Abstract
Proton permeation rates across membranes of a synthetic branch-chained glycolipid, 1,3-di-O-phytanyl-2-O-(beta-D-maltotriosyl)glycerol (Mal3(Phyt)2) as well as a branch-chained phospholipid, diphytanoylphosphatidylcholine (DPhPC) were lower than those of straight-chained lipids such as egg yolk phosphatidylcholine (EPC) by a factor of approximately 4 at pH 7.0 and 25 degrees C. To examine whether degrees of water penetration and molecular motions in Mal3(Phyt)2 membranes can account for the lower permeability, nanosecond time-resolved fluorescence spectroscopy was applied to various membranes of branch-chained lipids (Mal3(Phyt)2, DPhPC, and a tetraether lipid from an extremely thermoacidophilic archaeon Thermoplasma acidophilum), as well as straight-chained lipids (EPC, 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), and digalactosyldiacylglycerol (DGDG)) using several fluorescent lipids. Degrees of hydration of glycolipids, Mal3(Phyt)2, and DGDG were lower than those of phospholipids, EPC, POPC, and DPhPC at the membrane-water interfaces. DPhPC showed the highest hydration among the lipids examined. Meanwhile, rotational and lateral diffusive motions of the fluorescent phospholipid in branch-chained lipid membranes were more restricted than those in straight-chained ones. The results suggest that the restricted motion of chain segments rather than the lower hydration accounts for the lower proton permeability of branch-chained lipid membranes.
Full Text
The Full Text of this article is available as a PDF (138.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abrams F. S., Chattopadhyay A., London E. Determination of the location of fluorescent probes attached to fatty acids using parallax analysis of fluorescence quenching: effect of carboxyl ionization state and environment on depth. Biochemistry. 1992 Jun 16;31(23):5322–5327. doi: 10.1021/bi00138a011. [DOI] [PubMed] [Google Scholar]
- Asuncion-Punzalan E., Kachel K., London E. Groups with polar characteristics can locate at both shallow and deep locations in membranes: the behavior of dansyl and related probes. Biochemistry. 1998 Mar 31;37(13):4603–4611. doi: 10.1021/bi9726234. [DOI] [PubMed] [Google Scholar]
- BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
- Baba T., Minamikawa H., Hato M., Motoki A., Hirano M., Zhou D., Kawasaki K. Synthetic phytanyl-chained glycolipid vesicle membrane as a novel matrix for functional reconstitution of cyanobacterial photosystem II complex. Biochem Biophys Res Commun. 1999 Nov 30;265(3):734–738. doi: 10.1006/bbrc.1999.1754. [DOI] [PubMed] [Google Scholar]
- Baba T., Toshima Y., Minamikawa H., Hato M., Suzuki K., Kamo N. Formation and characterization of planar lipid bilayer membranes from synthetic phytanyl-chained glycolipids. Biochim Biophys Acta. 1999 Sep 21;1421(1):91–102. doi: 10.1016/s0005-2736(99)00114-5. [DOI] [PubMed] [Google Scholar]
- Baba T, Zheng LQ, Minamikawa H, Hato M. Interglycolipid Membrane Interactions: pH-Dependent Aggregation of Nonionic Synthetic Glycolipid Vesicles. J Colloid Interface Sci. 2000 Mar 15;223(2):235–243. doi: 10.1006/jcis.1999.6649. [DOI] [PubMed] [Google Scholar]
- Choquet C. G., Patel G. B., Beveridge T. J., Sprott G. D. Stability of pressure-extruded liposomes made from archaeobacterial ether lipids. Appl Microbiol Biotechnol. 1994 Nov;42(2-3):375–384. doi: 10.1007/BF00902745. [DOI] [PubMed] [Google Scholar]
- Dannenmuller O., Arakawa K., Eguchi T., Kakinuma K., Blanc S., Albrecht A. M., Schmutz M., Nakatani Y., Ourisson G. Membrane properties of archaeal macrocyclic diether phospholipids. Chemistry. 2000 Feb 18;6(4):645–654. doi: 10.1002/(sici)1521-3765(20000218)6:4<645::aid-chem645>3.0.co;2-a. [DOI] [PubMed] [Google Scholar]
- Deamer D. W., Nichols J. W. Proton flux mechanisms in model and biological membranes. J Membr Biol. 1989 Feb;107(2):91–103. doi: 10.1007/BF01871715. [DOI] [PubMed] [Google Scholar]
- Degani H., Danon A., Caplan S. R. Proton and carbon-13 nuclear magnetic resonance studies of the polar lipids of Halobacterium halobium. Biochemistry. 1980 Apr 15;19(8):1626–1631. doi: 10.1021/bi00549a016. [DOI] [PubMed] [Google Scholar]
- Elferink M. G., de Wit J. G., Demel R., Driessen A. J., Konings W. N. Functional reconstitution of membrane proteins in monolayer liposomes from bipolar lipids of Sulfolobus acidocaldarius. J Biol Chem. 1992 Jan 15;267(2):1375–1381. [PubMed] [Google Scholar]
- Elferink M. G., de Wit J. G., Driessen A. J., Konings W. N. Stability and proton-permeability of liposomes composed of archaeal tetraether lipids. Biochim Biophys Acta. 1994 Aug 3;1193(2):247–254. doi: 10.1016/0005-2736(94)90160-0. [DOI] [PubMed] [Google Scholar]
- Freisleben H. J., Zwicker K., Jezek P., John G., Bettin-Bogutzki A., Ring K., Nawroth T. Reconstitution of bacteriorhodopsin and ATP synthase from Micrococcus luteus into liposomes of the purified main tetraether lipid from Thermoplasma acidophilum: proton conductance and light-driven ATP synthesis. Chem Phys Lipids. 1995 Nov 17;78(2):137–147. doi: 10.1016/0009-3084(95)02491-z. [DOI] [PubMed] [Google Scholar]
- Gabriel J. L., Chong P. L. Molecular modeling of archaebacterial bipolar tetraether lipid membranes. Chem Phys Lipids. 2000 Apr;105(2):193–200. doi: 10.1016/s0009-3084(00)00126-2. [DOI] [PubMed] [Google Scholar]
- Galla H. J., Hartmann W., Theilen U., Sackmann E. On two-dimensional passive random walk in lipid bilayers and fluid pathways in biomembranes. J Membr Biol. 1979 Jul 31;48(3):215–236. doi: 10.1007/BF01872892. [DOI] [PubMed] [Google Scholar]
- Galla H. J., Sackmann E. Lateral diffusion in the hydrophobic region of membranes: use of pyrene excimers as optical probes. Biochim Biophys Acta. 1974 Feb 26;339(1):103–115. doi: 10.1016/0005-2736(74)90336-8. [DOI] [PubMed] [Google Scholar]
- Grzesiek S., Dencher N. A. Dependency of delta pH-relaxation across vesicular membranes on the buffering power of bulk solutions and lipids. Biophys J. 1986 Aug;50(2):265–276. doi: 10.1016/S0006-3495(86)83460-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haines T. H. Water transport across biological membranes. FEBS Lett. 1994 Jun 6;346(1):115–122. doi: 10.1016/0014-5793(94)00470-6. [DOI] [PubMed] [Google Scholar]
- Hato M., Minamikawa H., Tamada K., Baba T., Tanabe Y. Self-assembly of synthetic glycolipid/water systems. Adv Colloid Interface Sci. 1999 Apr 30;80(3):233–270. doi: 10.1016/s0001-8686(98)00085-2. [DOI] [PubMed] [Google Scholar]
- Ho C., Slater S. J., Stubbs C. D. Hydration and order in lipid bilayers. Biochemistry. 1995 May 9;34(18):6188–6195. doi: 10.1021/bi00018a023. [DOI] [PubMed] [Google Scholar]
- Hsieh C. H., Sue S. C., Lyu P. C., Wu W. G. Membrane packing geometry of diphytanoylphosphatidylcholine is highly sensitive to hydration: phospholipid polymorphism induced by molecular rearrangement in the headgroup region. Biophys J. 1997 Aug;73(2):870–877. doi: 10.1016/S0006-3495(97)78120-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jarrell H. C., Zukotynski K. A., Sprott G. D. Lateral diffusion of the total polar lipids from Thermoplasma acidophilum in multilamellar liposomes. Biochim Biophys Acta. 1998 Mar 2;1369(2):259–266. doi: 10.1016/s0005-2736(97)00228-9. [DOI] [PubMed] [Google Scholar]
- Kao Y. L., Chang E. L., Chong P. L. Unusual pressure dependence of the lateral motion of pyrene-labeled phosphatidylcholine in bipolar lipid vesicles. Biochem Biophys Res Commun. 1992 Nov 16;188(3):1241–1246. doi: 10.1016/0006-291x(92)91364-v. [DOI] [PubMed] [Google Scholar]
- Kawato S., Kinosita K., Jr, Ikegami A. Dynamic structure of lipid bilayers studied by nanosecond fluorescence techniques. Biochemistry. 1977 May 31;16(11):2319–2324. doi: 10.1021/bi00630a002. [DOI] [PubMed] [Google Scholar]
- Khan T. K., Chong P. L. Studies of archaebacterial bipolar tetraether liposomes by perylene fluorescence. Biophys J. 2000 Mar;78(3):1390–1399. doi: 10.1016/S0006-3495(00)76692-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Komatsu H., Chong P. L. Low permeability of liposomal membranes composed of bipolar tetraether lipids from thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Biochemistry. 1998 Jan 6;37(1):107–115. doi: 10.1021/bi972163e. [DOI] [PubMed] [Google Scholar]
- Lipari G., Szabo A. Effect of librational motion on fluorescence depolarization and nuclear magnetic resonance relaxation in macromolecules and membranes. Biophys J. 1980 Jun;30(3):489–506. doi: 10.1016/S0006-3495(80)85109-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lis L. J., McAlister M., Fuller N., Rand R. P., Parsegian V. A. Interactions between neutral phospholipid bilayer membranes. Biophys J. 1982 Mar;37(3):657–665. [PMC free article] [PubMed] [Google Scholar]
- Marrink S. J., Jähnig F., Berendsen H. J. Proton transport across transient single-file water pores in a lipid membrane studied by molecular dynamics simulations. Biophys J. 1996 Aug;71(2):632–647. doi: 10.1016/S0006-3495(96)79264-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McDaniel R. V. Neutron diffraction studies of digalactosyldiacylglycerol. Biochim Biophys Acta. 1988 May 9;940(1):158–164. doi: 10.1016/0005-2736(88)90020-x. [DOI] [PubMed] [Google Scholar]
- Nagle J. F. Theory of passive proton conductance in lipid bilayers. J Bioenerg Biomembr. 1987 Oct;19(5):413–426. doi: 10.1007/BF00770027. [DOI] [PubMed] [Google Scholar]
- Parente R. A., Lentz B. R. Fusion and phase separation monitored by lifetime changes of a fluorescent phospholipid probe. Biochemistry. 1986 Mar 11;25(5):1021–1026. doi: 10.1021/bi00353a011. [DOI] [PubMed] [Google Scholar]
- Paula S., Volkov A. G., Van Hoek A. N., Haines T. H., Deamer D. W. Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness. Biophys J. 1996 Jan;70(1):339–348. doi: 10.1016/S0006-3495(96)79575-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pomès R., Roux B. Free energy profiles for H+ conduction along hydrogen-bonded chains of water molecules. Biophys J. 1998 Jul;75(1):33–40. doi: 10.1016/S0006-3495(98)77492-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROSENBERG A. A COMPARISON OF LIPID PATTERNS IN PHOTOSYNTHESIZING AND NONPHOTOSYNTHESIZING CELLS OF EUGLENA GRACILIS. Biochemistry. 1963 Sep-Oct;2:1148–1154. doi: 10.1021/bi00905a042. [DOI] [PubMed] [Google Scholar]
- Shipley G. G., Green J. P., Nichols B. W. The phase behavior of monogalactosyl, digalactosyl, and sulphoquinovosyl diglycerides. Biochim Biophys Acta. 1973 Jul 18;311(4):531–544. doi: 10.1016/0005-2736(73)90128-4. [DOI] [PubMed] [Google Scholar]
- Swain M., Brisson J. R., Sprott G. D., Cooper F. P., Patel G. B. Identification of beta-L-gulose as the sugar moiety of the main polar lipid Thermoplasma acidophilum. Biochim Biophys Acta. 1997 Mar 10;1345(1):56–64. doi: 10.1016/s0005-2760(96)00163-4. [DOI] [PubMed] [Google Scholar]
- Tocanne J. F., Dupou-Cézanne L., Lopez A. Lateral diffusion of lipids in model and natural membranes. Prog Lipid Res. 1994;33(3):203–237. doi: 10.1016/0163-7827(94)90027-2. [DOI] [PubMed] [Google Scholar]
- Yamauchi K., Doi K., Kinoshita M., Kii F., Fukuda H. Archaebacterial lipid models: highly salt-tolerant membranes from 1,2-diphytanylglycero-3-phosphocholine. Biochim Biophys Acta. 1992 Oct 5;1110(2):171–177. doi: 10.1016/0005-2736(92)90355-p. [DOI] [PubMed] [Google Scholar]
- Yamauchi K., Doi K., Yoshida Y., Kinoshita M. Archaebacterial lipids: highly proton-impermeable membranes from 1,2-diphytanyl-sn-glycero-3-phosphocholine. Biochim Biophys Acta. 1993 Mar 14;1146(2):178–182. doi: 10.1016/0005-2736(93)90353-2. [DOI] [PubMed] [Google Scholar]
- Yeagle P. L. Cholesterol and the cell membrane. Biochim Biophys Acta. 1985 Dec 9;822(3-4):267–287. doi: 10.1016/0304-4157(85)90011-5. [DOI] [PubMed] [Google Scholar]
- van de Vossenberg J. L., Driessen A. J., Konings W. N. The essence of being extremophilic: the role of the unique archaeal membrane lipids. Extremophiles. 1998 Aug;2(3):163–170. doi: 10.1007/s007920050056. [DOI] [PubMed] [Google Scholar]