1784

Biophysical Journal Volume 82 April 2002 1784-1790

Forces Required of Kinesin during Processive Transport

through Cytoplasm

G. Holzwarth, Keith Bonin, and David B. Hill

Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109 USA

ABSTRACT The purpose of this paper is to deduce whether the maximum force, steplike movement, and rate of ATP
consumption of kinesin, as measured in buffer, are sufficient for the task of fast transport of vesicles in cells. Our results
show that moving a 200-nm vesicle in viscoelastic COS7 cytoplasm, with the same steps as observed for kinesin-driven
beads in buffer, required a maximum force of 16 pN and work per step of 1 £ 0.7 ATP, if the drag force was assumed
to decrease to zero between steps. In buffer, kinesin can develop a force of 6-7 pN while consuming 1 ATP/step,
comparable to the required values. As an alternative to assuming that the force vanishes between steps, the measured
COS7 viscoelasticity was extrapolated to zero frequency by a numerical fit. The force required to move the bead then
exceeded 75 pN at all times and peaked briefly to 92 pN, well beyond the measured capabilities of a single kinesin in
buffer. The work per step increased to 7 = 5 ATP, greatly exceeding the energy available to a single motor.

INTRODUCTION

The motor protein kinesin transports organelles within
cells. Especially within neurons, where transport dis-
tances along axons can be large, it has long been conjec-
tured that the work of transport presents a significant
energy cost to the cell. Although considerable progress
has recently been made in understanding the force, ve-
locity, and energy coupling as kinesin drags a latex bead
along microtubules in solution, no quantitative connec-
tions have been made to the forces and work of fast
transport in cells.

A single kinesin molecule in buffer can generate a
steady force of no more than 7.5 pN while dragging an
attached bead up the potential well of an optical trap
(Svoboda and Block, 1994; Kojimaet al., 1997; Visscher
et al., 1999). When the constraining force is less than the
stall force, a single kinesin can drag the bead at an
average velocity of 800 nm/s in buffer. If the position of
the latex bead is measured more carefully, it is found that
kinesin moves along the microtubule in abrupt 8-nm
steps, with each step coupled to the hydrolysis of 1 ATP.
To achieve the observed time-averaged bead velocity of
800 nm/s, a single kinesin must carry out 100 such steps
per second. Each step takes a mere 50 wus in buffer
(Nishiyama et al., 2001). Thus, a kinesin motor and its
vesicle load in buffer are stationary 99.5% of the time,
but when they move, their instantaneous velocity briefly
exceeds 100,000 nm/s. Work is done only during the
brief intervals when the bead moves.
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In cells, the time-averaged velocity of fast axonal
transport is 800—4500 nm/s (Howard 2001). However,
kinesin molecules pulling a vesicle in a cell face a very
different load. In the buffer-filled trap, the load is almost
purely elastic, whereasin acell, the load is almost purely
viscous. The effect of viscous load has been explored in
gliding assays (Hunt et al., 1994). The mobility decreases
from 1.2 pm/s in buffer to 0.2—0.5 uwm/s in an increas-
ingly viscous mixture of dextran, Ficoll, and trypsin
inhibitor. The limiting average value of the force gener-
ated by kinesin in the viscous medium is 4.0-5.2 pN.
Because the position of the microtubule was determined
at intervals of 0.1-1.0 s, the individual steps were not
resolved.

Recently, high-resolution optical tracking of the Brown-
ian motion of intracellular particles has enabled researchers
to measure, for the first time, the complex viscoelastic
modulus G* (w) within aliving cell over a broad frequency
range (Yamada et a., 2000). The modulus was determined
for 0.5 = w = 30,000 rad/s in a kidney epithelia cell line,
COS7; the tracked particles were endogenous lipid droplets
with radius 130—250 nm. The method used to determine G*
from Brownian motion has been extensively tested (Mason
et a., 2000).

The purpose of this paper is to calculate the drag force
and work required to move a spherical vesicle within a cell
from the measurements of G* in COS7 and the measure-
ments of kinesin motion in an optical trap. It is assumed that
kinesin moves in cytoplasm with the same quick stepsasin
an optical trap.

FORCE AND WORK IN A NEWTONIAN FLUID

In a Newtonian fluid at low Reynolds number, the drag
force on a sphere moving with steady velocity is given by
the well-known Stokes' formula, F = 67ranv, where aisthe
radius of the sphere and 7 is the viscosity of the fluid. The
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FIGURE 1 Dynamicsof kinesin during asingle step in an optical trap, according to the experimental results of Nishiyamaet al. (2001). (A) x(t) according
to Eq. 2. (B) v(t). (C) The force that kinesin must exert on the bead for offset x, = 0, 40, and 80 nm from the center of the trap.

work done by an external force in moving the sphere a
distance L is then given by

L T T
sz Fdx:J det=6wnaf vadt, (1)
0 0 0

where T is the time required to travel distance L. For a
sphere with a = 100 nm moving at a constant 800 nm/sin
water (n = 0.001 Pas) the work per 8-nm displacement is
0.012 pN-nm. In vitro, kinesin consumes 1 ATP per step
(Schnitzer and Block, 1997; Coy et a., 1999). Because the
hydrolysis of 1 ATP releases approximately 100 pN-nm of
energy (Howard, 2001), only a negligible fraction of the
available energy is required to drag the sphere at constant
velocity in buffer. To understand the drag force and work
required to move organelles within cells, we need to modify
these results, because 7 in cellsis many orders of magnitude
larger than in water. In addition, cytoplasm is shear thinning
and viscoelastic.

TIME-DEPENDENT VELOCITY AND FORCE FOR
KINESIN IN AN OPTICAL TRAP

Latex spheres in buffer moved by single kinesin motors
advance with quick, 8-nm jumps rather than steadily (Svo-
boda et al., 1993; Coppin et a., 1996; Visscher et al., 1999;
Nishiyama et a., 2001). The individual steps follow the
relation

X(t) =% +L1L-e"), 2

with 7 = 47 usand L = 8.7 = 0.7 nm for cargo spheres of
radius a = 100 nm (Nishiyama et al., 2001). The velocity

corresponding to this displacement is
v(t) =0 for t<O0

v(t) = vee " = (LIne™" for t=0. (3)

Graphs of x(t) and v(t) from Egs. 2 and 3, and the corre-
sponding force for different values of x,, are shown in Fig.
1, A-C.

The peak velocity v, is 1.7 X 10° nm/s, about 200 times
the average speed; nevertheless, the Reynolds number is
less than 10~ °. In aNewtonian fluid, Wis proportional to v?
(Eg. 1), so quick steps are expected to require more energy
than a steady pull over the same distance and same time
interval. Indeed, for the same bead in water, the work done
against viscous drag by a quick step is 1.25 pN-nm. Thisis
about 100 times the work required to move the same sphere
with steady v, but still less than 2% of the energy available
from 1 ATP.

Nishiyama et al. (2001) observed that the 8-nm step
consists of two sequential steps of 4 nm, with time constants
of <25 and 40 us, in quick succession. However, the time
interval between the two substeps could not be determined
with certainty. We therefore choose to use in our modeling
their better-defined parameters for a single 8-nm step.

The calculation of the drag force requires values for Y(w),
the Fourier transform of the bead velocity v(t). To eliminate
the infinite acceleration of the sphereatt = 0in Eq. 3, we
replaced the leading edge discontinuity with alinear veloc-
ity ramp over 12.5 us, a time interval consistent with the
finite bandwidth of Yanagida s measurements. The result-
ant ¥(w) extends from o = 0to w = 4 X 10° s * (Fig. 2).
Viscoelastic data are needed over the same range.

VISCOELASTICITY OF CYTOPLASM

Stokes' Law and Eq. 1 are inappropriate for the analysis of
the drag force and work required to move vesicles in cells
because cytoplasm is shear-thinning and elastic, so energy
can be stored and recovered from the medium during each
step. For small stresses and strains, the time-dependent
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FIGURE 2 The read and imaginary parts of ¥(w) for the softened
Y anagida velocity function (Eq. Al).

stress o(t) is a convolution of the shear modulus G(t) with
the rate of strain &(t) (Tschoegl, 1989)

t de
o(t) = J G(t—u) du du. (@]
0

If the fluid is subjected to periodic strain excitation, ¢ =
g€, the stressis also periodic: o(t) = o(w) = G*(0)s(w),
where G*(w) is the complex modulus. It is customary to
split G* into real and imaginary parts: G* = G' + iG".

Alternatively, it is often useful to relate the stress to the
rate of strain rather than the strain, so that

o(w) = n*(0)&(w) = ion* (w)e(w), ®)

where n* (w) isthe complex viscosity (Tschoegl, 1989). The
complex viscosity can also be written in terms of a viscous
part n" and an elastic part ": n* = n' — in". Absorption of
energy occurs through G” and n'; storage of energy occurs
through G" and 7n".

It can be shown that n* (w) isthe Fourier transform of the
shear modulus (Tschoegl, 1989),

- G*(w) J” y
1*(0) = G(o) = = | G(he'dt. (6)

iw

This leads to the relations " = G"/w and 1" = G'/w.

Recent determinations of G’ and G” by laser tracking
microrheology are particularly promising for the current
problem because the frequency range of the measurements
is large, the probe is endogenous, and the probe is compa-
rablein sizeto many vesicles. Laser tracking microrheology
has been used to track spherical lipid storage granules of
radius 130—250 nm in a kidney epithelial cell line, COS7
(Yamada et al., 2000). Figure 3 shows the real and imagi-
nary parts of G* over the frequency range 0.5-3 x 10°
radiang/s in the lamellar region of the COS7 cells (Yamada
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FIGURE 3 The storage modulus G’ and loss modulus G” for COS7 cells
and for a buffer-filled optical trap. The COS7 data were measured in the
lamellar region of the cells, using laser tracking microrheology (Y amada et
a., 2000). The trap is characterized as a harmonic potential with spring
constant k = 0.071 dyne/cm (Nishiyama et a., 2001), which resultsin a
frequency-independent storage modulus. Buffer in the trap provides a
frequency-dependent absorption modulus with a slope of 1.0.

et al., 2000). The figure shows that G' and G" are compa-
rable in magnitude to one another, a common behavior in
concentrated high-polymer solutions. Although G' and G”
increase with w, the rate of increaseis sublinear, so that both
n" = G'lo and 1" = G'/w decrease markedly at high
frequencies. This shear-thinning aspect of G” reduces the
drag work for short, quick pulses; this effect on W is

opposite from that caused by the v? factor in Eq. 1.

EFFECTIVE VISCOELASTIC PARAMETERS FOR
AN OPTICAL TRAP

The load faced by kinesin in a buffer-filled optical trap
differs from the load in a viscoelastic medium. By evaluat-
ing the forces on a bead executing harmonic oscillationin a
water-filled trap with potential energy V = ¥2kx?, one finds
that the trap alone can be represented by G’ = —(k/67ra), G”
= 0. There is no way to include the nonoscillatory force
arising from offset of the oscillation midpoint fromx = 0in
this formulation.

The vaues of G’ for a 200-nm-diameter sphere in
Yanagida's optical trap (k = 0.071 dyne/cm (Nishiyama et
a., 2001)) and G” for water (n = 0.001 Pas) are shown in
Fig. 3 for comparison to the viscoelastic moduli for COS7
cells. Note that the absorptive modulus G” in the buffer is
many orders of magnitude smaller than the absorptive mod-
ulus of cytoplasm at low frequencies. Also, the elastic
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FIGURE 4 The forces required to drag a 100-
nm-radius sphere in COS7 cytoplasm, with case |
extrapolation of viscosity to w = 0. The sphereis
assumed to move with the softened Yanagida
function (Eqg. Al). (A) Elastic and viscous forces.
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modulus G’ for the trap is less than the elastic modulus of
COS7 cytoplasm for al @ = 10 rad/s.

FORCE IN A VISCOELASTIC FLUID

Starting from a very genera model for the linear stress—
strain relations in a viscoelastic fluid, Thomas and Walters
(1965) used L aplace transform methods to obtain an expres-
sion for the drag force on a sphere moving in a viscoel astic
medium. Their analysis was developed to describe the mo-
tions of a sphere falling under the influence of gravity, asin
afalling-ball viscometer. Hwang et a. (1969) reformul ated
the Thomas-Walters solution, using Fourier transform
methods, to analyze periodic motion in their magnetic rhe-
ometer, in which a spherical bead immersed in mucus is
driven by atime-dependent sinusoidal force. Their analysis
shows that F(w), the Fourier transform of F(t), is given by
a Stokes-like relation,

F(w) = 6maG(0)¥(w). @)

Because one frequently knows G* (w) rather than G(w), it is
helpful to substitute Eg. 6 into Eq. 7 to obtain

G*(w)

F(w) = 6man* (w)W(w) = 67a Ww). (8)

iw
Eq. 8 specifies how to obtain F(w) from measurable quan-
tities.

EVALUATION OF F(w) FOR A SPHERE
IN CYTOPLASM

G*(w) is known for 0.5 < @ < 30,000 rad/s for the cyto-
plasm of COS7 cells (Fig. 3). We assumed that kinesin
moves in cytoplasm with the same quick 8-nm steps as in
the optical trap, and that these steps repeat every 0.01 s. This
repetition time ensures that the average velocity is 8/0.01 =

B

800 nm/s, which is typical of fast axonal transport. The
force scales linearly with the radius a of the sphere being
dragged. We assume a = 100 nm, the radius in Yanagida's
experiments. Many endogenous vesicles are of comparable
size.

The specification of F(w = 0) also poses a problem
because G*(w)/w has not been measured a @ = 0. This
region is important because any net processive movement
requires anonzero ¥(w) at @ = 0. The problem is not unique
to the current situation, and methods for dealing with it are
known (Mason, 2000). If cytoplasm behaves like most
viscoelastic fluids, and lacks a yield point, the contribution
to W could be small compared to the contributions by other
frequencies.

For our purposes, we have calculated force versus time
curves under two conditions. Case | extrapolates G*/w to
o = 0from w, = 628 and w, = 1256 rad/s, the two smallest
nonzero values in our 4096-point w array. This givesn’ =
2.8 X 107 pN-¢nm? at » = 0. With this assumption, the
force on the sphere becomes negligible between pulses.
Case Il extrapolates measured values of G'/w and G'/w
from0.5 = w = 1.0rad/sto w = 0. Thisgivesn’ = 5.1 X
10~° pN-s/nm? at w = 0. Aswill be shown below, this adds
a “DC offset” to F(t) at all times during processive move-
ment of the sphere.

CALCULATION OF F(t)

The force F(t) was calculated by numerical Fourier inver-
sion of F(w). The eastic and viscous components of the
force and the total force are shown in Fig. 4 for the case in
which G"/w was extended to zero by method |. The viscous
component was aways positive and showed a roughly
Lorentzian shape (Fig. 4 A), with apeak of 18 pN and afull
width at half maximum of 70 ws, about twice the full width
at half maximum of the Y anagida velocity function (Fig. 1).

Biophysical Journal 82(4) 1784-1790
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The elastic component of the drag force was negative for
t < 0 and positive for t > 0, with peak magnitude roughly
20% of the absorptive peak. For a continuous series of such
velocity pulses, as in processive motion, the elastic energy
stored in the cytoplasm at the end of one step was returned
to the sphere at the beginning of the next pulse. The result-
ant total force was initially negative, rose briefly to 16 pN,
then dropped to zero after 5 ms (Fig. 4 B). The cycle then
repeated itself.

The force was also caculated by method 11, which as-
signs a much greater value to '(w = 0). The larger value
of n'(w = 0) caused aDC offset of 77 pN in the viscous part
of F(t) and increased the maximum total force to 93 pN
(Fig. 5).

In single-molecule studies of kinesin in buffer, in which
kinesin drags a sphere against the force of an optica trap,
kinesin becomes detached from the microtubule if the op-
tical force exceeds 6—7.5 pN (Svoboda and Block, 1994,
Meyhoefer and Howard, 1995; Kojima et a., 1997; Crevel
et a., 1999; Visscher et a., 1999).

WORK IN CYTOPLASM

If we assumed that the velocity of the sphere was the same
in buffer asin cytoplasm and that n'(w = 0) was small (case
1), the work of dragging a sphere 8 nm evaluated to W =
100 = 70 pN-nm. The stated uncertainty arises from uncer-
tainties in the measured values of G” in COS7 cdlls
(Yamada et a., 2000). An energy of 100 pN-nm is released
during the hydrolysis of one ATP under typical cellular
conditions (Howard, 2001). This suggests that kinesin could
function in the cell with the same pulse-like steps that it
exhibitsin buffer. However, when the larger case Il value of
7n'(w = 0) was used, the work increased to 700 = 500
pN-nm, or 7 = 5 ATPs.

In all of the above calculations, the time interval between
steps was fixed at 0.01 s. The results did not change signif-
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icantly if the time intervals obeyed the distribution expected
for a random process, as observed for single kinesin mole-
culesin atrap (Schnitzer and Block, 1997).

DISCUSSION

Our calculations show that the pulsed forces and velocity
that kinesin exhibits while pulling a bead up the potential
gradient of an optical trap are similar in magnitude to the
forces required to move a small spherica vesicle with
similar pulse-like velocity in cytoplasm, if F goes to zero
between pulses (case 1). Although the maximum force re-
quired in the case | extrapolation scenario for n'(0) is 16 pN
in cytoplasm, 2-3 times the maximum steady force that
kinesin can exert in a trap, this force is needed only 1% of
thetime in cytoplasm. In case |1, the force required exceeds
the maximum available force generated by 1 kinesin in
buffer by a factor of 10 at al times. More than one kinesin
would thus be required to move 200-nm vesicles in cells if
case |1 is appropriate.

The chemical energy available from the hydrolysis of 1
ATP in atypical cellular environment is given by (Alberty
and Goldberg, 1992; Howard, 2001)

[ADP][P]
AG = _AGO + KT |HW

= —101 pN-nm.

Because AG, depends on pH, magnesium concentration,
and temperature, and the concentrations of ADP, P, and
ATP can vary from cell to cell, AG is uncertain by at least
+20% for vertebrate cells. It is encouraging that, at least for
the case | extrapolation of cytoplasmic viscosity, the work
required to move a sphere one step, 100 = 70 pN-nm, was
comparable to the available chemical energy. For larger
spheres, the work increases linearly with radius.
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There are a number of assumptions that increase the
uncertainty of the calculated values of F(t) and W

1. The cargo particle was assumed to be a rigid 100-nm-
radius sphere, but in cells, vesicles are deformable and
have a range of radii and shapes. For example, in hip-
pocampal neurons, cargo is packaged in deformable cyl-
inders of length 10 wm and diameter <0.5 um (Kaether
et a., 2000).

2. During single kinesin experiments in an optical trap, and
in our calculations, the microtubules are stationary.
However, microtubules in cells may move or deform
when subjected to forces by bound kinesin.

3. The values of G' and G” vary among different types of
cells, and within different regions or times within the
same cell (Sato et al., 1984; Valberg and Feldman, 1987,
Bausch et al., 1999; Yamada et a., 2000). Moreover,
optical and electron microscopy show that actin fibers
and microtubules are not randomly oriented, so G’ and
G” should really be tensors rather than scalars. Move-
ment parallel to the fibers will take less force than
perpendicular travel. Similarly, the existence of a nearby
stationary cell wall will increase the drag force (Jones et
al., 1994).

4. It was assumed that only one kinesin moves the model
vesicle.

Experiments are needed to reduce these uncertainties and
to understand how motor proteins couple their interna
machinery to intracellular vesicle transport. Optical micro-
scopic methods using a quad cell have the spatial and
temporal resolution to determine whether kinesin-driven
vesicles move with the same quick steps as beads in buffer.
Fast-tracking of green fluorescent protein-labeled organelles
(Kaether et al., 2000) in cells with a microscope and line-
scan camera may also be able to reveal the presence of
individual transport steps. The load-dependence of kinesin
stepping could be studied microscopically in an optical trap
if the buffer normally surrounding the trapped bead were
replaced by a viscoelastic polymer solution. It may be
possible to determine the drag forces on vesicles in cells
with optical or magnetic tweezers. Motion of microtubules
under load might be observable if the microtubules are
fluorescently tagged or are attached to an atomic force
microscope tip. Finaly, it may be feasible to count the
number of kinesin molecules pulling a vesicle by labeling
the kinesin with green fluorescent protein.

Our model can provide additional insight into the effect
of slowing down individual steps. This could occur because
of load dependence within the kinesin motor or because of
elasticity within the kinesin molecule (Svoboda and Block,
1994; Kojimaet al., 1997). We modeled the possible overall
effect of this on F(t) and W by increasing al time constants
in the assumed velocity of the sphere by a factor of 10,
while keeping step size, step rate, and viscoelasticity un-
changed. Using case | extrapolation to = 0, the maximum
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force on the bead decreased from 16 pN (Fig. 4 B) to 3 pN,
about half the maximum force kinesin produces while work-
ing against the constant force of an optical trap. The drag
work generated by the slower steps also decreased dramat-
ically, from 100 to 20 pN-nm per step. If the viscosity were
extrapolated to w = 0 by the case I method, lengthening the
velocity pulse had only minor effects on the maximum
force, and the work decreased from 700 to 600 pN-nm.

It has been shown experimentally that the average veloc-
ity of kinesin decreases approximately linearly with the
magnitude of opposing force from an optical trap (Svoboda
and Block, 1994; Coppin et al., 1997; Kojima et al., 1997,
Visscher et a., 1999). These observations have been mod-
eled by introducing force-dependent rate constants into a
Michaelis-Menten description of the rate of ATP utilization
(Schnitzer et & ., 2000). The breaking of noncovalent bonds,
such as those between kinesin and microtubules, probably
depends critically on how fast the bond-breaking force is
applied (Evans, 2001). Bonds under faster loading with-
stand larger forces but have shorter lifetimes.

The present study quantifies the drag force and work per
step for intracellular transport by kinesin, assuming kinesin
behaves within cells as it does within an optica trap. A
single kinesin motor might be unable to move 200-nm
vesicles through COS7 cytoplasm if it moves with the same
quick jumps as in an optical trap. However, if each step
occurred more slowly, the measured maximum force and
energy from a single kinesin could be adequate.

APPENDIX

F(w) was defined at 4096 points evenly spaced over theinterval 0 = o <
2aN/T, with T = 0.01 s. Doubling the number of data~ points did not
significantly affect the results. F(t) was computed from F(w) by discrete

Fourier inversion using commercial software. The softened Y anagida ve-
locity function is

v=0 for t<—-125%X10°%s

v =8 X 10%(t + 12.5 X 107
for —125%X10°<t=0s
T=47 X 10 s
(Al)

v=ve " for t=0, with

The value of v, was chosen so that the distance traveled in one pulse
remained 8 nm.

A comparison of Figs. 2 and 3 shows that the real part of ¥(w) extends
from 0 to 3 X 10° rad/s but G* data are available only for 0.5-3 x 10*
rad/s. To deal with the lack of experimental values for G* at high frequen-
cies, G’ and G" were linearly extrapolated on alog-log scale to 3 X 10°
rad/s.

D.B.H. isgrateful for the support of a Graduate Dean’ s Fellowship at Wake
Forest University.
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