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ABSTRACT Strategies for the deconvolution of diffusion in the determination of size-distributions from sedimentation
velocity experiments were examined and developed. On the basis of four different model systems, we studied the differential
apparent sedimentation coefficient distributions by the time-derivative method, g(s*), and by least-squares direct boundary
modeling, ls-g*(s), the integral sedimentation coefficient distribution by the van Holde–Weischet method, G(s), and the
previously introduced differential distribution of Lamm equation solutions, c(s). It is shown that the least-squares approach
ls-g*(s) can be extrapolated to infinite time by considering area divisions analogous to boundary divisions in the van
Holde–Weischet method, thus allowing the transformation of interference optical data into an integral sedimentation
coefficient distribution G(s). However, despite the model-free approach of G(s), for the systems considered, the direct
boundary modeling with a distribution of Lamm equation solutions c(s) exhibited the highest resolution and sensitivity. The
c(s) approach requires an estimate for the size-dependent diffusion coefficients D(s), which is usually incorporated in the form
of a weight-average frictional ratio of all species, or in the form of prior knowledge of the molar mass of the main species. We
studied the influence of the weight-average frictional ratio on the quality of the fit, and found that it is well-determined by the
data. As a direct boundary model, the calculated c(s) distribution can be combined with a nonlinear regression to optimize
distribution parameters, such as the exact meniscus position, and the weight-average frictional ratio. Although c(s) is
computationally the most complex, it has the potential for the highest resolution and sensitivity of the methods described.

INTRODUCTION

Analyzing the size-distribution of biological or synthetic
macromolecules in solution, for example, the study of the
oligomeric state of proteins, is a very important application
of analytical ultracentrifugation with a long history (Signer
and Gross, 1934; Svedberg and Pedersen, 1940; Bridgman,
1942; Baldwin and Williams, 1950; Vinograd and Bruner,
1966; Scholte, 1968; van Holde and Weischet, 1978; Staf-
ford, 1992a). Because of the relatively large size depen-
dence of macromolecular migration in a gravitational field,
sedimentation velocity studies have the potential for high
resolution. In the last decades, two approaches for the
determination of sedimentation coefficient distributions
have become most popular: the integral sedimentation co-
efficient distributions G(s) by van Holde and Weischet
(vHW) (1978) and the differential apparent sedimentation
coefficient distribution g*(s) obtained as a transform of the
time-derivative of the signal, dc/dt (Stafford, 1992a). Ex-
ploiting the increased computational capabilities now avail-
able, we have recently proposed new methods for obtaining
the apparent differential sedimentation coefficient distribu-
tion g*(s), termed ls-g*(s) (Schuck and Rossmanith, 2000),
and for calculating a differential sedimentation coefficient

distribution c(s) in which corrections for diffusion are made
(Schuck, 2000). Both methods are based on direct least-
squares modeling of the sedimentation boundary, using
linear combinations of sedimentation profiles for nondiffus-
ing species or linear combinations of Lamm equation solu-
tions, respectively. They can be applied to larger data sets
and, by virtue of regularization, exhibit substantially less
noise in the calculated distributions than previous methods.
First applications of the methods indicate a high versatility
and significant advantages in sensitivity and resolution over
the classical methods (Perugini et al., 2000; Schuck et al.,
2000; Schuck and Rossmanith, 2000; Cole and Garsky,
2001; Sedlák and Cölfen, 2001; Hatters et al., 2001). How-
ever, a systematic exploration of differences and relation-
ships among the different approaches, the statistical and
experimental prior knowledge needed, as well as the im-
plicit assumptions and their practical relevance are not
available at present.

One of the classical problems in the theory of ultracen-
trifugal sedimentation is the treatment of diffusion in size-
distribution analysis. The deconvolution of boundary diffu-
sion can significantly increase the amount of detail that can
be learned from a sedimentation experiment, and how dif-
fusion is described constitutes a central difference among
the existing approaches. One difficulty is that a set of two
parameters (such as sedimentation and diffusion coefficient)
is required to describe the sedimentation of each species in
the distribution. Although the apparent sedimentation coef-
ficient distributions g(s*) and ls-g*(s) do not allow consid-
eration of diffusion, the vHW method for calculating G(s) is
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designed to take diffusion into account in a model-indepen-
dent way by extrapolation of boundary fractions to infinite
time. In the present paper, we describe a similar model-free
method for calculating G(s) by extrapolation of the ls-g*(s)
distributions to infinite time. Although complete model
independence can be appealing, the extrapolation process
can limit the resolution. Further, we will show that this
extrapolation strategy for the deconvolution of diffusion
fails for heterogeneous mixtures of species with overlapping
sedimentation boundaries. The Lamm equation method c(s)
uses an intermediate strategy, by estimating size-dependent
diffusion coefficient via the Stokes–Einstein and Svedberg
relationships and by utilizing prior knowledge, such as the
weight-average frictional ratio, the molar mass of a main
component, or similar information relating size and shape of
the distribution. It also uses maximum entropy regulariza-
tion, a Bayesian strategy to achieve numerical stability and
optimal resolution, which is routinely used in many other
fields of physics and biophysics for problems of similar
mathematical structure. In contrast to the more classical data
transformations, direct boundary models such as c(s) pro-
vide a criterion for the goodness-of-fit, which has potential
use in nonlinear regression of distribution parameters. So
far, however, this has remained unexplored.

In the present communication, we apply the different
methods [g(s*), ls-g*(s), G(s) by vHW and by extrapolation
of ls-g*(s), and c(s)] to four different data sets with different
broadness of size distribution and different extent of diffu-
sion. First, we examine a previously proposed theoretical
model system with four species of closely spaced sedimen-
tation coefficients (Stafford, 1992b). We then compare the
information obtained from the analysis of experimental data
from a predominantly single species with a trace impurity,
a self-associating protein with several discrete oligomeric
states, and a continuous distribution of large lipid emulsion
particles. Besides questions of sensitivity and of resolution
of species that do not exhibit clearly distinguishable sedi-
mentation boundaries, we also examine the stability of the
c(s) approach with respect to the prior assumption needed.
In particular, we show how the knowledge of the weight-
average frictional ratio can be extracted from the experi-
mental data by combination with nonlinear regression.

EXPERIMENTAL

Analytical ultracentrifugation

For sedimentation velocity experiments, a Optima XL-I
analytical ultracentrifuge (Beckman Coulter, Fullerton, CA)
with absorbance and interference optical detection system
was used. Epon double-sector centerpieces were filled with
400 �l of sample solution and PBS, respectively, and cen-
trifuged at a rotor speed of 40,000 or 55,000 rpm and at
rotor temperatures of 5 or 20°C, respectively. Absorbance
data were acquired at a wavelength of 280 or 230 nm,

respectively, and in time intervals of 2 min, with the radial
increment set to 0.002 cm and taking two averages per scan;
interference scans were taken in time intervals of 1 min.
Buffer viscosity, protein partial specific volumes and fric-
tional ratios were calculated using the software Sednterp
(Laue et al., 1992).

Sedimentation equilibrium studies were conducted in a
Beckman Optima XL-A equipped with absorbance optics.
Double-sector or six-channel charcoal-filled epon center-
pieces were filled with 140 �l of sample at loading concen-
tration between 0.1 and 0.6 mg/ml, respectively. Sedimen-
tation equilibrium was attained at a rotor temperature of 4°C
at rotor speeds of 10,000 and 13,000 rpm, respectively, and
absorbance profiles were acquired at wavelengths of 230
and 280 nm. Extinction coefficient ratios at different wave-
lengths were estimated spectrophotometrically.

DATA ANALYSIS

Lamm equation modeling

Sedimentation velocity data analysis was performed with
the program Sedfit (which can be obtained from http://
www.AnalyticalUltracentrifugation.com). For direct bound-
ary modeling with distributions of Lamm equation solutions
(Schuck, 2000), the measured absorbance or interference
profiles a(r, t) were modeled as an integral over the differ-
ential concentration distribution c(s)

a�r, t� � � c�s���s, D�s�, r, t� ds � �, (1)

with � denoting noise components, and �(s, D, r, t) denoting
the solution of the Lamm equation for a single species
(Lamm, 1929)

d�

dt
�

1

r

d

dr �rD�s�
d�

dr
� s�2r2�� (2)

(where r denotes the distance from the center of rotation,
and � the rotor angular velocity), which was solved by finite
element methods on a static or moving frame of reference as
described in (Claverie et al., 1975; Schuck, 1998; Schuck et
al., 1998). For each species, the diffusion coefficient D(s)
was estimated as a function of the sedimentation coefficient
s based on the known partial specific volume of the protein,
and on an estimated anhydrous frictional ratio f/f0 (Schuck,
2000). In some cases, this can be combined with a prede-
termined interval of s-values for which diffusion coeffi-
cients D(s) are calculated from the Svedberg equation, using
prior knowledge of the buoyant molar mass (Schuck et al.,
2000).

The integral Eq. 1 was solved numerically by discretiza-
tion into a grid of 100–200 sedimentation coefficients and
calculating the best-fit concentrations for each species in a
linear least squares fit. Systematic noise components of the
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data were estimated by using an algebraic method (Schuck
and Demeler, 1999) (see below). Numerical stability was
achieved by the maximum entropy method (Amato and
Hughes, 1991),

Min
c(s)

��
i,j
�a�ri, tj� � �c�s���s, ri, tj� ds�2

� ��c�s�ln c�s� ds� (3)

which is a regularization procedure that minimizes not only
the deviation between model and data at each radius value
ri and each time tj, but simultaneously maximizes the infor-
mation entropy �� c ln c ds. The maximum entropy con-
straint � is adjusted such that the increase in the �2 of the
constrained fit, as compared to the unconstrained fit (� �
0), corresponds to a confidence level of one or two standard
deviations (p � 0.68 or 0.95, respectively) as calculated by
F-statistics (Provencher, 1982a; Bevington and Robinson,
1992; Johnson and Straume, 1994; Schuck, 2000). This
method has the virtue of providing the simplest distribution
of all possible distributions that are consistent with the data,
while allowing for sharp peaks in the distribution if neces-
sary for modeling the data. Alternatively, when prior knowl-
edge is available about the smoothness of the distribution,
the maximum entropy constraint can be replaced by a Tik-
honov–Phillips term � (d2c/ds2)2 ds that minimizes the sec-
ond derivative of the distribution. Because of its linearity,
this term can be implemented in the computationally sim-
pler matrix form. However, it cannot describe isolated peaks
as well as the maximum entropy constraint, and tends to
produce smoother distributions, which can make it more
robust.

For critical inspection of the quality of fits to sedimen-
tation velocity data, we have developed a two-dimensional
picture representation of the residuals to avoid the usual loss
of information on systematic deviations in the common
overlay presentations. The bitmap representation of the re-
siduals was calculated in the following way: The residual
values of all points in all scans R(r, t) were transformed to
a gray value n(r, t) between 0 and 255, with n � 0 for R(r, t)
� �0.05, n � 255 for R(r, t) � 0.05, and with a linear
transformation for the residuals �0.05 � R(r, t) � 0.05.
This transformation results in neutral gray (n � 128) for a
perfect fit with R(r, t) � 0, brighter pixels for positive and
dark pixels for negative residuals. In the bitmap, the pixels
were ordered in rows that correspond to the scan number,
and columns that correspond to the radius values. This
representation of the residuals results in a uniformly gray
picture without any structure for a good fit with randomly
distributed residuals. If a structure is visible, this corre-
sponds to systematic residuals. In this way, systematic re-
siduals from vibrations of the camera, which produce ver-

tical patterns, can be distinguished from those of an
imperfect boundary model resulting in diagonal structures.
Also, the presence of isolated bad scans can be diagnosed
from horizontal lines, and they can be identified from a
separate output file of Sedfit of the local rms error for each
file.

Systematic noise analysis

Components of systematic time-invariant and radial-invari-
ant noise were calculated using the algebraic approach
described previously (Schuck and Demeler, 1999). In brief,
the time-invariant baseline signal bi at each radius ri was
minimized by least-squares according to

Min
{p},bi

�
i,j

�a�ri, tj� � �bi � S�	p
, ri, tj���
2. (4)

In this equation, S denotes any model for the sedimentation
boundary, such as the solution of the Lamm equation (Eq.
2), or the sedimentation of a size-distribution (Eq. 3), which
might, in general, depend on a set of parameters {p}. It can
be easily shown that, for any given value of {p} (or if S has
no further parameters), the best-fit time-invariant noise is
given by

bi�	p
� � a� i � S� i�	p
�, (5)

where the quantities

a� i � �1/Ns��
j

a�ri, tj�,

S� i�	p
� � �1/Ns��
j

S�	p
, ri, tj�,

(6)

(with the total number of scans Ns) represent an average
scan, and an average sedimentation model, respectively.
This leads to a least-squares problem for the calculation of
the remaining parameters {p}

Min
{p}

�
i,j

��a�ri, tj� � a� i� � �S�	p
, ri, tj� � S� i�	p
���2. (7)

An analogous procedure can be used for the radial-invariant
signal offsets (Schuck and Demeler, 1999). For the distri-
bution analysis, it is straightforward to solve Eq. 7 directly
by linear least squares methods (Schuck, 2000; Schuck and
Rossmanith, 2000).

Inspection of Eq. 7 shows that the only information that
can be extracted from the data is that of a time-difference
(here with an average scan as a reference). It should be
noted that no explicit estimate of the time-invariant noise is
used in Eq. 7. Nevertheless, for fundamental reasons, mod-
eling the time-difference introduces new degrees of freedom
into the data analysis, which is a consequence of the un-
known radial-dependent baseline offsets. This can lead to
slight correlation with parameters of the boundary model, in

1098 Schuck et al.

Biophysical Journal 82(2) 1096–1111



particular with those describing very slow sedimentation
processes (Schuck and Demeler, 1999; Kar et al., 2000).
Such correlation can be minimized by using a large data set
that includes large boundary displacement (Kar et al., 2000).
The calculation of an explicit estimate of the baseline pa-
rameters with Eq. 5 follows after the nonlinear regression in
Eq. 7 and allows comparing of the sedimentation model
with the data in the original data space (direct boundary
modeling). It follows from Eq. 5 that the best estimate of the
time-invariant signal is an average over all scans of the
residuals profiles. Therefore, it is dependent on the param-
eters of the sedimentation model, and realistic estimates of
the time-invariant baseline signal are obtained only if the
sedimentation model fits the data well. However, this step
does not introduce any additional correlation in the esti-
mates of the sedimentation parameters {p}.

Calculation of the sedimentation coefficient
distributions g*(s) and G(s)

For obtaining the apparent sedimentation coefficient distribu-
tion g*(s), the direct boundary model for a distribution of
nondiffusing particles ls-g*(s) (Schuck and Rossmanith, 2000)
was used, as implemented in the software Sedfit. In this
method, ls-g*(s) is calculated using the same concepts and
numerical framework as the distribution c(s) described above,
but by replacing the Lamm equation solution �(s, D(s), r, t) in
Eq. 1 with the theoretical sedimentation profiles of nondiffus-
ing species, i.e., step-functions U(s, r, t),

a�r, t� �� g*�s�U�s, r, t� ds (8)

U�s, r, t� � e�2�2st 	 � 0 for r 
 r*�t� � rme�2st

1 else. (9)

U(s, r, t) describes the ideal behavior of initially uniformly
distributed particles with sedimentation coefficient s, but
without any diffusion, during sedimentation and radial di-
lution in the sector-shaped solution column in the centrifu-
gal field (with the meniscus position of the solution column
rm, and a boundary position r*(t)) (Fujita, 1962; Stafford,
1992a; Schuck and Rossmanith, 2000). Regularization was
applied using the Tikhonov–Phillips method, at a confi-
dence level of p � 0.95, unless stated otherwise.

Eq. 8 can be combined with Eqs. 7 and 5 for systematic
noise analysis. As described above, as a consequence of
modeling the time difference in Eq. 7, some additional
correlation and increased error of the distribution at small
s-values can occur. Both can be minimized best in the
ls-g*(s) analysis by using data sets with large boundary
displacement and scans where the boundary has cleared the
meniscus. It should be noted that, if used for the analysis of
small molecules where diffusion is not negligible, Eq. 9 is
not a good approximation, and, dependent on the size of the

data set, large residuals and relatively poor estimates of the
time-invariant signal may be obtained.

The differential sedimentation coefficient distribution de-
fined by Eqs. 8 and 9 is termed ls-g*(s) to indicate its basis
on the least-squares data modeling (ls), and the neglect of
diffusion (g*). A similar differential sedimentation coeffi-
cient distribution can be calculated using the time-derivative
dc/dt, as approximated by the time difference �c/�t (Philo,
2000; Stafford, 1992a). This is termed g(s*) to indicate the
use of a transformation of the radial variable r into an
apparent sedimentation coefficient s* in the course of its
calculation. In this method, the pairwise time difference
between scans is used to eliminate systematic time-invariant
noise. The final apparent sedimentation coefficient distribu-
tion g(s*) from dc/dt can be transformed back into a bound-
ary model (with rhs of Eq. 8 and 9) for comparison of model
and data, and explicit estimates of the time-invariant noise
can be calculated via Eq. 5 (data not shown). Because both
methods g(s*) and ls-g*(s) are based on equivalent defini-
tions of the apparent sedimentation coefficient distribution,
when applied to the same data sets, this leads to equivalent
results for both the g*(s) distribution (Schuck and Ross-
manith, 2000) and the time-invariant noise estimates (data
not shown). However, the absence of a differentiation step
in ls-g*(s) allows larger boundary displacements between
the scans, and avoids artificial broadening effects that can
be introduced by the approximation of dc/dt by �c/�t
(Schuck and Rossmanith, 2000; Philo, 2000). For compar-
ison, where possible, g(s*) analysis of time-difference sed-
imentation data was performed with the program dcdt

(J. S. Philo, 3329 Heatherglow Ct., Thousand Oaks, CA
91360).

The integral sedimentation coefficient distribution G(s)
was calculated as described by van Holde and Weischet
(1978). This method is based on the Faxén-type approxi-
mate solution of the Lamm equation, which can be written
as

c�r, t� � �c0e
�2s�2t

2 	�1 � ��rm ln r*�t� � rm ln r


2Dt 	� , (10)

with the boundary position of a nondiffusing species r*(t) as
defined in Eq. 9, and the error function � (van Holde and
Weischet, 1978; Demeler et al., 1997). Following the deri-
vation of vHW, the radial positions Ri of fractional plateau
concentrations ci (ci � icp/N, with i denoting the fraction
number, and N denoting the total number of divisions of the
plateau concentration cp) can be transformed in apparent
sedimentation coefficients s*app,i � ln(Ri/rm)/�2t, so that

2i

N
� 1 � ���s � s*app,i�

�2rm

2
D

t	 . (11)
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With the inverse error function ��1 applied to both sides of
Eq. 11, we arrive at

s*app,i � s �
2
D

�2rm
��1�1 �

2i

N	 	
1


t
(12)

(van Holde and Weischet, 1978), which shows that a linear
extrapolation of s*app,i on a t�0.5 scale to infinite time allows
for determination of s, and deconvolution of diffusion ef-
fects on the sedimentation boundary. The resulting s-values
from the different boundary fractions form the integral
sedimentation coefficient distribution G(s) (van Holde and
Weischet, 1978; Demeler et al., 1997).

We have used the implementation of the vHW approach
outlined earlier (Schuck, 2000). In brief, after determination
of the plateau signals for each curve, the boundary was
divided in N (usually 20 to 50) fractions of equal concen-
tration increments dh. The radial position of the boundary
fraction is calculated as Ri � mean {r, with dh � (i �
0.5) � c(r) � dh � (i 
 0.5)}, i.e., as the average of the
radial values of all data points that have signal values as
defined by the limits of the boundary fraction. This method
is designed for a high number of fractions, where the
boundary increment dh for each fraction are comparable in
size to the noise of the data, and it extracts the boundary
positions in a least-square sense, not requiring smoothing of
the data. In the algorithm implemented in Sedfit, it is
ensured that all boundary fractions in all scans have at least
one data point, otherwise the number of boundary fractions
N is automatically reduced.

As an alternative strategy for the calculation of G(s), we
have implemented the following extrapolation of ls-g*(s) to
infinite time: The total set of scans used for analysis was
subdivided in sequential sets of scans, each taken at a time
interval centered at ti. (For example, sets of 10 scans were
used for the analysis of interference optical data.) For each
set, a differential sedimentation coefficient distribution ls-
g*(s)i was calculated and divided into N equal area fractions
Aj. Because the area under the ls-g*(s) curves corresponds
to the loading concentration (Eq. 8), these fractional areas
are equivalent to boundary fractions, and the average sedi-
mentation coefficient sij(Aj) in a given area fraction Aj at
time ti directly corresponds to the s-values s*app,i calculated
for each boundary fractions in the vHW method. As a
consequence, the same extrapolation procedure, Eq. 12, can
be applied to generate a distribution G(s). (It should be
noted that this method, like vHW, requires the existence of
solution plateaus to define consistent area fractions, and that
it requires some depletion at the meniscus to avoid corre-
lation of ls-g*(s) with baseline and systematic noise param-
eters.) Each of the ls-g*(s)i curves can be calculated taking
into account time-invariant and radial-invariant systematic
noise (Eq. 7), but best results were obtained if only time-
invariant noise was considered (vertical alignment of the
scans, e.g., close to the meniscus, may be achieved sepa-

rately). After the linear regression with Eq. 12, the best-fit
values of sij(Aj) can be transformed back into equivalent
boundary positions, and a step-function model of the bound-
ary in the original data space can be generated (Eq. 9). This
allows for calculating overall best-fit estimates for the sys-
tematic noise contributions via Eq. 5 (see above).

There is a subtle difference between the two procedures.
The division of the boundary into equal fractions of the
plateau signal introduces small errors in the linear approx-
imation of sapp,i versus t�0.5. However, by substituting Eq.
10 with an improved approximate solution of the Lamm
equation, a more complex relationship sapp,i versus t�0.5 can
be derived (Eq. 17 of van Holde and Weischet, 1978). In the
division of the ls-g*(s) area, the division is made in units of
equivalent loading concentrations, and the fractions are
propagated in time according to Eq. 9, such that they gen-
erate boundary fractions that have experienced different
radial dilutions. This can be expected to slightly alter the
precision of the linear approximation. However, in studies
with synthetic data, we found this to produce similar accu-
racy of the linear extrapolation sapp,i versus t�0.5 (both have
errors � 1%, data not shown). An independent theoretical
justification of the ls-g*(s) approach can be derived from
the observation that the apparent sedimentation coefficient
distributions exhibit a sharpness increasing with time, and
by interpreting Eq. 10 as describing diffusional spread in a
space of “apparent sedimentation coefficients.” In this view,
the division of ls-g*(s) in area fractions and linear extrap-
olation on a t�0.5 scale can be understood solely as a rational
method for extrapolating ls-g*(s) to infinite time (with the
transformation to the integral G(s) distribution providing
increased numerical stability of the extrapolation). How-
ever, because of the close relationship of the methods, we
interpret the extrapolation of area fractions of the ls-g*(s)
distributions as an extension of the vHW method, in a sense
that ls-g*(s) can be calculated easily in the presence of
systematic time-invariant noise of interference optical data
by applying algebraic noise decomposition (Schuck and
Demeler, 1999).

Sedimentation equilibrium analysis

Sedimentation equilibrium data were analyzed by global
modeling of 3–6 data sets obtained at different loading
concentrations and rotor speeds using the commercial math-
ematical modeling software Mlab (Civilized Software, Sil-
ver Spring, MD). Least-squares fits of the measured absor-
bance profiles a(r) were calculated using models based on
the exponential equilibrium distribution of ideally sediment-
ing oligomeric species (Svedberg and Pedersen, 1940)

a�r� � �
{i}

ci�r0�i��d exp�iM�1 � ��
�
�2�r2 � r0

2�

2RT � , (13)
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where r0 is an arbitrary reference radius, and, with the
monomer molar mass and partial specific volume M and �� ,
respectively, the solvent density 
, the absolute temperature
T, the gas constant R, the molar extinction coefficient �� at
wavelength �, and the thickness of the centerpiece d (1.2
cm). Dependent on the particular model used, the molar
concentrations of the i-mer ci(r0) were coupled by mass
action law. In all models, the absence of partial specific
volume changes upon oligomerization was assumed.

A transformation of the absorbance distribution (of a
single scan) into a continuous molar mass distribution c(M)
combined with maximum entropy regularization was
achieved by replacing the kernel in Eq. 3 by sedimentation
equilibrium exponentials (Eq. 13) for a single species. To
allow for a rational comparison of the concentration of the
different species, average loading concentrations were used
as concentration units, obtained by integration of each spe-
cies from meniscus to bottom. This method is similar to the
Laplace transform with regularization described by Wiff
and Gehatia (1976). Because of the high sensitivity of the
shape of c(M) on the location of the bottom of the solution
column, for this analysis, the meniscus and bottom were
predetermined using intensity scans.

Dynamic light scattering

Dynamic light scattering experiments were conducted using
a Protein Solutions DynaPro 99 instrument with a DynaPro-
MSTC200 microsampler (Protein Solutions, Charlottesville,
VA). Protein samples were centrifuged for 5 min in a
microcentrifuge to remove dust particles, and a 20-�l sam-
ple was inserted in the cuvette with the temperature control
set to 20°C. The light-scattering signal was collected at 90°,
and autocorrelation coefficients were exported for analysis
with the software Sedfit, adapted for dynamic light-scatter-
ing analysis by replacing the Lamm equation solutions with
the following models for the field autocorrelation function:

g(1)��� � exp��Dq2��, (14)

where � is the decay time and q � (4�n/�)sin(�/2), with the
solvent refractive index n, the wavelength of the incident
light �, and the scattering angle � (Murphy, 1997). Con-
tinuous size distributions were calculated from the autocor-
relation data analogs to the analysis of the sedimentation
coefficient distribution, but using the correlation functions
Eq. 14 as kernel in the integral Eq. 3. This results in a
distribution analysis that is similar to the maximum entropy
method described by Livesey et al. (1986) and similar to
that implemented by Provencher (1979, 1982b) in CONTIN

(which uses a Tikhonov–Phillips regularization). The regu-
larization was adjusted to a confidence level between 0.45
and 0.55 (Provencher, 1992).

RESULTS

Comparison of the resolution using
synthetic data

To examine the potential of Lamm equation modeling for
resolving species in sedimentation velocity experiments
when no clear sedimentation boundary is visible, we have
simulated data from the model system that was proposed
earlier by Stafford (1992b) (Fig. 1). It consists of four
species with sedimentation coefficients 6, 7, 8, and 9 S. For
each, theoretical sedimentation profiles were calculated
with a starting concentration of 0.25 (arbitrary signal units),
and to the sum of their signals, normally distributed noise at
a magnitude of 0.01 was added. From inspection of the
resulting broad sedimentation profiles, the presence of a
heterogeneous mixture is obvious, but no distinct bound-
aries can be identified (Fig. 1 A).

The distributions obtained greatly differ for the different
methods (Fig. 1 B). As can be expected, the apparent sedi-
mentation coefficient distributions (both ls-g*(s) and g(s*))
only reveal the range of s-values, without finer structure in
the size distribution. The results obtained with the vHW
method for the integral sedimentation coefficient distribu-
tion G(s) (van Holde and Weischet, 1978), and for G(s) by
extrapolation of ls-g*(s) to infinite time are only slightly
better as they represent the range of s-values more accu-
rately. Although they can, in principle, unravel the effects of
diffusion, the close spacing of the sedimentation coeffi-
cients clearly exceeds the resolution. However, the four
species can be discriminated with the c(s) method, if com-
bined with the optimization of the weight-average frictional
ratio (see below).

The deconvolution of diffusion by G(s) and c(s) merits
more detailed consideration. The extrapolation of the
boundary fractions of both G(s) methods is shown in Fig. 2.
In comparison, the extrapolated ls-g*(s) distribution has
fewer time points for the extrapolation (due to the need for
a whole set of curves for calculating a single ls-g*(s) dis-
tribution), but it can be subdivided into more boundary
fractions (Fig. 2 B). However, as expected, the results are
very similar in both methods. Interestingly, although the
linear regression of the boundary fractions appears to be of
high quality, it is clear that they do not contain the infor-
mation required for resolving the species underlying the
model system.

The application of the distribution of Lamm equation
solutions c(s) is based on one piece of additional infor-
mation that can link s and D, which can be obtained most
conveniently by estimating a frictional ratio f/f0 of the
species under study. Because, in most cases, the data will
not contain enough information for defining f/f0 as a
function of sedimentation coefficient (or even a distribu-
tion of f/f0 for all species with the same sedimentation
coefficient), the c(s) method is restricted to use only a
single value, corresponding to a weight-average frictional
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ratio of all species. An estimate may initially be based,
for example, on the expected hydrodynamic behavior for
the type of macromolecule under study (e.g., for globular

protein, or random coil). In the application to the data
shown in Fig. 1 A, we started with an initial guess of f/f0

of 1.2, which resulted in two peaks at 6.5 and 8.5 S, but
with a poor fit with an rms deviation of 0.015, and clearly
systematic residuals (data not shown). The model func-
tions calculated from c(s) were too broad, particularly in
the earlier scans, indicating too large diffusion coeffi-
cients predicted by a too small prior estimate of f/f0 �
1.2. Therefore, we increased f/f0 to a value of 2 (resulting
in the distribution with three peaks shown as dotted lines
in Fig. 1 B), and then floated this parameter to be opti-
mized in a nonlinear regression. This resulted in a c(s)

FIGURE 1 Study of the resolution of c(s), ls-g*(s), and dc/dt-based g(s*)
distributions for a four-component model system of elongated molecules as
suggested in Stafford (1992b). (A) Sedimentation profiles of species with
relative molar masses 341,000, 398,000, 441,000, and 490,000 and sedimen-
tation coefficients of 6, 7, 8, and 9 S, respectively (corresponding to anhydrous
frictional ratios of 2.93, 2.79, 2.61, and 2.49). The simulated rotor speed was
50,000 rpm, rotor temperature 20°C, partial specific volume 0.73 cm3/g, and
the loading concentration for each species 0.25. The simulated data (thin lines,
only every second data set shown) was generated by adding the distributions
of all species and 0.01 normally distributed noise. c(s) analysis was performed
with 150 species with sedimentation coefficients between 4.5 and 10.5 S, with
regularization at a confidence level of 0.68, and a floating frictional ratio and
floating baseline (similar results were obtained with and without consideration
of time-invariant noise). The frictional ratio converged at a value of 2.9, close
to the weight-average frictional ratio of 2.7 of the simulated species. The
best-fit distributions are shown as bold dashed lines. (B) The calculated c(s)
distribution (bold solid line) is shown, and, for comparison, the results of the
ls-g*(s) analysis of scans 10–30 (bold dashed line), dc/dt analysis of scans
18–21 (thin solid line), vHW analysis of scans 1–25 (circles), and G(s) by
extrapolation of ls-g*(s) to infinite time (diamonds). Also shown is the distri-
bution c(s) obtained with a value of f/f0 of 2.0 (dotted line, reduced in scale by
factor 0.2).

FIGURE 2 Sedimentation coefficients of the boundary fractions of scans
1–25 of the data shown in Fig. 1 A, determined directly by the vHW
method and by extrapolation of area fractions of ls-g*(s) to infinite time.
(A) For the vHW analysis, the maximal number of boundary fractions was
20, and shown are the apparent s-values (circles) and extrapolations (lines)
for fractions 1–19. (Fraction 20 near the plateau was dominated by noise,
not shown). (B) The ls-g*(s) extrapolation was based on calculated ls-g*(s)
distributions with a grid of 50 s-values between 1 and 15 S, with regular-
ization at a confidence level of p � 0.9, allowing for a floating baseline.
This was applied to a “sliding subset” of five sequential scans. Each
ls-g*(s) distribution was divided into 30 equal area fractions, for which the
weight-average sedimentation coefficient was determined (circles) and
extrapolated to infinite time (solid line). The distributions G(s) are shown
in Fig. 1 B.
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distribution that exhibits peaks at the correct position of
the species underlying the simulated data. Furthermore,
the parameter f/f0 converged to a value of 2.9, which is
close to the weight-average frictional ratio of 2.7 for the
simulated, highly elongated, species. This indicates that
nonlinear regression of f/f0 can be a useful technique to
obtain good estimates for this parameter. Nonlinear re-
gression was also found to be a good technique for
determining the exact meniscus position, as well as the
sedimentation and diffusion coefficients of co-sediment-
ing small molecules (such as buffer components that are
not matched in the reference and sample side of the
ultracentrifugal cell; data not shown).

When inspecting the details of the resulting best-fit c(s)
distribution, it should be considered that the maximum
entropy regularization causes the peaks not to be very sharp,
as one could expect for an ideal measurement. By design of
the Bayesian procedure, it restricts the structure in the c(s)
distribution to the features that are essential for describing
the raw data within the limits of the noise. According to this
result, any sharper distributions would not lead to signifi-
cantly better fits (at a confidence limit of 0.68). Therefore,
the c(s) distribution in Fig. 1 B depicts the information that
can be extracted reliably from the data in Fig. 1 A, and, by
design, it does not represent the best fit, which would, in
most cases, be too unstable. However, it should be noted
that even in the presence of noise, all four species can be
unraveled with the c(s) analysis even without their boundary
separation. Interestingly, the four species cannot be resolved
if only the data subsets suitable for vHW analysis are taken
into consideration. We have shown earlier that, for broad
continuous distributions, the regularization can produce ar-
tificial oscillations (Schuck, 2000). The analysis here also
highlights another well-known property of maximum en-
tropy regularization, an inherent tendency to merge closely
spaced peaks, in particular in nonoptimal fits (where the
predefined F-ratio results in higher fractional increase in �2,
and consequently higher regularization). This is shown in
the dotted line in Fig. 1 B. To achieve optimal resolution,
therefore, it appears important to balance the distribution
parameters (the confidence level and prior estimate of f/f0)
with the inspection of the quality of the fit. As indicated
above, this can include optimization of f/f0 by least-squares
regression.

Study on the sensitivity of the methods using
experimental data from an
immunoglobulin G sample

Next, we compared the performance of the methods using
data from a nearly homogeneous immunoglobulin G (IgG)
sample. The experimental fringe-shift data are shown in Fig.
3 A. A fit with discrete solutions of the Lamm equation
reveals one main species with 6.60 S, but with a (statisti-
cally highly significant) 3% contamination of a dimeric

FIGURE 3 VHW analysis by extrapolation of ls-g*(s) of interference data
from an immunoglobulin sample. (A) Experimental fringe profiles at 40,000
rpm, 20°C, scans 30–170. For clarity of presentation, only every 10th data set
is shown, and the integral fringe shift is removed. The best-fit time-invariant
noise contribution from the G(s) analysis is shown as a dotted line. (B) ls-g*(s)
distributions (solid lines) calculated for sets of 20 scans, with 50 s-values
between 2 and 11 S, and regularization at p � 0.9. The circles represent the
integral sedimentation coefficient distributions G(s), obtained by extrapolating
30 area fractions of ls-g*(s) to infinite time. For comparison, G(s) is shown
when derived from ls-g*(s) distributions with lower resolution (30 s-values
from 2 to 11 S, dashed line), or from ls-g*(s) distributions calculated on the
basis of fewer scans (6, dotted line), and from conventional vHW analysis after
removing best-fit systematic noise components (fractions 2–29, squares). (C)
sapp values of the area fractions (circles) and linear extrapolation to infinite
time on a t�0.5 scale (lines).
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species with 9.58 (� 0.2) S. Similarly, a fit of dc/dt with the
Fujita–MacCosham–Philo function (Philo, 1997, 2000) con-
verges at a value of 5% of a faster sedimenting species (data
not shown). This may serve as a test for the sensitivity in the
detection of trace amounts of species.

Figure 4 shows differential sedimentation coefficient dis-
tributions that are uncorrected for the effects of diffusion,
which are g(s*) by dc/dt (solid line), and the ls-g*(s) dis-
tribution (circles). If applied to the same data subset, both
distributions are very similar, and both clearly reveal the
presence of the larger species. Figure 3, B and C, presents
the integral sedimentation coefficient distribution G(s) by
extrapolation of ls-g*(s) to infinite time (circles in Fig. 3, B
and C, calculated systematic noise shown as the dotted line
in Fig. 3 A) and by conventional analysis after subtraction of
systematic noise components (taken, for comparison only,
from the best fit with the discrete Lamm equation modeling)
(open squares in Fig. 3 B). It can be seen that the s-value of
the main species is at �6.7 S and that the highest fraction
indicates the presence of a faster component. However,
quantitation is difficult because of the relatively large noise
present in the highest boundary (or area) fractions. Finally,
the differential sedimentation coefficient distribution c(s),
with diffusion deconvoluted assuming an average frictional
ratio of 1.58, is shown as a dotted line in Fig. 4.

As in the first example, the increase in resolution in the
c(s) method is achieved in part because of the larger number
of files that can be included in the analysis, but mainly

through estimates of the extent of diffusion, which will be
examined in the following. Figure 5 shows the dependence
of the quality of fit obtained at different values for the
frictional ratio. It can be seen that the rms error has a clearly
defined minimum. With nonoptimal values, the boundary
shape is not well described, as illustrated by the diagonal
pattern in the residual bitmaps. It should be noted that this
occurs, to a similar extent, both at too low and too high
values of f/f0, and that the assumption of the average shape
to be spherical ( f/f0 � 1) is equally poor as the limit of
nondiffusing particles. (This limit of no diffusion is identi-
cal to the ls-g*(s) and g(s*) distribution). In contrast, the
residual bitmap shows very little systematic patterns at the
optimal value of 1.58. As a consequence, like in the first

FIGURE 4 Differential sedimentation-coefficient distributions from the
data shown in Fig. 3 A. Scans 110–139 were analyzed with the dc/dt-
method (solid line), and with the ls-g*(s) method using 100 s-values
between 4 and 12 S, and Tikhonov–Phillips regularization at a confidence
level of 0.68 (circles). The c(s) analysis (dotted line) was calculated on the
basis of scans 1–200, with an average frictional ratio of 1.58, 200 s-values
between 4 and 14 S, and maximum entropy regularization at a confidence
level of 0.95 (leading to an rms error of the fit of 0.00267 fringes). The
inset shows the same distributions at an expanded view for visualizing the
contaminating larger species.

FIGURE 5 Dependency of the quality of fit with the c(s) method on the
assumed average frictional ratio. Scans 1–200 of the immunoglobulin
experiment shown in Fig. 3 A were analyzed with 200 s-values from 4 to
14 S, p � 0.9, and using different values of f/f0. (The resulting distributions
are shown in Fig. 6.) The circles represent the rms error of the fits obtained
with different values of �r � f/f0 (�r � 1.02). A linear regression converges
at a value of �r � f/f0 � 1.58. For comparison, the rms error of the discrete
two-component model is shown as a horizontal dotted line. The corre-
sponding residual bitmaps at representative values of �r � f/f0 are shown
as insets, with residual values at each data point depicted as bright (posi-
tive) or dark (negative) pixel. Different radius values are represented by
pixel columns (meniscus left, bottom right), and scans are represented as
pixel rows (first scans top, last scans bottom). The diagonal structures
visible indicate large residuals propagating in time with the sedimentation
boundary.
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example, we can extract an average frictional ratio from
the data itself by virtue of the criterion of the quality of
fit. How the different values of f/f0 affect the calculated
c(s) distribution is shown in Fig. 6. Consistent with
previous observations (Schuck, 2000), the position of the
main peak remains essentially constant, whereas smaller
values of f/f0 lead to sharper peaks. However, the location
of the peak of the trace component was found to be
correlated with f/f0. If the diffusion is over corrected,
information on the contaminating faster-sedimenting spe-
cies is lost, and the smaller peak appears reduced in area
and at higher s-values (inset in Fig. 6). Alternatively, this
is accompanied by a sharp decrease in the quality of the
fit (Fig. 5), which helps in determining the s-value of the
faster species. In the inset of Fig. 6, the two solid lines
indicate two distributions that are indistinguishable on a
confidence level of 0.9, suggesting an error estimate in
the order of 0.3 S (best fit at 9.38 S).

Application to the study of preparations of the
herpes simplex capsid protein VP5

A more complex problem is the analysis of a protein with
extended, slow oligomerization. This is illustrated by ex-
periments with preparations of the herpes simplex capsid
protein VP5 (the biological implications will be discussed
elsewhere). Previous reports of sucrose gradient centrifuga-
tion suggested that the 149 kDa protein is monomeric (New-
comb et al., 1999). However, Fig. 7 A shows typical sedi-
mentation profiles with a sloping plateau region, indicating
the existence of large aggregates, together with two separate
major boundaries from discrete smaller species. Experi-
ments at different loading concentrations and rotor speeds
led to similar distributions, but with slightly different peak
areas, consistent with a slow and at least partially reversible
oligomerization.

With the data of Fig. 7 A, both versions of G(s) are not
applicable because of the absence of a solution plateau. No
consistent boundary fractions (or area fractions, respec-
tively) can be defined. Therefore, only the differential sed-
imentation coefficient distributions can be compared (Fig.
7, C and D). All distributions clearly show two maxima
corresponding to the two visible separating boundaries, with
the peaks in c(s) clearly being the best resolved. To avoid
broadening from large time-intervals, only a small subset of
absorbance scans can be used in the calculation of g(s*) by
dc/dt (solid line in Fig. 7 C), limiting the range of g*(s)
under conditions where the peaks are well resolved. Be-
cause the ls-g*(s) method does not require the approxima-
tion of dc/dt by �c/�t (Schuck and Rossmanith, 2000), a
much larger number of scans can be incorporated in the
analysis, which shows the presence of a high number of
larger aggregates with s-values up to 25 S, consistent with
the results from the c(s) analysis. However, although the
c(s) distribution may suggest separate peaks for the larger
species, a Monte Carlo statistical analysis reveals that the
apparent peaks at s-values larger than �15 S may be in-
duced by oscillations from the regularization procedure and
not significant within the given level of noise in the data.
However, this only refers to the exact position of the c(s)
peaks, but not the existence of material at large s-values,
which is highly significant.

Because of the formation of distinct boundaries, at least
for the two slower sedimenting species, the oligomerization
is slow on the time scale of the sedimentation, and it seems
possible to assign oligomeric states to the individual peaks.
This, however, requires additional information that we have
sought in sedimentation equilibrium and dynamic light-
scattering experiments. Global modeling of sedimentation
equilibrium data at multiple rotor speeds and concentrations
show that the majority of the protein is monomeric, but with
significant contributions of small oligomers (data not
shown; an example of sedimentation equilibrium profile
modeled with monomer, dimer, and tetramer is shown in the

FIGURE 6 Effect of the deconvolution of diffusion on the calculated
c(s) distributions for the immunoglobulin experiment. Distributions are
calculated for scans 1–200, at p � 0.9, and normalized at the main peak.
The differences of the quality of the fit are shown in Fig. 5. The limiting
case of no consideration of diffusion is illustrated by the apparent sedi-
mentation coefficient distribution ls-g*(s) (dashed line). This corresponds
to an infinite value of �r � f/f0. With finite values, the main peak of the c(s)
distribution decreases in width with decreasing �r � f/f0 at constant peak
position (solid lines, values indicated in graph). The best-fit value of �r �
f/f0 � 1.58 is shown as a bold line. c(s) curves at values smaller than 1.3
virtually superimpose the 1.3 curve (data not shown). The inset shows the
dependence of the location of the minor peak of the c(s) curves on the value
of �r � f/f0: 1.70 (dotted line), 1.58 (bold solid line), 1.55 (solid line), 1.30
(dotted line). With a number of data points �300,000, the curves for 1.58
and 1.55 are statistically indistinguishable on a 90% confidence limit,
suggesting an error of the peak position of �0.3 S. The different heights of
the peaks in the inset are a result of the normalization of the distribution at
the main peak.
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inset of Fig. 8 A). Although the self-association scheme
could not be identified, the data were consistent with an
isodesmic association with contaminations of incompetent

monomer. These results from sedimentation equilibrium
show that the main peak of the c(s) corresponds to the
monomer, and suggest that the second peak is a dimer (or
possibly a trimer). With a monomer sedimentation coeffi-
cient of 6.8 S, we can calculate a Stokes radius (RS) of 5.2
nm, and a frictional ratio of 1.5 (equivalent to a prolate
ellipsoid with 2a � 25.4 and 2b � 4.5 nm). This value was
applied in the c(s) analysis of Fig. 7 D for diffusional
deconvolution. Nonlinear regression of the weight-average
frictional f/f0 (with a starting value of 1.0) converged to
a best-fit value of 1.25, but with a final rms error of the
fit that was not statistically different from that obtained
with f/f0 � 1.5. Further, the c(s) curves calculated using

FIGURE 7 Sedimentation velocity experiment with preparations of the her-
pes simplex virus capsid protein VP5. The protein was prepared as described
in Newcomb et al. (1999) followed by dialysis against PBS. The absorbance
profiles were acquired at 230 nm, at a protein concentration of 0.16 mg/ml, a
rotor temperature of 8°C and a rotor speed 55,000 rpm. (A) Measured absor-
bance distributions (thin lines) and best-fit distribution from the Lamm equa-
tion model c(s) (dashed bold lines). For clarity, only every third scan is shown.
(B) Residuals of the fit, which has an rms error of 0.0123 OD230. (C) Apparent
sedimentation coefficient distributions g(s*) calculated by dc/dt (solid line)
and distributions ls-g*(s) (dashed line). (D) Best-fit c(s) sedimentation coef-
ficient distribution (solid line), allowing for systematic time-invariant noise.
The 68% confidence band from Monte Carlo simulations (1000 iterations,
calculated at slightly lower resolution in s) is shown as dashed and dotted lines.

FIGURE 8 (A) Sedimentation-equilibrium experiment with preparations of
VP5 at a loading concentration of 0.26 mg/ml, a rotor speed of 10,000 rpm and
a temperature of 4°C, with data acquired at a wavelength of 230 nm. The
calculated c(M) distribution obtained with maximum entropy regularization
(p � 0.9) is shown. The inset shows the raw data (circles) modeled (as part of
a global fit) with monomer, dimer, and tetramer (solid line), and the calculated
distributions for monomer (dotted line), dimer (dashed line), and tetramer
(dash-dotted line). (B) Distribution of Stokes radii as obtained upon analysis of
the autocorrelation function from dynamic light-scattering experiments. The
distribution of scattering intensity versus radius is shown as a solid line and the
estimated relative weight concentrations (based on a constant frictional ratio)
are shown as a dashed line.
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both values virtually superimpose (data not shown). This
confirms that a nonlinear regression of f/f0 leads to values
sufficient in precision for the deconvolution of diffusion
in the sedimentation coefficient distributions, although
the obtained average frictional ratio itself is not suitable
for the transformation of c(s) into precise molar mass
distributions c(M).

Interesting from the methodological point of view is a
transformation of the sedimentation equilibrium data into a
“model-free” molar mass distribution c(M), as suggested
earlier by Wiff and Gehatia (1976) (Fig. 8 A). This c(M)
transform does not take advantage of our knowledge of the
molar mass of the different oligomers, and it is mathemat-
ically equivalent to the continuous size-distribution analysis
of the sedimentation velocity data. It shows a main peak at
a molar mass �200 kDa, distinctly higher than the molar
mass of the monomer (149 kDa), clearly indicating the
presence of oligomeric species. Unfortunately, the data at
molar mass �600 kDa are not reliable in this transformation
because they are mainly governed by assumptions of sedi-
mentation in the region of optical artifacts close to the
bottom of the cell. In contrast to sedimentation velocity, the
c(M) transform does not have sufficient information to
resolve the different species. A similar situation is encoun-
tered in the interpretation of the dynamic light-scattering
data, which are commonly transformed to distributions of
Stokes radii, RS (Fig. 8 B). The scattering intensity has a
peak at �5 nm, but also extends to larger species. To better
compare the relative abundance of the different species, the
distribution was rescaled into relative weight concentrations
as shown by the dotted line in Fig. 8 B. From these data, it
appears that particles with RS � 8 nm are in very low
abundance, despite their significant contribution to the scat-
tered intensity. Like in the c(M) transform of the sedimen-
tation equilibrium data, no resolution of the oligomers is
achieved. Nevertheless, the virtual absence of species with
RS � 8 nm indicates that the 10.3-S peak seen in sedimen-
tation velocity may be a dimer (RS � 6.9 nm), and less
likely a trimer (RS � 10.3 nm) or even larger oligomers.
Similarly, the 13.2-S peak may be a trimer (RS � 8.3 nm)
but less likely a tetramer (RS � 10.6 nm) or even a pentamer
or a hexamer.

This example illustrates the current potential and lim-
itations of the sedimentation coefficient distributions
from complex oligomeric mixtures. It demonstrates that
complementary information from sedimentation equilib-
rium and dynamic light scattering can be used (and is
required) for the detailed interpretation. This is despite
the much lower resolution of these methods due to the
significantly more ill-conditioned analysis of exponen-
tials as compared to the Lamm equation solutions. Cor-
respondingly, the additional information from the c(s)
distribution on the number and approximate size of spe-
cies can be very important for the correct interpretation
of the sedimentation equilibrium data.

Analysis of continuous size distributions
of emulsions

As a last example, we analyzed a truly continuous size
distribution of lipid emulsion particles. General physical
characteristics of such particles and their use for the study of
apolipoproteins have been described by MacPhee et al.
(1977) and (M. A. Perugini, P. Schuck, G. J. Howlett,
submitted). In the current context, for illustrating the behav-
ior of the size distribution, we considered the data from a
mixture of two different elution fractions after sucrose-
gradient ultracentrifugation. Figure 9 A shows the experi-
mental flotation data exhibiting a bimodal boundary. For
both of the fractions, we have measured the average diffu-
sion coefficient by dynamic light scattering (with hydrody-
namic radii of 34 and 62 nm, respectively). The dashed lines
in Fig. 9 A are the calculated best-fit distributions based on
two discrete species with the predetermined diffusion coef-
ficients. The comparison with the boundary spread of the
experimental data shows that the distributions of the frac-
tions are broad, and that boundary broadening by diffusion
is relatively small, but cannot be neglected.

Here, the analysis with the c(s) method can be based on
the knowledge that the emulsion particles are spherical, i.e.,
that f/f0 � 1.0. (For simplicity, we have used the mean
partial specific volume of 1.055 ml/g of the components of
the emulsion mixture; a refinement taking into account the
full size-dependence of the partial-specific volume of the
particles is included in [M. A. Perugini, P. Schuck, G. J.
Howlett, submitted]). The resulting size distributions are
shown in Fig. 9 B. When using maximum entropy regular-
ization, we obtained very noisy c(s) distributions with sev-
eral artificial spikes (dotted line). This is consistent with
previous findings that use of the maximum entropy method
for broad continuous distributions can cause artificial oscil-
lations (Provencher, 1992). However, this difficulty can be
circumvented effectively by the use of Tikhonov–Phillips
regularization (solid line). Through the second derivative
minimization of this procedure, one can make use of the
broadness and smoothness of the distributions as prior
knowledge.

The ls-g*(s) method leads to a similar distribution, which
is only slightly broader because of the limited extent of
diffusion (Fig. 9 B, dashed line). Further artificial broaden-
ing would be expected from the approximation of dc/dt by
�c/�t in the g(s*) analysis, due to the large boundary
displacement between the absorbance scans (Schuck and
Rossmanith, 2000; Philo, 2000). (This results in a convolu-
tion of the g*(s) distribution with a hyperbola segment of
width �s � s�t/t [Schuck and Rossmanith, 2000]; when
restricting the analysis to scans 8–13, the broadening for a
single nondiffusing species would be �100 S for the first
peak, and �200 S for the second peak.) The vHW analysis
applied to a suitable data subset results in similar informa-
tion as ls-g*(s) or c(s) (Fig. 9 B, circles). However, less
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information on the faster floating particles is obtained, and
the two peaks from the two lipid emulsion fractions appear
not as well resolved as in the c(s) analysis.

DISCUSSION

In this paper, we have systematically explored and extended
different size-distribution analysis techniques for sedimen-

tation velocity, and compared their resolution, sensitivity,
and assumptions made. For small molecules, the resolution
depends centrally on the deconvolution of diffusional
broadening of the sedimentation boundary.

The vHW method is widely considered the most general
approach, because no a priori assumptions are necessary
that relate sedimentation to diffusion of the individual
boundary fractions, yet, by extrapolation to infinite time, in
theory, true sedimentation coefficient distributions are ob-
tained. Although it has been proven to be an invaluable
technique for a large class of problems, there are limitations
to this approach in practice. First, it is restricted to data that
have a well-defined solution plateau over the entire time
period analyzed, to allow the division of the sample in
equivalent boundary fractions (Demeler et al., 1997). Our
results show that this constraint to small time intervals can
be crucial for resolving closely spaced species (example 1),
whereas, for broad distributions, no suitable scans may be
found (Fig. 7 A). Another well-known limitation to date is
the requirement for absence of systematic noise, such as
superimposed to the fringe shift data of the interference
optics. However, we have shown that this can be overcome
by using the analogy of the boundaries formed by nondif-
fusing species (step functions) in the apparent sedimentation
coefficient distribution ls-g*(s) (Schuck and Rossmanith,
2000), and the boundary divisions in the vHW method (van
Holde and Weischet, 1978). This analogy leads to a natural
extension of the vHW method to interference optical data
(see below). Although the step functions of nondiffusing
species in ls-g*(s) lead to a slightly different boundary
division because the differential radial dilution is taken into
account, whereas this effect is neglected in the vHW bound-
ary division by separate reference to the plateau concentra-
tion for each scan (van Holde and Weischet, 1978), both
approaches obtain similar precision with model data derived
from numerical solutions of the Lamm equation (Eq. 2) and
from Faxén solutions (Eq. 10).

A maybe more fundamental limitation is illustrated in
results from Figs. 1 and 2, where vHW was not successful
in deconvoluting diffusion in the presence of heterogeneity.
Similar results can be obtained for other mixtures of rela-
tively small molecules under experimentally accessible con-
ditions. These findings are consistent with those reported
earlier by Demeler et al. (Demeler et al., 1997). A way for
improving the precision of vHW has been suggested in
theory by introduction of a higher-order term in the Faxén
solution of the Lamm equation, which leads to more com-
plex extrapolations (van Holde and Weischet, 1978). How-
ever, in the problem of Fig. 1, we found the conventional
Faxén approximation Eq. 10 not to be limiting (by using Eq.
10 for simulating model boundaries, data not shown). The
more fundamental reason for the limited resolution appears
to be that the linear extrapolation to infinite time is only
accurate when the boundary fraction represents a homoge-
neous population of species. For this case, the extrapolation

FIGURE 9 Flotation experiments with mixtures of fractionated lipid
emulsions. (A) Experimental absorbance distributions of a mixture of two
sucrose-gradient ultracentrifugation fractions, measured in intervals of
360 s (circles, every second scan and every second data point of sets 1–25
analyzed are shown). For experimental details, see M. A. Perugini, P.
Schuck, G. J. Howlett (submitted). To illustrate the extent of diffusion of
the particles, the dashed lines show the best-fit models with separate
species for each of the two fractions, using the diffusion coefficients as
predetermined by dynamic light scattering for each fraction. (B) Differen-
tial sedimentation coefficient distributions, calculated with a frictional ratio
of 1.0, a partial-specific volume of 1.055 ml/g, and with regularization at
p � 0.9. Shown are c(s) with Tikhonov–Phillips regularization (solid line)
and maximum entropy regularization (dotted line), and ls-g*(s) (dashed
line). The integral sedimentation coefficient distribution G(s) by the vHW
method, based on scans 7–14, is shown with solid circles, scaled to 0.003.
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has been shown to conform with the Lamm equation solu-
tion (van Holde and Weischet, 1978). For a mixture of two
species with different sedimentation coefficients, the right-
hand side of Eq. 11 will be composed of a sum of two error
functions, and at times when the two species still have
overlapping boundaries, both will be significant for the
intermediate fractions. As a consequence, the simple inver-
sion of the error function (i.e., Eq. 9 of van Holde and
Weischet, 1978) breaks down, and the extrapolated s-value
is intermediate to the s-values of two species. This can be
seen in Fig. 10, where the overlap of two species was
modulated by the different diffusion coefficients. This
shows that, only when the boundaries are essentially sepa-
rated (e.g., when the sum of the rms diffusion distance of the
species at a given time is much smaller than the difference
of the average sedimentation distance of the species), can
the species be separated, and G(s) approaches a piecewise
vertical line. Interestingly, the extreme upper and lower
boundary fractions approach homogeneity of the population

much earlier, such that no s-values are obtained outside the
range defined by the true sedimentation coefficients of the
species present. Therefore, the diffusional deconvolution of
vHW defines the range of s-values, but cannot resolve
different species unless they exhibit clearly separated sedi-
mentation boundaries. For very large particles with low
diffusion coefficients, this is easily fulfilled within the space
and time scales accessible in ultracentrifugation experi-
ments. For smaller macromolecules, however, the G(s)
curves at present appear to have mainly qualitative diagnos-
tic information on the heterogeneity.

The extrapolation of g*(s) to infinite time has been sug-
gested before by others (e.g., Gosting, 1952; Fujita, 1975;
Stafford, 1992b), but difficulties in the choice of the appro-
priate extrapolation procedure were described, including the
problem of extrapolations to negative distribution values
(Stafford, 1992b). One of the key differences between these
earlier (Stafford, 1992b) and the present approach is that we
performed the extrapolation of g*(s) not at constant s, but at
constant area (which is similar to the extrapolation of the
integral apparent sedimentation coefficient distribution to
infinite dilution described by Gralén and Lagermalm
(1952)). By analogy of the area fractions and boundary
divisions, one can use the theoretical argument in vHW,
which leads to t�1/2 as the extrapolation scale (van Holde
and Weischet, 1978). A second significant advantage of the
current extrapolation procedure compared to previous meth-
ods is the absence of artificial broadening in the ls-g*(s)
distributions (Schuck and Rossmanith, 2000). Figure 3 il-
lustrates that this method can work very well with experi-
mental data. Interestingly, this procedure also results in an
estimate of the systematic signal contributions of the inter-
ference data. However, we also observed a sensitivity to
outlier distributions ls-g*(s)i (data not shown). Empirically,
we found that, with interference data taken in rapid succes-
sion (such as in Fig. 3, which shows only every tenth scan),
at least 10–20 scans per ls-g*(s)i curve were required to
obtain stable results. Further, inclusion of too early scans
and allowing a too broad s-range in the calculation of
ls-g*(s)i were detrimental for the resulting G(s) extrapola-
tion. In part, these difficulties may be due to correlated
baseline parameters, which become more problematic when
analyzing smaller molecules. In some cases, we found it
helpful not to allow simultaneously for time-invariant and
radial-invariant noise. For fundamental reasons, however,
we believe that the extrapolation of ls-g*(s) to infinite time
cannot overcome the limitations described above for the
vHW procedure, in particular those for small molecules. It
is important to note that the extrapolation of boundary
fractions neglects the (nonlinear) details of the evolution of
the boundary position and the information on the radial
dilution of the boundary, which, by itself, can reveal the
weight-average sedimentation coefficient (Fujita, 1962).
This information is used, however, in the c(s) method.

FIGURE 10 Dependence of the resolution of two species by vHW on
boundary separation. Simulated sedimentation boundaries in the Faxén
approximation (Eq. 10) for two species with sedimentation coefficients 5
and 7 S, at a rotor speed of 50,000 rpm (no noise was added). The diffusion
coefficient for both species was the same, and varied in different simula-
tions from D � 1 � 10�7 cm2/s to 8 � 10�7 cm2/s in increments of 1 �
10�7 cm2/s. A set of suitable sedimentation profiles centered at 4000 s was
taken for vHW analysis, the upper inset shows these sedimentation bound-
aries for D � 3 � 10�7 cm2/s. The resulting sedimentation coefficient
distributions G(s) are superimposed (the data for D � 1 � 10�7 cm2/s are
shown as dotted line, those for D � 3 � 10�7 cm2/s as dashed line). For
the conditions used, the separation of ideal (nondiffusing) boundaries at
4000 s is 0.1 cm, compared to an rms diffusional spread of the boundaries
of 0.02 cm at D � 1 � 10�7 cm2/s, 0.034 cm at D � 3 � 10�7 cm2/s, and
0.056 cm at D � 8 � 10�7 cm2/s. The lower inset shows the result of a c(s)
analysis of simulated sedimentation data with the highest diffusion coef-
ficient in the presence of 1% noise (calculated with f/f0 � 1.0 and p � 0.9).
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Although c(s) is computationally the most complex, it has
the potential for highest resolution and sensitivity of the
methods described. It is also very stable, and, because of its
use of numerical solutions of the Lamm equation, it has no
constraints in the data set that can be considered for anal-
ysis, and is the most general with respect to size range for
the distribution. However, there are some key assumptions
made in this technique in the form of statistical and exper-
imental prior knowledge, which must be properly adjusted
to avoid poor or misleading results:

(1) The strategy uses hydrodynamic prior knowledge to
estimate the extent of diffusion for each species. The first
example shows how this can affect qualitatively the distri-
bution (compare dotted and solid lines in Fig. 1); the second
shows how it can influence quantitatively the resolution and
sensitivity (Fig. 6). Fortunately, there are many different
ways of entering the prior assumptions to match our knowl-
edge of the macromolecular system under study, ranging
from estimated similarity in the hydrodynamic shapes and
known diffusion coefficients, to knowledge of the molar
masses of the main species (Schuck, 2000; Schuck et al.,
2000). Very important in this respect is that c(s), like the
ls-g*(s) method, is a direct boundary model rather than a
data transformation. The quality of the fit is a very good
criterion for the validity of the prior assumptions, and we
have shown in the present paper that nonlinear regression
can be used to obtain estimates for the numerical value of
the parameters used for distribution analysis, in our case the
weight-average frictional ratio. The same strategy, ap-
plied to the related c(M) sedimentation velocity analysis
(Schuck, 2000), will reduce distortions in this molar mass
distribution that can be a result of poor estimates for the
frictional ratio. Other parameters that can be optimized in
the direct boundary models are the exact meniscus posi-
tion, and the sedimentation and diffusion coefficient of
an additional discrete species (such as unmatched buffer
salts, data not shown). It is particularly important to
obtain a good fit of the data when interpreting details of
the calculated distribution, such as minor peaks. Because
of the importance of the inspection of the quality of fit,
we have introduced a new tool to visualize the residuals
in the form of a bitmap, which allows distinction of
systematic deviations that evolve in parallel with the
boundary movement from instrumental imperfections,
which are predominantly stationary or periodic.

(2) Another, more subtle prior assumption is of a
statistical nature and enters the analysis in the regular-
ization algorithms. This technique allows the inversion of
otherwise highly ill-conditioned integral equations by
selecting the most parsimonious of the (in general infi-
nite) set of possible distribution that fit the data similarly
well. Consistent with results in many other problems of
this type in other fields, we found that the maximum
entropy principle, which is the default choice in Sedfit,
gives generally good results. This algorithm is based on

the assumption that the distribution with the least amount
of information (or largest informational entropy) is least
likely to contain artificial details (Livesey et al., 1987),
which would otherwise typically dominate the distribu-
tion. It is nonlocal, and therefore can tolerate isolated
peaks well, which is desirable when dealing with a sam-
ple that likely contains a discrete set of species. In
contrast, the selection of the distribution with the maxi-
mal entropy did not give good results with broad, truly
continuous distributions (Fig. 9), where it tends to pro-
duce artificial oscillations. Better results were obtained in
this case with the Tikhonov–Phillips regularization,
which, in our implementation, favors the distribution
with smallest second derivative. The underlying assump-
tion in this case is the absence of isolated peaks, which
fits well the expectation for smooth distributions, such as
those generated by random processes. As a consequence,
adjustment of this second prior assumption should be
unproblematic in most cases.

It could be argued that the option of introducing addi-
tional information in the analysis of the sedimentation
velocity profiles is a significant advantage rather than an
unfortunate byproduct of the method. This is obvious in
cases where such information is readily available in a
simple form, such as the known molar mass values in the
study of the conformational changes of the rotavirus
nonstructural protein NSP2 (Schuck et al., 2000), or the
known shape and size dependence of the partial specific
volume of the emulsion particles (M. A. Perugini, P.
Schuck, G. J. Howlett, submitted), or a known diffusion
coefficient (Schuck, 2000). Our studies on the herpes
simplex capsid protein VP5 in the present paper indicate
how additional data from sedimentation equilibrium and
dynamic light scattering can contribute important infor-
mation on the size distribution, although, by themselves,
these methods are of significantly lower resolution than
sedimentation velocity. The difficulties of arriving at a
consistent interpretation of the oligomeric distribution
illustrate that it would be highly desirable to incorporate
these data into a single global size-distribution analysis,
thus also incorporating the advantages of high resolution
obtained in sedimentation velocity into sedimentation
equilibrium or dynamic light-scattering modeling. Simi-
larly, this could substitute the current hydrodynamic prior
assumptions by the additional, complementary data. Im-
portantly, because the c(s) method is based on the least-
squares fit of an explicit boundary model, it has the
potential for such extension.

We acknowledge Dr. Jay Brown for providing the sample of herpes
simplex VP5. We are grateful to Dr. Borries Demeler for suggestions
regarding the implementation of the vHW method, and for his discussions
on the extrapolation of the least-squares g*(s) method. We also thank Dr.
John Philo for his suggestions.
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