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ABSTRACT Hidden Markov models have recently been used to model single ion channel currents as recorded with the
patch clamp technique from cell membranes. The estimation of hidden Markov models parameters using the forward-
backward and Baum-Welch algorithms can be performed at signal to noise ratios that are too low for conventional single
channel kinetic analysis; however, the application of these algorithms relies on the assumptions that the background noise
be white and that the underlying state transitions occur at discrete times. To address these issues, we present an “H-noise”
algorithm that accounts for correlated background noise and the randomness of sampling relative to transitions. We also
discuss three issues that arise in the practical application of the algorithm in analyzing single channel data. First, we describe
a digital inverse filter that removes the effects of the analog antialiasing filter and yields a sharp frequency roll-off. This
enhances the performance while reducing the computational intensity of the algorithm. Second, the data may be contami-
nated with baseline drifts or deterministic interferences such as 60-Hz pickup. We propose an extension of previous results
to consider baseline drift. Finally, we describe the extension of the algorithm to multiple data sets.

INTRODUCTION

Recordings of single ion-channel currents provide a wealth
of information about the activity of single allosteric protein
molecules. The open-closed behavior of ion channels has
generally been described in terms of continuous-time
Markov models (Colquhoun and Hawkes, 1995) in which
model states are taken to correspond to distinct states of
protein conformation or ligand binding. Finding the best
Markov model description of a channel’s behavior is there-
fore taken to be equivalent to a complete elucidation of the
kinetic behavior of the channel protein with the Markov
transition probabilities corresponding directly to rate con-
stants of ligand binding and unbinding and of conforma-
tional changes.

Finding the best Markov model involves two steps. First,
the general topology of the model must be chosen, speci-
fying the number of states and the connectivity that specify
the allowable transitions among states. The second step is
the optimization of Markov model parameters. Given a
Markov model � with N states, the parameters are the
current levels �i corresponding to each state qi, i � 1, . . . ,
N, the initial state probability �i, and the transition rates
contained in an (N � N) matrix Q. Maximum-likelihood
techniques are typically used to optimize these parameters,
and the likelihood-ratio test is commonly used to identify
the best model topologies.

Several methods have been used to compute likelihoods
and estimate model parameters from single-channel data.
Most commonly, threshold detection is used to identify
channel-open and channel-closed intervals; the distributions
of these dwell times are then fitted to the predictions of
Markov models by maximum-likelihood techniques
(Magleby and Weiss, 1990; Colquhoun and Sigworth,
1995). Alternatively, the likelihoods of models are com-
puted on the basis of the entire sequence of open and closed
dwell times (Horn and Lange, 1983; Ball and Sansom,
1989; Qin et al., 1997). An improved approach to the
identification of open and closed intervals has been intro-
duced through the use of the Viterbi algorithm (Fredkin and
Rice, 1992a). Discussed in the present paper is an approach
that does not require the identification of open and closed
intervals at all but makes use of the raw single-channel
recording in the form of sampled time course of membrane
current. This application of signal processing based on
hidden Markov models (HMMs) has already been demon-
strated to be particularly useful in characterizing channel
behavior when the signal-to-noise ratios are low and when
multiple subconductance levels exist (Chung et al., 1990;
Fredkin and Rice, 1992b; Chung and Gage, 1998). An
excellent overview of the HMM approach to single channel
analysis is given by Qin et al. (2000a,b). Various imple-
mentations of the HMM algorithms have been applied to
experimental single channel data (Becker et al., 1994; Mil-
burn et al., 1995; Michalek et al., 1999; Farokhi et al.,
2000). The algorithms described here have been used in the
recent studies by Sunderman and Zagotta (1999a,b), Wang
et al. (2000), and Zheng et al. (2001).

In the HMM framework, the discrete-time data Y(t) are
assumed to be the sum of Gaussian noise n(t) and the
“noiseless” channel current as the channel makes transitions
from one state to another. The Markov model � underlying
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the channel activity is considered to be “hidden” because
the channel state at any given time is not directly observ-
able. The channel state may be hidden due to the aggregated
nature of the HMM (several states may have the same
conductance level) and is also hidden by the noise. To
mirror the discrete-time nature of the sampled recording, a
discrete-time HMM replaces the usual continuous-time
Markov model. The parameters of the discrete-time model
are the transition probabilities, contained in a (N � N)
matrix A; the current levels �i corresponding to each state
qi, i � 1, . . . , N; and the initial state probability �i.

The discrete-time transition probability matrix A � {aij, i,
j � 1, . . . , N} is related to the matrix of rate constants Q of
the usual, continuous Markov model by

A � eQ�t, (1)

in which �t is the sampling interval; thus aij is the proba-
bility of making a transition from state qi to state qj during
one sample interval. The objective of our analysis is to
estimate the parameters of the discrete HMM � � {A, �, �}
from the observed discrete-time data Y(t) while realistically
modeling the signal and noise.

Likelihood is defined as the probability of observing a
particular data set given a model. The evaluation of the
likelihood of HMMs has been made practical by an algo-
rithm called the forward-backward procedure. Optimization
of the parameters of the model is aided by the Baum-Welch
procedure, which through iteration causes a maximum of
the likelihood to be approached. These algorithms have
been well described in the speech-recognition literature
(Baum et al., 1970; Liporace, 1982; Rabiner, 1989).

The applicability of the HMM algorithms to patch-clamp
recordings have been limited by several problems (Qin et
al., 2000b). First, the traditional forward-backward proce-
dure is highly efficient but is applicable only if the additive
noise is white. In practice, the experimental background
noise is correlated from sample to sample and has a spectral
density that increases with frequency. Second, the data are
usually low-pass filtered by an analog anti-aliasing filter
such as a Bessel filter before digitization; this produces
intermediate values for the sampled signal in the vicinity of
state transitions.

Qin et al. (2000b) have addressed these issues by mod-
eling the background noise by an autoregressive (AR) pro-
cess, so that the data can be reduced to a higher-order
(metastate) Markov process with white noise. Their model
allows for different noise models for states of different
conductances. Under the strong assumption that the noise in
each metastate depends only on the current state, the ana-
lytical derivatives of the likelihood function with respect to
all unknown model parameters are derived. This optimiza-
tion approach has the advantage that it optimizes for the rate
constants directly and thus easily allows constraints on rate
constants such as detailed balance.

Our approach in analyzing the single channel data differs
in several respects. First, we follow the traditional Baum-
Welch approach to estimate the Markov model parameters.
The algorithm is slow at low signal to noise ratios (SNR)
but has the advantage that it allows a large number of
parameters to be reestimated simultaneously, including for
example vertices of a fit to a drifting baseline. Our focus is
on the estimation of the transition probability matrix A,
which can be considered to be equivalent to estimating the
rate matrix Q when the sampling interval is small compared
with any of the rate constants in Q. Second, we also model
the noise as an AR process but make use of a more general
description of state-dependent noise. Last, we model the
randomness of sampling relative to transitions in the con-
tinuous time Markov process by approximating it by an
additive noise source called the “H-noise.”

In this paper we also address three issues that arise in the
practical application of the algorithm in analyzing single
channel data. First, the antialiasing filter used during data
acquisition typically has a gradual roll-off in the transition
region of the frequency response. However, for better per-
formance and to reduce computational complexity of the
algorithms, we prefer the use of an antialiasing filter with a
sharp roll-off in the frequency domain. Therefore, we de-
scribe the implementation of an inverse filter to remove the
effects of the gradual roll-off filter and in effect replace it
with a digital filter with a sharp roll-off in the transition
region. Second, the data may be contaminated with baseline
drifts or deterministic interferences (such as 60-Hz pickup).
We propose an extension of the results presented in Chung
et al. (1990) to model and compensate for baseline drift.
Finally, the traditional HMM algorithms focus on parameter
estimation from a single data set. Often, in practice, multiple
sets of data are recorded under the same experimental
conditions. We describe the extension of the algorithm to
multiple observation sequences.

This paper is organized as follows. The second section
briefly describes the computation of likelihood and estima-
tion of HMM parameters through use of the standard algo-
rithms. The third section presents the noise model and
highlights the main features of the H-noise algorithm that
model the noise correlation in successive filtered, sampled
data points. The fourth section describes the inverse filter
and estimation of baseline from the measured single channel
data. We conclude with a discussion of the approach in the
fifth section.

COMPUTATION OF THE LIKELIHOOD AND ITS
MAXIMIZATION

The likelihood of the hidden Markov model � is defined as
the probability of the observed data samples Y(t) � {yt, t �
1, . . . , T} given the model,

L � P�y1, y2, . . . , yT���. (2)
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The brute-force numerical computation of the likelihood is
intensive as illustrated in the following example. The top
trace in Fig. 1 shows noisy simulated data generated from a
two-state Markov model and some of the several possible
state sequences Si that could have given rise to the observed
data. The likelihood L of the HMM can be calculated by
summing the probability of the data and the state sequence
over all possible state sequences,

L � P�data�model�

� �
i

P�data, Si�model�

� �
i

P�data�Si�P�Si�model� (3)

In general, let st denote the state of the HMM at time t, and
let S � {s1, s2, . . . , sT} denote a possible state sequence.
The probability of this state sequence given the model � can
be computed in terms of the initial state probability � and
the transition probabilities between states ast�1st

as,

P�S��� � �s1 �
t�2

T

ast�1st. (4)

Given a state sequence, the probability of the observed data
is obtained as,

P�y1, y2, . . . , yT�S� � �
t�1

T

P�yt�st� (5)

in which P(yt�st) is the probability of obtaining the obser-
vation yt given that the channel is in state st. This probability
is considered to be independent of observations at previous

times; this is the uncorrelated or “white” noise assumption.
Let us define a term called the emission probability bi(y) as
the probability of observing datum y when channel is in
state qi,

bi�y��y � P�y�qi�, (6)

in which �y represents the resolution of measurement y.
Assuming that �y is a constant, we can without loss of
generality set �y � 1. In the case of Gaussian white noise
with variance �2 the emission probability is a Gaussian
function centered on the mean current �i,

bi�y� �
1

�2��
exp���y � �i�

2

2�2 � . (7)

and the probability of the observations given the state se-
quence (Eq. 5) is seen to be the product of T Gaussians.
Finally, the likelihood is obtained by summing the product
of the probabilities specified in Eqs. 4 and 5 over all
possible state sequences,

L � �
all S

P�y1, y2, . . . , yT�S�P�S���, (8)

The evaluation of Eq. 8 is very computationally expensive,
involving on the order of (2TNT) calculations.

Forward and backward variables

The forward procedure (Rabiner, 1989; Qin et al., 2000a)
offers a vast improvement and can account for both white
and correlated noise. The issue of correlated noise is ad-
dressed by introduction of the concept of a vector or met-
astate-HMM (Fredkin and Rice, 1992; Venkataramanan et
al., 1998). If st is the state of the HMM at time t, then each
k-tuple of successive states (st st�1 . . . st�k�1) forms a
“metastate.” A metastate at time t is denoted by the notation
I � (qi0

qi1
. . . qik�1

) in which qij
is the state of the HMM at

time t � j, j � 0, . . . , k � 1 and ij � 1, . . . , N.
The forward variable at time t in metastate I is defined as

the probability of the first t data measurements and being in
metastate I at time t given that the model is �, or

�t�i0, i1, . . . , ik�1� � P�y1, y2, . . . , yt, I���. (9)

The forward variable at any time instant in any state can be
computed efficiently in terms of the forward variable at the
previous time instant and the emission probability. The
forward variables at the final time instant can be used to
compute the likelihood L of the HMM,

L � �
I

�T�I� (10)

In addition, the forward variable together with the backward
variable defined below can be used in the estimation of the
HMM parameters using the Baum-Welch procedure.

Let Yt be the vector of k samples ending at time t. The
backward variable at time instant t in metastate I is defined
as the probability of the last T � t data points given that the

FIGURE 1 Illustration of the likelihood calculation. The top trace shows
simulated data from a two-state Markov model. The underlying state
sequence is shown in dashed lines. S1, S2, S3, and S4 are four of the many
possible state sequences that could have given rise to the observed data.
The likelihood L of the HMM is obtained by summing the joint probability
of the data and the state sequence over all possible state sequences.
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model � is in metastate I at time t and (k � 1) previous data
samples, or

	t�i0, i1, . . . , ik�1� � P�yt�1, yt�2, . . . , yT�Yt, I, ��. (11)

Similar to the forward variable, it can be computed at each
time step in terms of the backward variable at the next time
step and the emission probability associated with the met-
astate at that time.

Reestimation

The Baum-Welch reestimation algorithm uses the forward
and backward variables to update the model parameters. Let

t(I) be the probability of being in metastate I at time t given
all of the observed data and the model �,


t�I� � P�I�y1, y2, . . . , yT, ��. (12)

It can be computed from the forward and backward vari-
ables as,


t�I� �
�t�I�	t�I�

L
, t � 1, . . . , T. (13)

Using the 
 variables, new estimates can be made of the
various model parameters. Let M0 be the set of metastates
where the state at time t is qi0

and state at time t � 1 is qi1
.

Let M1 be the set of metastates where the state at time t �
1 is qi1

. The reestimated transition probability from state qi1

to qi0
can be understood as the ratio of the expected number

of transitions from state qi1
to qi0

divided by the number of
transitions from state qi1

,

âi1i0 �
�t�1

T �I�M0

t�I�

�t�1
T �I�M1


t�I�
. (14)

The reestimated current levels can similarly be obtained by
solving a linear system of equations (Venkataramanan et al.,
1998). The forward-backward procedure followed by the
Baum-Welch reestimation formulae is a special case of the
expectation maximization algorithm (Baum et al., 1970).
Carried out iteratively, it is guaranteed to converge to a local
maximum of the likelihood function. The algorithm con-
verges slowly at low SNRs. In practical problems, the
algorithm takes on the order of a hundred iterations to
converge to the local maximum (Qin et al., 2000b; Zheng et
al., 2001).

It is also possible to reconstruct the original, noiseless
signal from the measured data in a number of ways. This
reconstructed signal is model-dependent and is therefore not
unbiased; however it gives the user useful feedback about
the performance of the algorithm. In one approach, the
Viterbi algorithm can be used to provide the most probable
state sequence underlying the measured data (Rabiner,
1989). Alternatively, the cumulative mean or maximum a
posteriori probability estimate of the signal can also be
easily reconstructed from the a posteriori probabilities

(Chung et al., 1990). The cumulative mean estimate gives
the expectation value of the channel current based on the
probabilities 
 at each time point. This estimate is given by

x̂t � �
I

�i0
t�I� (15)

in which �i0
is the channel current in the final state of

metastate I.

NOISE MODEL AND H-NOISE

The applicability of hidden Markov models to analyze sin-
gle channel recordings is limited by two problems. First, the
experimental background noise is correlated and has a spec-
tral density that increases with frequency. Second, to re-
move high-frequency noise components, the data are nec-
essarily filtered before sampling. The problem with filtering
is illustrated with the following example. The top trace in
Fig. 2 is the output of a continuous-time Markov model with
two states—an open state and a closed state. The second
trace is the signal after passing through an antialiasing filter.
The last trace shows the filtered data after sampling. As seen
in the last trace, when a channel closes from an open
conductance level, there might be a sample taken on the
falling edge of the filtered signal. Thus when the channel
closes from an open state, the data will consist of a sequence
of open current levels, one sample at a random intermediate
level and a sequence of samples at the closed level. The
problem is to distinguish the presence of the intermediate
sample from a two-state channel from the case of a channel
passing through a sublevel at say, one-half amplitude. We
describe below the “H-noise” algorithm, which addresses
the issues of filtering, correlated background noise, and the
randomness of sampling relative to transitions.

Noise model for correlated background noise

The background current noise in patch-clamp recordings
has a spectral density whose dependence on frequency f is

FIGURE 2 Effects of filtering and sampling continuous-time data. (A)
Example of continuous-time data from a two-state HMM. (B) Data after
passing through an antialiasing filter. (C) Filtered, sampled data. The
impulse response of the filter that was used is given by Eq. 23 with the
parameters �f � 1 and fc/fs � 0.4.
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ideally described by S(f) � k0 � k1f2 over the experimen-
tally-accessible frequency range from DC to �100 kHz
(Levis and Rae, 1993; Sigworth, 1995). The white noise
component k0 is due to leakage conductances and shot noise
associated with the patch-clamp amplifier. The f2-noise term
is due to the amplifier voltage noise, which is imposed on
the input capacitance; the result is the differential of a white
noise process.

In one approach to handle the signal with correlated
noise, the observed data Y(t) are passed through a filter that
removes the correlation in the noise. The correlated noise
can thus be whitened by convolving it with a finite vector of
filter coefficients comprising a so-called moving average
filter. This is equivalent to modeling the original correlated
noise as the output of the inverse of a moving average filter
(an AR filter) driven by white Gaussian noise. Because the
noise correlation may be unknown, the coefficients of the

AR filter are also considered to be unknown. The H-noise
algorithm provides a framework for estimation of the AR
coefficients from the observed data.

The simulation shown in Fig. 3 compares the perfor-
mance of the traditional forward-backward and Baum-
Welch algorithms on data with additive white and correlated
noise. The traditional algorithms assume that the back-
ground noise is white. In this case, the number of elements
k in a metastate can be reduced to 1, the metastate keeps
track of only the current state, and Eqs. 9 and 11 reduce to
the standard definition of the forward and backward vari-
ables (Rabiner, 1989). Noiseless data were generated from a
two-state model consisting of one closed state and one open
state,

C-|0
aCO

aOC

O (I)

FIGURE 3 HMM likelihood estimation with white and colored noise. (A) Displayed are the first 1024 of the 20,000 data points of noiseless signal
simulated from a two-state Markov model consisting of one closed state (C) and an open state (O). The values of the transition probabilities (aCO, aOC)
were chosen to be (0.3, 0.1). The closed state had a current level of 0 and the open state a current level of 1. (B) White Gaussian noise with �w � 1.0 was
added to the noiseless signal. Displayed are the first 1024 points of the data. (C) Log-likelihood contours obtained as the current levels, the initial state
probability vector, and the noise variance were reestimated while fixing the two transition probabilities (aCO, aOC) at various values. The cross represents
the true values of (aCO, aOC). The dotted contour represents points at two natural log units below the peak. The arrows show the sequence of reestimated
values of the parameters obtained with iteration. The true values of (aCO, aOC) are seen to be close to this contour. (D) Colored noise was added to the signal
by passing unity-variance, white noise w(t) through a filter of the form,

ct � m0wt � m1wt�1.

with [m0 m1] � [0.8 � 0.6]. Displayed are 1024 points of the 20,000 points of simulated data. (E) Displayed are the log-likelihood contours obtained by
traditional HMM analysis. The maximum value of (aCO, aOC) is near (0.9, 0.9) and is very far from the true values indicated by the cross.
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with transition probabilities aCO � 0.3 and aOC � 0.1 and unit
current amplitude. In the first simulation, the data Y(t) were
simulated by adding zero-mean, white, Gaussian noise n(t)
with variance �w

2 � 1.0 to the noiseless signal. In the second
simulation, the data Y(t) were simulated by adding correlated,
Gaussian noise generated by passing white, Gaussian noise
through a finite impulse response filter. These data were ana-
lyzed with a two-state HMM. The log-likelihood contour plot
for data with white and correlated noise is shown in Fig. 3 (C
and E), respectively. It can be seen in Fig. 3 C that the true
values of (aCO, aOC) � (0.3, 0.1) are close to the dotted
two-unit log-likelihood contour. This indicates that the tradi-
tional forward-backward and Baum-Welch algorithm performs
well when applied to data with additive white noise. On the
other hand, for data with correlated noise, it is clear that the
maximum value of (aCO, aOC) is near (0.9, 0.9) and is very far
from the true values of (aCO, aOC). Thus, the traditional for-
ward-backward and Baum-Welch algorithm perform poorly
and yield biased estimates of the parameters when the noise is
correlated.

H-noise algorithm

This algorithm considers the effects of the antialiasing filter
before digitization of the data as well as correlation in the
background noise, making use of the metastate framework.
The randomness in the time of transition between states of
the underlying continuous time Markov process is consid-
ered to be reflected as a randomness in the current level at
each time instant at the output of the antialiasing filter. This
randomness in the current level of a state at each time
instant is modeled as a fictitious, nonstationary noise source
called H-noise (Venkataramanan et al., 2000).

Shown in Fig. 4 A are three of the infinitely many
possible realizations of making a transition from the closed
state to the open state and back to the closed state. The
response of the antialiasing filter to these three realizations
of state transitions is shown in Fig. 4 B. Correspondingly,
the current amplitude at each sampling time instant can be
thought of as a random variable. As shown in Fig. 4 C, the
random current amplitude at each time instant in the met-
astate can be regarded as the sum of two components—a
mean current amplitude and an additional fictitious noise
called the H-noise. The H-noise is nonstationary because its
statistics are dependent on the underlying metastate; how-
ever, these statistics are easily computed from the known
step response H of the antialiasing filter. Thus, the total
noise in each sample has two components—the correlated
background noise and the H noise. In the development of
the algorithm, it is assumed that the data are sampled
sufficiently quickly such that at most one transition takes
place in a sampling interval. The H-noise is also assumed to
be Gaussian, which is a reasonable approximation under
poor signal to noise ratios.

Correlated emission probability

The H-noise can be easily incorporated into the metastate
HMM framework through defining the emission probability
function to consider the noise correlation in successive data
samples. This emission probability is then used in the com-
putation of the forward and backward variables.

Recalling that Yt is the vector of k successive data sam-
ples ending at time t, let the (k � 1) data samples ending at
time t � 1 be denoted by Y� t�1. The correlated emission
probability can be denoted by P(yt�Y� t�1, I) and is the con-
ditional probability of yt given the metastate I at time t and
the (k � 1) previous data samples. It is a Gaussian function
of the present sample yt and Y� t�1 and is given by,

P�yt�Y� t�1, I� �
1

�2��I

exp���hI
T�Yt � 	mI��

2

2�I
2 � (16)

in which mI
T � [�i0

�i1
. . . �ik�1

] is the vector of current
levels in metastate I. In Eq. 16, 	 is referred to as the filter
matrix and can be easily computed from the known step
response of the antialiasing filter (Venkataramanan et al.,
2000). The vector 	mI denotes the modified current levels
corresponding to the different states in metastate I after the
temporal mixing of the samples due to the antialiasing filter.
The emission probability is maximum when the measured
data exactly equals the filtered current levels, i.e., Yt � 	mI.
The different terms in the residual (Yt � 	mI) are weighted
and summed to cancel out their correlations according to the
vector hI.

FIGURE 4 Origin of H-noise: randomness in time of transition between
states in a sampling interval is reflected as randomness in current ampli-
tude. (A) Three possible realizations of making a transition from a closed
state to open state and back to a closed state. (B) Signal at the output of an
anti-aliasing filter (same filter as in Fig. 2) from the three possible real-
izations in A. (C) Randomness in time of transition between states causes
randomness in current amplitude at each sampling time, which is modeled
as a fictitious noise called H-noise. Error bars indicate the standard devi-
ation of the H-noise.
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In the special case when the effects of the antialiasing
filter and therefore H-noise are ignored, the only contribu-
tion to the total noise in each metastate comes from the
correlated background noise which is stationary. In this
case, the filter matrix 	 equals an identity matrix. The
parameters hI and �I

2 then have a ready physical explana-
tion. The vector hI is the same for all metastates and corre-
sponds to the coefficients of the moving average prewhit-
ening filter, which would whiten the correlated noise. The
parameter �I

2 is the noise variance at the output of this
prewhitening filter. These parameters hI and �I

2 can be
estimated from the estimated correlation 
C of the colored
background noise.

When the effects of the antialiasing filter are considered,
due to the nonstationary nature of the H-noise, the total
noise in each metastate is also nonstationary. Let C and O
represent the closed and open states of a channel. The
variance of the H-noise is highest in metastates that consist
of different conductance states such as (C, O, C) or (O, C,
O) and is zero for metastates that consist of the same
conductance such as (C, C, C) or (O, O, O). Analogous to
the previous case, the parameters hI and �I

2 are referred to as
the metastate moving average (MMA) parameters corre-
sponding to metastate I. They can be easily found from an
estimate of the covariance matrix 
I of noise in the met-
astate.

Covariance of H-noise

Because the total noise in metastate I is the sum of two
independent components (the correlated background noise
and the fictitious H-noise) the second order moments of the
total noise 
I are the sum of the corresponding second order
moments of the correlated background noise and the H-
noise in the metastate. Thus,


I � 
C � 
HI. (17)

in which 
C is the autocorrelation of the colored back-
ground noise and 
HI

denotes the covariance matrix of
H-noise corresponding to metastate I. It can be computed in
terms of the known step response of the antialiasing filter
and the estimated current levels of the states.

The time of transition from one state to the next is
random relative to the sampling time. Let �0 be a random
variable distributed between 0 and 1, t � �0 indicating the
precise time, relative to the sampling time, of a transition
that occurs in the interval (t � 1 t) (Fig. 5). Similarly, let �1,
�2, . . . , �k�2 be independent random variables, such that
t � j � �j, j � 0, . . . , k � 2 indicates the precise time of
transition from the state at time t � (j � 1) to the state at
time t � j. Let 
 � {�0, �1, . . . , �k�2} be the set of these
random variables. Our goal is to compute the mean and
second moments of variations (the H-noise) in the filtered
signal that arise from the random 
.

Let mI
T � [�i0

�i1
. . . �ik�1

] be the vector of current levels
associated with the metastate I. For a given value of 
, let
m̃I(
) denote the current levels associated with the metastate
modified due to antialiasing filter. Recalling that the covari-
ance of two random variables x1 and x2 is defined as

cov�x1, x2� � E�x � x�1��x � x�2� (18)

in which the expectation operator E( ) is taken over all
possible values of variables x1 and x2 and x�1 and x�2 denote
the mean values of x1 and x2, the covariance matrix of
H-noise is similarly obtained as


HI � E
��m̃I�
� � 	mI�
T�m̃I�
� � 	mI�� (19)

in which E
( ) denotes the expectation operator taken over
all possible values of 
. The matrix 	 is chosen such that
the vector 	mI equals the mean value of m̃I(
), the average
again being taken over possible values of 
. Because each
element of 
 uniformly takes values between 0 and 1, the
above equation can be further reduced to,


HI � ��i0 � �i1�
2V0 � ��i1 � �i2�

2V1 � · · ·

� ��ik�2 � �ik�1�
2Vk�2, (20)

in which the matrices Vj, j � 0, . . . , k � 2 are given by,

Vj � cov�H�� � j � m � 1�, H�� � j � n � 1��. (21)

These matrices can be computed from the known step
response H of the antialiasing filter as � uniformly takes
values between 0 and 1.

Reestimation

Once the emission probability has been computed, the for-
ward-backward and Baum-Welch algorithm can be used to
calculate the likelihood and reestimate the HMM parame-
ters (Venkataramanan et al., 2000). Briefly, our strategy for
estimation of the noise model parameters from initial esti-
mates is as follows. The matrix 	 is fixed, being determined
by the antialiasing filter. The reestimation of MMA param-
eters is equivalent to reestimating matrix 
C. The MMA
reestimation is similar to reestimation of elements of the
transition probability matrix A in Eq. 14. For example, in the

FIGURE 5 Definition of the variables �j, which specify the times of
transition relative to the sampling times in metastate I. The precise time of
transition from the state at time t � (j � 1) to the state at time t � j is given
by the random variable t � j � �j, j � 0, . . . , k � 2.
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case that the noise statistics are the same for all metastates,
the noise variance can be reestimated as,

�̂2 �
�I �t�1

T 
t�I���hI
TYt� � 	mI�

2

�I �t�1
T 
t�I�

. (22)

The reestimation formulas for other noise model parameters
are given in Venkataramanan et al. (2000).

ISSUES IN PRACTICAL IMPLEMENTATION

Inverse filter

During acquisition of the data, the analog data are passed
through an antialiasing filter to remove the high frequency
noise and then are sampled at discrete times. Because the
underlying signal can be thought of as a stochastic square
wave, an analog filter with a sharp roll-off in the transition
region in the frequency response produces overshoot and
ringing phenomena. This is undesirable if the data are
analyzed using traditional techniques such as threshold de-
tection. Therefore, an analog filter with a gradual roll-off
and linear phase response such as a Bessel filter has been
conventionally used.

For analysis of the data using our algorithm, a filter with
a sharp roll-off in the transition region is preferred for the
following reasons. First, the noise spectral density is found
to increase with frequency. Therefore, for the same cut-off
frequency, a filter with a sharp roll-off has a smaller noise
standard deviation than a filter with a gradual roll-off.
Second, use of a filter with a gradual roll-off requires that
the data be sampled at several times the Nyquist rate to
prevent aliasing (Colquhoun and Sigworth, 1995). This
would necessitate a large size for the metastate to charac-
terize the long step response, thus increasing the computa-
tional complexity of the HMM algorithms. On the other
hand, analog filters with a sharp roll-off characteristic do
not have linear phase response, which can cause problems in
analyzing the data.

Qin et al. (2000b) make use of a digital inverse filter to
shorten the step response of the recording system. We
describe here our implementation of a digital inverse filter
that accomplishes a similar purpose. Its function is to re-
move the effects of the data acquisition system (including
the effects of the patch clamp amplifier and the analog
antialiasing filter) and produce a desired impulse response.
We use an impulse response of the form (Venkataramanan,
1998)

h�n� � exp��
f x

2n2

�f
2 � sin�2�fxn�

�2�fxn�
, fx �

fc

fs
(23)

Here, fx is the ratio of the bandwidth of the filter fc to the
data sampling rate fs. The parameter �f controls the width
and slope of the frequency response in the transition region.
If �f 

 1, the filter is essentially Gaussian with bandwidth

fc/�f. If �f �� 1, the filter has a sharp roll-off in the
transition region with bandwidth fc.

The inverse filter provides two main advantages. First, it
provides the ability to increase or decrease the filter band-
width and therefore allows the analysis of the data at a
cut-off and sampling frequency that may be different from
that used during data acquisition. Second, the resulting filter
cut-off frequency can be placed close to one-half the sam-
pling frequency. This allows the use of a lower-order noise
model and a smaller size metastate, thus reducing the com-
putational complexity of the HMM algorithms.

The digital inverse filter is built as follows. Let t(n) and
e(n) denote the desired impulse response and measured
impulse response of the acquisition system. Let T(�) and
E(�) denote their corresponding Fourier transforms, here
expressed as functions of the angular frequency � � 2�f.
The impulse response hinv(n) of the inverse filter is then
given by

hinv�n� � F�1�T���

E���� (24)

in which F�1 denotes the inverse Fourier transform opera-
tion. Direct measurement of the impulse response e(n) of the
recording system is difficult to perform due to the limited
dynamic range of the patch-clamp amplifier. Instead, the
unit step response of the system denoted by u(n) can easily
be obtained by applying a triangle wave voltage through a
capacitor into the head stage amplifier (Sigworth, 1995). In
the Fourier domain, the impulse response of the acquisition
system is related to its step response by

E��� � i�U���. (25)

Let ê(n) be an approximation to e(n), obtained by passing
the measured step response through a first-order differen-
tiator of the form,

ê�n� � u�n� � u�n � 1�. (26)

Taking the Fourier transform of Eq. 26, we obtain,

Ê��� � U����1 � e�i��

� U���e�i�/2�ei�/2 � e�i�/2�

� 2iU���e�i�/2 sin��/2� (27)

From Eqs. 25 and 27,

E���

�
�

Ê���

2 sin��/2�e�i�/2 (28)

Therefore, from Eqs. 24 and 28,

hinv�n� � F�1�2T���sin��/2�e�i�/2

Ê���� � (29)

in which the factor e�i�/2 represents a time delay of one-half
sample interval and can be ignored.
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The impulse response of the inverse filter is given by Eq.
29 and is computed from the desired impulse response and
the measured step response. Of course, the inverse filter
coefficients are more accurately obtained when the sam-
pling rate of the step response is larger than the data sam-
pling rate. To avoid artifacts due to noise in the experimen-
tal ê(n), we multiply it by a raised cosine window function
that is centered on the impulse. To automate the construc-
tion of the window, we determine its location and width
from the location and width of the impulse, as determined
from the first and second moments of �ê(n)�.

In our implementations, values of fc/fs are in the range of
0.4 to 0.5. The cut-off frequency can further be reduced
when the data are decimated after inverse filtering. Follow-
ing are some guidelines in choosing the decimation factor.
The greater the decimation factor, the smaller the bandwidth
of the inverse filter. This results in good signal to noise
ratios in the inverse filtered data as more noise is removed.
However, a significant amount of signal information is lost
due to the low cut-off frequency of the filter. This will lead
to biased estimates of parameters of the Markov model if
the transition rates approach the sampling rate. On the other
hand, the smaller the decimation factor, the lower is the
SNR of the inverse filtered data. Therefore, to obtain unbi-
ased parameter estimates, the noise model must be more
accurate leading to larger size of the metastate to capture the
correlation in successive noise samples (Venkataramanan et
al., 1998). The large size of the metastate leads to higher
computational intensity of the H-noise algorithm. In prac-
tice, the decimation factor should be chosen such that the
final sampling frequency of the data fs should be larger than
the expected highest rate in the Markov scheme. It should be
noted that the inverse filter can be successfully constructed

with an increase in bandwidth, if the frequency response of
the acquisition system has a significant magnitude (at least
roughly 1/10 of the maximum magnitude) at the desired
bandwidth.

An example of the step response and the calculated
frequency response of a patch-clamp recording system with
a 30-kHz Bessel filter is shown in Fig. 6 (A and B) in the
time and frequency domains (dashed line). The step re-
sponse convolved with the inverse filter coefficients results
in a sharp-cutoff filter with fc � 80 kHz and is indicated by
the solid lines. The 16-point inverse filter kernel is shown in
Fig. 6 (C and D). There exists an overshoot in the final step
response (visible also in Fig. 2, where a filter of the form of
Eq. 23 was also used). However, data analysis using the
algorithms described in this paper are insensitive to the
overshoot because the filter matrix 	 explicitly takes the
shape of the step response into account.

Baseline estimation

In addition to the Gaussian noise, it is often seen that
single-channel data are contaminated with nonrandom in-
terferences such as a sinusoidal hum from the alternating
current mains. In this subsection, we extend the results in
Chung et al. (1990) to estimate the baseline iteratively from
the single channel data in a metastate HMM framework.

The observed single channel data are modeled as the sum
of three components—a noiseless signal that consists of
current levels of the states obtained as the channel makes
transitions from one state to another, Gaussian noise, and
the drifting baseline �(t) � {�t, t � 1, . . . , T}. We present
below a method to characterize and extract the baseline
from the single channel data.

FIGURE 6 Construction of the in-
verse filter used in Zheng et al.
(2001). (A) Measured step response of
the recording system (dashed line),
which included an 8-pole, 30-kHz
Bessel filter. The sampling frequency
was 200 kHz. The final step response
that was obtained by convolution with
the inverse filter coefficients is shown
by the solid line. (B) Frequency re-
sponse of the recording system
(dashed curve) and the desired fre-
quency response after inverse filtering
(solid curve). In building the inverse
filter, the parameters were assigned
�f � 1/�2 and fc/fs � 0.4, yielding an
80-kHz cutoff frequency. (C) The six-
teen inverse filter coefficients hinv(n).
(D) The frequency response of the
inverse filter.
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Generally, baseline drifts are slow variations in the back-
ground patch current. Therefore, the baseline can be modeled
as a piecewise linear function. Let T denote the total number of
points in the data set. Let the data set be divided into r
segments of � points each, therefore r � T/�. Let the baseline
be approximated by a piecewise linear function of the form,

�t � �
j�0

r

�jfj�t� (30)

in which

fj�t� � �1 �
�t � j��

�
,

�t � j�� � �, t � 1, . . . , T
0 otherwise .

(31)

A graph of the function fj(t) is shown in Fig. 7.
The parameters �j(j � 0, . . . , r) in Eq. 30 are referred to

as the vertices of the baseline. They are estimated iteratively
in a metastate framework from the measured data Y(t) as
follows. Step 1) The baseline is computed from the initial or
previous estimates of �j(j � 0, . . . , r). From Eqs. 30 and 31,
the baseline at time t is computed from the vertices �j as

�t � �j � ��j�1 � �j�� t

�
� j� , j� � t � �j � 1�� (32)

Step 2) The baseline �(t) is subtracted from the data Y(t).
The resulting data are then analyzed with the H-noise algo-
rithm. Step 3) After obtaining the probability variables 
t(I)
from the forward-backward algorithm, the vertices �j(j �
0, . . . , r) are updated. Let �̂n denote the reestimated values
of the vertices and let �̂t � ¥j�0

r �̂jfj(t). On the lines of the
Appendices in Venkataramanan (1998), a closed form ex-
pression for the reestimation of �̂j can be obtained by
solving the system of equations,

��̂ � � (33)

in which �̂T � [�̂0 �̂1 . . . �̂r] is the vector of reestimated
vertices. Here,

�nj � �
I
�

t


t�I�

�I
2 �hI

TFn�t���hI
TFj�t��, n, j � 0, . . . , r

(34)

and

�n � �
I
�

t


t�I�

�I
2 �hI

T�Yt � 	mI���hI
TFn�t��, n � 0, . . . , r

(35)

in which

Fn�t� � �fn�t�fn�t � 1�. . .fn�t � k � 1��T, n � 0, . . . , r.

(36)

This iterative baseline estimation procedure is readily
incorporated into the main body of the H-noise algo-
rithm.

It should be noted that the average value of the baseline
and the current levels of the states are not independent
variables and, for this reason, it is necessary to impose a
constraint in their reestimation. In one approach, it is as-
sumed that the average value of the baseline is zero. This
constraint is imposed in step 3 of the baseline estimation
algorithm presented above by taking the average value of
the vertices and subtracting it from each vertex. In this case,
the final reestimated values of the current levels will be
offset by the average value of the baseline. In an alternative
approach, it is assumed that the closed states in the HMM
always have a current level of zero. The current levels of all
the other states and the average baseline offset are reesti-
mated with respect to the current level of the closed states.
The two approaches were found to be equivalent in our
simulations.

We present in Table 1 simulation results on the two-state
HMM specified in Scheme 1. These results are representa-
tive of the simulations performed on various HMMs at
various signal to noise ratios. It can be clearly seen on
comparing columns 4 and 5 that the parameters of the HMM
and noise model have a smaller bias when the baseline is
estimated. The log-likelihood of the model with baseline
estimation is also much larger than the model without
baseline estimation.

The original and estimated baseline and signal from this
simulation are also displayed in Fig. 8. On comparison of
the of the actual and estimated baselines, it is seen that the
baseline reestimation procedure reasonably reconstructs the
baseline and allows a good cumulative-mean reconstruction
of the original signal.

Multiple sweeps

The traditional HMM algorithms focus on parameter
estimation from a single data set. In practice, there may
be a large number of sweeps of the data. Each sweep is
a realization of the underlying Markov process. Because
each sweep is independent, the modified forward and
backward variables can be computed for each sweep
independently. The likelihood of the data is the product

FIGURE 7 The baseline kernel function fj(t) given by Eq. 32.
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of the likelihood of each sweep. Similarly, the change in
the reestimation formulae to consider multiple sweeps in
readily apparent. Because the sweeps are independent of
each other, the reestimation formulae described in Ven-
kataramanan et al. (2000) are modified by summing the

left hand and right hand side (or numerator and denom-
inator) of all the reestimation formulae over all sweeps
(Venkataramanan, 1998). For example, let 
t

(j)(I) denote
the a posteriori probability of being in metastate I at time
t for the j-th sweep. The reestimation for the transition
probabilities is obtained by modifying Eq. 14 by sum-
ming the numerator and denominator over all sweeps,

âi1i0 �
�j �t�1

T �I�M0

t

(j)�I�

�j �t�1
T �I�M1


t
(j)�I�

(37)

SUMMARY

Patch clamp recordings typically contain correlated back-
ground noise. The data are also necessarily filtered before
discretization and analysis. We have presented an algorithm
for analysis of single channel current recordings at low
signal-to-noise ratios when traditional algorithms such as
threshold detection cannot be applied. The problem has
been approached in a hidden Markov model framework
through extension of traditional forward-backward and
Baum-Welch algorithms.

The H-noise algorithm addresses the issues of correlated
background noise and the effects of the antialiasing filter.
The random time of transition between states of the under-
lying continuous-time Markov process produces a random-

TABLE 1 Simulation results on the two-state HMM specified in Scheme 1

Parameters
Initial

estimates Data simulation model
Parameter
estimates*

Parameter
estimates†

aCO 0.5 0.1 0.17 0.11
aOC 0.5 0.3 0.42 0.30
�1 0.1 0.0 �0.02 0.01
�2 0.8 1.0 0.99 0.99
�w 0.5 0.5 0.59 0.49

�d1

d2

d3

	 ��0.3
�0.1

0.0
	 �m0

m1
	� � 0.8

�0.6	 ��0.08
0.46
0.32

	 ��0.61
�0.33
�0.10

	
Maximal log-likelihood MA Filter �1320.48 1324.02

*Estimates on filtered, sampled data without baseline reestimation.
†Estimates on filtered, sampled data with baseline reestimation.
Comparison of parameter estimates without and with baseline estimation using the H-noise algorithm: The data were generated as from a two-state HMM
as follows. The signal consisting of 160,000 data points was generated at fine time steps from the HMM specified by the transition probability matrix

B � �0.9845 0.0155
0.0464 0.9536	 .

The signal was passed through the antialiasing filter specified in (23) with fx � 0.5/8, �f � �1/2 and then decimated by 8. Additive correlated noise was
obtained by passing white noise w(t) of standard deviation �w � 0.5 through a first-order moving average filter, ct � 0.8wt � 0.6wt�1. In addition, a baseline
drift of the form

��t� � 0.5 sin�4�t/T�, t � 1, . . . , T

was added to the signal at the output of the sampler. Because the data are decimated by 8, the transition probability matrix of the Markov process at the
output of the sampler is

A � B8 � �0.9 0.1
0.3 0.7	 .

The data thus obtained were analyzed by the H-noise algorithm with and without baseline estimation.

FIGURE 8 An example of baseline estimation. (A) First 1024 points of
the filtered, sampled signal with additive correlated noise. The parameters
of the HMM and noise model are given in Table 1. (B) True (dotted curve)
and estimated (solid line) baseline functions. (C) The first 1024 points of
the underlying filtered, noiseless signal from the HMM. (D) Cumulative-
mean reconstruction of the signal, computed according to Eq. 15 from the
a posteriori probabilities 
t(I).
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ness in the observed current amplitude. This randomness in
the amplitude is modeled as a fictitious noise source called
H-noise. Although the parameters are not the maximum
likelihood estimates and the H-noise method is not guaran-
teed to monotonically increase the likelihood with iteration,
we have found that the H-noise method performs acceptably
and the parameters are estimated with a tolerable bias (Ven-
kataramanan et al., 2000).

The modified forward-backward algorithm requires on
the order of Nk�1kT operations, although in special cases
and with improvements (Venkataramanan et al., 1998a; Qin
et al., 2000b) the computational intensity can be reduced to
as little as rk NkT with r being a constant between 2 and 3.
Increasing the size k of the metastate by one introduces one
more MMA coefficient for each metastate. Thus the com-
putation of the modified forward-backward variables be-
comes intensive as the number of states constituting a
metastate increases. In practice, for different values of k, the
parameters of the HMM and AR noise model can be esti-
mated and a minimum value of k chosen such that further
increase in k does not produce an appreciable change in the
HMM parameter estimates. As the signal-to-noise ratio of
the data decreases, a larger k value is required to provide a
more precise model of the noise. From our experience with
simulations, we would estimate that a k value of 4 is
typically appropriate for data whose SNR is too low by a
factor of two to allow conventional threshold analysis.

We have also described the necessity and function of the
inverse filter. At the output of the inverse filter, the data can
further be decimated allowing a tradeoff to be made be-
tween time resolution and computational intensity.

In the case of baseline reestimation for each sweep, it is
often found that the initial estimate of the baseline plays an
important role in the convergence rate and the local maxima
reached by the algorithm. In the case of multiple sweeps, the
baseline of each sweep is considered to be independent and
is considered to be a piecewise linear function whose ver-
tices are estimated using Eq. 33. In our implementation, the
vector of current levels and the average baseline of each
sweep are reestimated with respect to the closed state cur-
rent level. One important factor during baseline reestima-
tion is that the baseline is assumed to vary much more
slowly than the single channel data. Convergence to false
maxima can occur if the number of points per vertex � is
specified to be on the same order as the dwell times in one
of the states in the model. In this case, it is possible to
confuse the signal and the baseline.

We have also considered the extension of the algorithm to
multiple sweeps. The modification of the reestimation for-
mulae to consider multiple sweeps is seen to be quite
simple; it essentially results only in the addition of a sum-
mation sign considered over all sweeps in the reestimation
of the HMM, noise model, and baseline parameters.

An example of the practical application of the methods
described here is given in Zheng et al. (2001) where the

H-noise algorithm was used to characterize brief subcon-
ductance levels in the deactivation time course of Shaker
potassium channels. In that study a typical data set consisted
of 1000 sweeps, each having a length of �120 samples.
With the metastate size k � 4, to perform 300 iterations of
the reestimation algorithm required 2 h for a linear three-
state model, or an overnight computation for a branched six
to eight state model, on a 1998-vintage computer (Macin-
tosh G3, 300 MHz).
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