If a chain conformation is longer than this it will not
refold, whereas a chain conformation shorter than ��x is reasonably
assumed capable of refolding. Assuming the unfolded state (of contour
length Lu � 30 nm) has the linear response of a simple polymer of
persistence length pu (�0.5 nm), the average end-to-end length under a
fixed force is �x� � 2⁄3 puLuf/kBT � (3 nm/pN) � f. Importantly, however,
chain length fluctuations about the average state of such a forcibly ex-
tended chain are considerable and can be estimated with Eq. 5b: ��u2� �
�kBT/keff � �puLu � 4 nm. Indeed, the force-extension curves of both
Rief et al. and Lenne et al. certainly exhibit considerable fluctuations
between unfolding peaks, qualitatively consistent with chain fluctuations in
the unfolded length if not simply instrument noise. For forces of f � 3-4
pN, the relevant fraction of chain conformations of length ��x or smaller
is readily estimated from a Gaussian distribution of states to be �̃ �
0.1-10%. The frequency of refolding is thus reduced by this same percent-
age. Nonetheless, refolding of unfolded domains on a time scale of sec-
onds, even when they are held extended to about half their contour length,
is well-documented with titin’s I27 domain (Carrion-Vazquez et al., 1999).
The force-clamp experiments on RNA hairpins (Liphardt et al., 2001),
where lengthening transitions of 18 nm are observed, also clearly establish
the ability of forcibly extended molecules to refold against a force on time
scales of seconds.

Altogether, the single domain refolding rate given by �̃k231
o

exp(f�x*231/kBT) seems, from the estimates above, comparable in magni-
tude at mean forces of f�max � 3-4 pN to the unfolding rate k132

o

exp(f�x*132/kBT). Comparing to max, refolding rates in a size-N system
should not prove any more rate-limiting than unfolding. Given the likeli-
hood that a sufficient number of spectrin domains could unfold and refold
on time scales smaller than even the highest data collection rate of the
present studies, we finish with a calculation of chain length fluctuations for
a spectrin-like chain held under constant f. For simplicity and consistent
with analyses of the RNA force-clamp experiments (Liphardt et al., 2001),
we neglect the force-dependent refolding rate factor �̃ (�100%) intro-
duced above.

Equilibrium under a fixed force generates a fraction of unfolded do-
mains, �̃U, calculated from the rate constants of unfolding and refolding
(Eq. 6). The expression has a standard hyperbolic form:

�̃U �
�k132

o /k231
o �exp�f��x/kBT�

1 � �k132
o /k231

o �exp�f��x/kBT�
(A4.1)

Any systematic measurement factor such as km of Eq. 6 cancels. The ratio
k132

o /k231
o is the equilibrium constant and depends on both T and the

previously identified “disbonding” force, f1/2, defined as:

�k132
o /k231

o � � exp�

f1/2��x

kBT � (A4.2)

Since k231
o 		 k132

o for a stable fold, f1/2��x must be greater than kBT.
However, f1/2 is certain to be much smaller than the 20-35 pN required to
unfold spectrin repeats under the rapid extension rates (nm/ms) used in
AFM (Rief et al., 1998). Recall that the hairpin loop of RNA had f1/2 �
14.5 pN. Defining F̃ and Ũ, respectively, as the number of folded and
unfolded repeats, then F̃ � Ũ and �̃U � 0.5 when f � f1/2. Based on
reasonable expectations for the force-free equilibrium constant for native-
to-denatured spectrin, it seems reasonable to assume that f1/2 � 1-10 pN.

Substitution yields the fraction of unfolded repeats under an imposed
force f:

�̃U �
exp��f � f1/2���x/kBT�

1 � exp��f � f1/2���x/kBT�
(A4.3)

Coupling the model of unfoldable repeats to an elastic chain of such
repeats, a spectrin strand is assumed to have a fixed total number of
domains, N � F̃ � Ũ. The total end-to-end length of the strand, X̃, is then
equated to the end-to-end length of folded repeats, having length x̃F, plus
the length, x̃U, of unfolded repeats (i.e., X̃ � F̃x̃F � Ũx̃U). The end-to-end
length scaled by the folded length is thus:

X̃/NLF �
F̃

N

x̃F

LF
�

Ũ

N

x̃U

LU

LU

LF
(A4.4)

where LU and LF are the contour lengths of unfolded and folded repeats,
respectively. Since F̃/N and Ũ/N are, respectively, the fractions of folded
and unfolded repeats,

X̃/NLF � �1 � �̃U�
x̃F

LF
� �̃U

x̃U

LU

LU

LF
(A4.5)

For analytic simplicity, x̃F/LF and x̃U/LU are both estimated by assuming a
freely jointed chain in series:

x̃

L
� coth�2f � p

kBT � �
kBT

2f � p
(A4.6)

where p is a suitable persistence length. For a folded spectrin strand, p
ought to approximate the length of a folded repeat, and so we assume pF �
2.5 nm for folded spectrin even though it ought to be longer. For an
unfolded spectrin domain, the persistence length is assumed to be a
titin-like pu � 0.5 nm (Rief et al., 1997). The ratio LU/LF is very reasonably
taken to be �9.25.

Substituting Eqs. A4.3 and A4.6 into Eq. A4.5 yields a relationship
between the relative extensional force, f/f1/2, and the relative unfolded
length, X̃/NLF, that is readily plotted with given parameters (Fig. 12). As
the extensional force increases, this single spectrin strand initially exhibits
classical strain-stiffening, where the effective spring constant (kSP � df/dX̃)
increases with extension (Fig. 12, inset). However, as the imposed exten-
sional force approaches f1/2, the spring constant decreases due to the
unfolding of repeats (Fig. 12, inset). This single chain-softening qualita-
tively resembles the results for the network in which the force versus
extension curve displays a decreasing slope (Fig. 10, inset).

One clear difference between the above single-molecule, two-state
model and experimental results for the spectrin-actin network is that the
spring constant strictly decreases with increasing axial extension of the
network from the projection’s tip to its pipette-constrained base (Fig. 8 C).
No evidence of the present two-state model’s strain-stiffening is obvious in
experiment. Importantly, however, collective mechanical responses in
large deformation are not strictly reflective of elemental responses. For
instance, when tied together in a perfect triangulated lattice and then
stressed, even the simplest Hookean spring—where the force is propor-
tional to a change in length—exhibits highly nonlinear behavior, including
phase transitions (Discher et al., 1997). Conversely, Monte Carlo simula-
tions of cell-shaped networks (Fig. 7 A) show that a collection of strain-
stiffening worm-like chains in aspiration collectively exhibit very little to
no local stiffening as a fluctuating network (Discher et al., 1998). Unfold-
ing of spectrin repeats could also be part of a more complex response:
unfolding could lead to enhanced rotational motions of F-actin protofila-
ments that are already known to exhibit randomized azimuthal orientation
in network deformation (Picart et al., 2000).

3190 Lee and Discher

Biophysical Journal 81(6) 3178–3192



We are grateful to Prof. David Meaney for the generous loan of the
intensified CCD camera. We also thank Dr. Ranjan Mukhopadhyay (Penn
Physics) for a careful reading of the revised manuscript, Prof. Tom Luben-
sky for many helpful discussions, and Prof. Evan Evans for suggesting a
careful look at fluctuation frequencies.

This work was supported by a National Institutes of Health R01 grant and
a Whitaker Foundation grant (to D.D.).

REFERENCES

Ahsan, A., J. Rudnick, and R. Bruinsma. 1998. Elasticity theory of the
B-DNA to S-DNA transition. Biophys. J. 74:132–137.

Boey, S. K., D. H. Boal, and D. E. Discher. 1998. Simulations of the
erythrocyte cytoskeleton at large deformation. I. Microscopic models.
Biophys. J. 75:1573–1583.

Byers, T. J., and D. Branton. 1985. Visualization of the protein associations
in the erythrocyte membrane skeleton. P.N.A.S. 82:6153–6157.

Carl, P., C. H. Kwok, G. Manderson, D. W. Speicher, and D. E. Discher.
2001. Forced unfolding modulated by disulfide bonds in the Ig domains
of a cell adhesion molecule. Proc. Nat. Acad. Sci. U.S.A. 98:1565–1570.

Carrion-Vazquez, M., P. E. Marszalek, A. F. Oberhauser, J. M. Fernandez.
1999. Atomic force microscopy captures length phenotypes in single
proteins. Proc. Nat. Acad. Sci. USA. 96:11288–11292.

Chaikin, P. M., and T. C. Lubensky. 1995. Principles of Condensed Matter
Physics. Cambridge University Press.

Chasis, J. A., and N. Mohandas. 1992. Red blood cell glycophorins. Blood.
80:1869–1879.

DeSilva, T. M., K. C. Peng, K. D. Speicher, and D. W. Speicher. 1992.
Analysis of human red cell spectrin tetramer (head-to-head) assembly
using complementary univalent peptides. Biochemistry. 31:
10872–10878.

Discher, D. E., D. H. Boal, and S. K. Boey. 1997. Phase transitions and
anisotropic responses of planar triangular nets under large deformation.
Phys. Rev. E. 55:4762–4772.

Discher, D. E., D. H. Boal, and S. K. Boey. 1998. Simulations of the
erythrocyte cytoskeleton at large deformation. II. Micropipette aspira-
tion. Biophys. J. 75:1584–1597.

Discher, D. E., and N. Mohandas. 1996. Kinematics of red cell aspiration
by fluorescence-imaged microdeformation. Biophys. J. 71:1680–1694.

Discher, D. E., N. Mohandas, and E. A. Evans. 1994. Molecular maps of
red cell deformation: hidden elasticity and in situ elasticity. Science.
266:1032–1035.

Discher, D. E., R. Winardi, P. O. Schischmanoff, M. Parra, J. G. Conboy,
and N. Mohandas. 1995. Mechanochemistry of protein 4.1’s spectin-
actin binding domain: ternary complex interactions, membrane binding,
network integration, structural strengthening. J. Cell Biol. 130:897–907.

Evans, E. A. 1973. A new material concept for the red cell membrane.
Biophys. J. 13:926–940.

Evans, E. A., and R. Skalak. 1980. Mechanics and Thermodynamics of
Biomembranes. CRC Press, Boca Raton, FL.

Evans, E., N. Mohandas, and A. Leung. 1984. Static and dynamic rigidities
of normal and sickle erythrocytes. Major influence of cell hemoglobin
concentration. J. Clin. Invest. 73:477–488.

Evans, E., and W. Rawicz. 1990. Entropy-driven tension and bending
elasticity in condensed-fluid membranes. Phys. Rev. Lett. 64:2094.

Evans, E., and K. Ritchie. 1999. Strength of a weak bond connecting
flexible polymer chains. Biophys. J. 76:2439–2447.

Evans, E., A. Leung, D. Hammer, and S. Simon. 2001. Chemically distinct
transition states govern rapid dissociation of single L-selectin bonds
under force. P.N.A.S. 98:3784–3789.

Feng, S., and P. N. Sen. 1984. Percolation on elastic networks: new
exponent and threshold. Phys. Rev. Lett. 52:216–219.

Gittes, F., B. Schnurr, P. D. Olmsted, F. C. MacKintosh, and C. F. Schmidt.
1997. Microscopic viscoelasticity: shear moduli of soft materials deter-
mined from thermal fluctuations. Phys. Rev. Lett. 79:3286–3289.

Golan, D. E., and W. Veatch. 1980. Lateral mobility of band 3 in the
human erythrocyte membrane studied by fluorescence photobleaching
recovery: evidence for control by cytoskeletal interactions. Proc. Natl.
Acad. Sci. U.S.A. 77:2537–2541.

Hansen, J. C., R. Skalak, S. Chien, and A. Hoger. 1997. Influence of
network topology on the elasticity of the red blood cell membrane
skeleton. Biophys. J. 72:2369–2381.

Helfer, E., S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D.
Chatenay. 2000. Microrheology of biopolymer-membrane complexes.
Phys. Rev. Lett. 85:457–460.
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