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Computer Simulation of the 30-Nanometer Chromatin Fiber
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ABSTRACT A new Monte Carlo model for the structure of chromatin is presented here. Based on our previous work on
superhelical DNA and polynucleosomes, it reintegrates aspects of the “solenoid” and the “zig-zag” models. The DNA is
modeled as a flexible elastic polymer chain, consisting of segments connected by elastic bending, torsional, and stretching
springs. The electrostatic interaction between the DNA segments is described by the Debye-Huckel approximation. Nucleo-
some core particles are represented by oblate ellipsoids; their interaction potential has been parameterized by a comparison
with data from liquid crystals of nucleosome solutions. DNA and chromatosomes are linked either at the surface of the
chromatosome or through a rigid nucleosome stem. Equilibrium ensembles of 100-nucleosome chains at physiological ionic
strength were generated by a Metropolis-Monte Carlo algorithm. For a DNA linked at the nucleosome stem and a nucleosome
repeat of 200 bp, the simulated fiber diameter of 32 nm and the mass density of 6.1 nucleosomes per 11 nm fiber length are
in excellent agreement with experimental values from the literature. The experimental value of the inclination of DNA and
nucleosomes to the fiber axis could also be reproduced. Whereas the linker DNA connects chromatosomes on opposite sides
of the fiber, the overall packing of the nucleosomes leads to a helical aspect of the structure. The persistence length of the
simulated fibers is 265 nm. For more random fibers where the tilt angles between two nucleosomes are chosen according to
a Gaussian distribution along the fiber, the persistence length decreases to 30 nm with increasing width of the distribution,
whereas the other observable parameters such as the mass density remain unchanged. Polynucleosomes with repeat lengths
of 212 bp also form fibers with the expected experimental properties. Systems with larger repeat length form fibers, but the
mass density is significantly lower than the measured value. The theoretical characteristics of a fiber with a repeat length of
192 bp where DNA and nucleosomes are connected at the core particle are in agreement with the experimental values.
Systems without a stem and a repeat length of 217 bp do not form fibers.

INTRODUCTION

DNA of most eukaryotic organisms is complexed with
proteins into highly compact structures designated as chro-
matin (van Holde, 1989). DNA and histone protein assem-
ble into nucleosomes; the nucleosome cores are connected
by the linker DNA. At low salt concentration, chromatin
adopts a beads-on-a-string-like appearance (Olins and
Olins, 1974; Kornberg, 1974). At higher salt concentrations,
chromatin compactsinto afiber of ~30-nm diameter (Finch
and Klug, 1976). The consensus value for the linear mass
density of thisfiber is6 to 7 nucleosomes/11 nm (Gerchman
and Ramakrishnan, 1987; van Holde, 1989; and references
therein). Assuming nucleosome repeat lengths of 180 to 220
bp, this corresponds to a DNA density of 1080 to 1320
bp/11 nm, or a compaction ratio of 35 to 43 compared with
linear B-DNA. Models of the chromatin fiber have to take
into account this mass density and the fiber diameter.
Many models for the structure of the 30-nm chromatin
fiber have been developed (van Holde, 1989). Early
analysis of x-ray diffraction, electron microscopy, and
solution scattering data led to the development of the
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solenoid model (Finch and Klug, 1976). In this model,
the nucleosomes are arranged in a regular helix with a
period of six nucleosomes per turn and a pitch of 11 nm.
The linker DNA follows a continuous spiral path between
nucleosomes with a correspondingly large bend. Because
of the tight bending of the linker DNA, the solenoid
model requires a substantial input of elastic energy.
Whereas this energy could be obtained, e.g., from an
association of the linker DNA with the positively charged
histone tails, models that do not require this energy input
might be an interesting alternative.

In particular, such models have been developed recently
based on new data from cryoelectron microscopy and scan-
ning force microscopy-measurements and a reanalysis of
the original data. That work resulted in the proposal of
structural models that are compatible with the existing ex-
perimental data but lack the regularity of the solenoid model
(van Holde and Zlatanova, 1995; Woodcock and Horowitz,
1995). Based on the so-called cross-linker models where the
linker DNA forms a straight path between successive nu-
cleosomes (Bordas et al., 1986; Kubistaet al., 1990), Wood-
cock et al. (1993) proposed the zig-zag model. Here the
nucleosomes form a more or less random zig-zag structure
that can be mathematically described by the length of the
linker DNA, the distance between the entry and exit point of
the DNA emerging from chromatosomes, the entry-exit
angle of the linker DNA («), and the tilt-angle between
connected nucleosomes (B).
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More support for the zig-zag model comes from a recent
analysis of radiation-induced in vivo fragmentation of chro-
matin (Rydberg et al., 1998). Here a characteristic length
distribution of the DNA fragments was found that could be
correlated with model predictions of different structura
arrangements of the chromatin fiber. The best agreement
was found for the zig-zag model, whereas a solenoidal
arrangement of nucleosomes gave fragment distributions
that deviated considerably from their experiment.

There are, however, some questions that are not yet
resolved by the zig-zag model. It describes correctly some
qualitative and quantitative aspects of the fiber, such asits
general aspect in microscopic images and its diameter;
however, other experimentally known quantities like the
linear mass density are not reproduced very well. Also, the
inherent randomness of a large macromolecular structure
like the chromatin fiber could only be taken into account by
introducing random variations in geometrical parameters,
such as nucleosome-nucleosome bending and twisting an-
gles. The problem with all cited models is that they only
describe the static, geometrical structure whereas effects of
therma fluctuations due to Brownian motions are ne-
glected. Moreover, long-range forces such as electrostatic
interactions are not contained in these “static’ models. It
would therefore be desirable to develop a description of the
chromatin fiber that gives a correct picture of its accessible
conformations at thermodynamic equilibrium and at the
same time agrees with the known structural aspects. Such a
description requires a numerical simulation.

Modeling the chromatin fiber on a computer is a chal-
lenging task because the molecule is very large. The use of
atom-scale molecular dynamics is out of the question be-
cause the system isfar too complex: achromatin chain of 50
nucleosomes aready contains approximately one million
atoms, not counting the solvent molecules that must be
accounted for in the simulation. Therefore, any model of the
chromatin chain will necessarily be “coarse-grained,” i.e.,
the basic units are much bigger than a single atom.

Earlier, a Brownian dynamics model that included DNA
elagticity, electrostatic interactions between linker DNA
segments, and thermal motions, but no internucleosome
interactions, was developed in our group (Ehrlich et a.,
1997). We could reproduce the hydrodynamic properties of
polynucleosomes, but because of the missing internucleo-
some interactions and the approximation of nucleosomes as
spheres, the model could not predict the correct mass den-
sity of the 30-nm fiber at physiological ionic strength.

Based on our earlier work we developed a new computer
model that is presented here. The nucleosome cores, which
in the crystal structure have an approximate flat disk shape,
are modeled as ellipsoids. Their interaction is described
using the Gay-Berne potential, which is a generalization of
the Lennard-Jones potential for objects of ellipsoidal sym-
metry (Gay and Berne, 1981). This potential describes at-
tractive as well as repulsive contributions of the internu-
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cleosomal interaction. The linker DNA is modeled as a
chain of segments. DNA segments and the chromatosomes
are coupled to each other through harmonic stretching,
bending, and torsion potentials. The electrostatic repulsion
between the DNA segments is modeled by line charges that
interact viaa Debye-Hiickel potential. The parameters of al
potentials are derived from experimental data. Typical con-
figurations of the fiber at a given temperature are sampled
using the classical Metropolis-Monte Carlo algorithm (Me-
tropolis et al., 1953). Our model reproduces quantitatively
the experimental data of the 30-nm fiber at physiological
salt conditions such as diameter, mass density, tilt of nu-
cleosomes and DNA to the fiber axis, and persistence length
of bending.

Another important result from our simulations is that a
variation of the twist angle between successive nucleosomes
(B) has a stronger influence on the overal structure of the
fiber than varying the strength of the internucleosomal
interaction. The shape of the fiber can therefore be regulated
much more effectively by changing geometrical parameters
than through the internucleosomal interaction. Furthermore,
we observed that for longer nucleosome repeats the stem
motif is essentia for the formation of the fiber.

METHODS
Discretization of the chromatin chain

DNA that is not bound to the chromatosome is described by segments.
They are chosen much smaller than the persistence length, so they are
approximately straight: for linker DNAs 10 bp or shorter, one segment was
used to connect the chromatosomes, and for longer linker DNAS, the length
was divided into two segments. The position of each segment is determined
by a position vector F; and a loca coordinate system (f;, u;, v;) describing
its orientation in space. The coordinate vector U, corresponds to the seg-
ment vector 0, = T;,, — T;. The segment length isb, = u; .

The position of a chromatosome is described by a vector to its center of
mass and alocal coordinate system where U; points from the center of mass
to the geometrical center of the connecting points of the linker DNA, and
V; is parallel to the axis of the nucleosome core.

Linker DNA is coupled to the chromatosome at two distinct points at a
distance Dgnyry —exit- A Chromatosome therefore forms a short segment by
itself. The distance of the two DNA coupling points to the symmetry axis
of the cylinder is D, s gna If the linker DNA is coupled directly to the
chromatosome, the value of D 4.a iS €qua to the radius of the nucleo-
some. In the case of a nucleosome stem this radius is larger. Fig. 1 shows
how in both cases DNA segments and chromatosomes are connected.

Elastic energies

The potentials of the elastic interactions are assumed to be harmonic. The
strength constants of the interactions are named ] in which X denotesthe
type of interaction, s denotes the stretching, b denotes the bending, t
denotes the torsion, and Y denotes the type of interacting partners, DNA
and Nuc.
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Model 1

FIGURE 1 Sketch of the geometrical structure of the
model. Both types of coupling of DNA to the chroma-
tosomes are shown. Coupling at distinct points (1) with-
out and (2) with stem. DNA segments are denoted by
straight lines, the gray rectangles symbolize the chro-
matosomes.

Model 2

The stretching potential of one segment is computed as
Ustretch = ass)/b?(h - b|0)2 1

The bending angle is computed between the segment vector U, , and its
equilibrium position B; relative to the connected segment. B; is defined by
the angles 6, and ¢;:

B, = fi SiN 6, cOS ; + V; sin 6; sin ¢; + Uj cos 6,

)

In the case of no intrinsic bending 6, = ¢, = 0thus B; = .. The bending
potential is then

Upens = oP/0%6?  with cos(6) = Bilix  (3)

The coordinate systems of two connected segments i and i + 1 can be
mapped on each other by an Euler-transformation with the angles (o, B,
;) in which the rotation of the first angle is around T,. Then o; + 7y, — 7
is the total torsion. = is the intrinsic torsion. The torsion potential is then

(4)

Utars = ag)/bio(ai + oy - 7'i)2

Electrostatic energy of DNA

The electrostatic interaction between free DNA double helix segments is
described by integrating the solution of the Debye-Hiickel equation for a
point charge over two charged line segments:

% exp(—kr;)

U]

(5)

D isthe dielectric constant of water, and « the inverse of the Debye length.
r;; isthe distance between the current positions at the segments to which the
integration parameters \;, A; correspond. The charge per unit length v is
chosen such that the potential at the radius of the DNA coincides with the
solution of the Poisson-Boltzmann equation for a cylinder with charge per
length v§. For DNA in the presence of the Gouy layer of immobile
counterions, this can be computed as vy = qu, inwhich vy = —2e/A isthe
charge per length of the naked DNA (Schellman and Stigter, 1977), eisthe
proton charge, and A = 0.34 nm is the distance between base pairs.
Following Stigter, the value of q is 0.73 (Stigter, 1977). To save compu-
tation time, a tabulation of the double integral (5) is used. The table is
parameterized by the distance of the segments and three values describing

2849

top view side view

nucleosome
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its relative orientation. During the simulation a linear interpolation of the
tabulated values was used.

Internucleosomal potential

Theinternucleosomal interaction is modeled by a Gay-Berne potential with

modifications by Kabadi (Gay and Berne, 1981; Kabadi, 1986a,b). The

interaction energy of two particles with a center-to-center distance ¥ is
o 12

r— O-([]l! 02! ’r\) + [}

V(le l’:121 i’.\) = 46(01! l,:IZ! f)((

0y 6
‘Q—dm%n+%w ©)

The vectors {; and 0, point into the direction of the symmetry axis of the
particles. o, scales the potential width, and €, scales the potential depth.
The parameter x defines the anisotropy of the potential width, x’ defines
the anisotropy of the potential depth:

C 1 1 (G, + 0,2
o0y, 0y, F) = 0 |1 — 22X\ 1+ o) VO

(0, — 107 |
*&—m@w U

x = (of = d)l(of + 0%) (8)
€(0y, Oy, ) = €'(Qy, Ty)e™(Qy, Oy, 7) 9)
e(0y, 0) = e[ 1 — x*(Oy, 0x)%] Y2 (10)

“ N N 1 (f':ll + fag)z (fﬁl - fﬁz)z
e/(ula u2! r) = 1 - 7X,

2 1+ X' (000 1 — x'(0,0,)
(11)
X'= (e = (el + el) (12)

o) is the relative potential width for particles oriented parallel and o, for
particles oriented orthogonal. e, defines the relative potential width for
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particles in lateral (s, side-to-side) and e in longitudinal (e, end-to-end)
orientation. v and w are dimensionless parameters; generally one uses v =
land p = 2.

Monte Carlo simulation

The classical Metropolis-Monte Carlo procedure is used to generate ran-
domly a statistically relevant set of representative configurations of the
system at temperature T (Metropolis et a., 1953). Starting with an arbitrary
configuration, a new configuration is created randomly from the previous
configuration (see below). The difference AE between the energy of the old
and the new configuration is computed. If AE < 0, the new configuration
will be accepted; if AE > 0, the new configuration will be accepted if a
random number 0 < ¢ < 1 is below the threshold e 2F%eT, For details see
the extensive literature (e.g., Binder and Heermann, 1988; Allen and
Tildesley, 1987, 1993).

As a trial move we used the pivot and the rotation move (Freire and
Horta, 1976; Baumgartner and Binder, 1979). In the literature both moves
were shown to be correct and effective. In the pivot move, one segment is
selected randomly as the origin of a rotation of a random angle of the
interval [—3, 8] around a random axis. For a rotation move, a segment is
chosen randomly. The end point of this segment is rotated around an axis
through the start point of this sesgment and the end point of the next
segment by an angle chosen randomly from the interval [— ¢, ¢].

Structure and testing of the simulation program

The simulation program was developed in an object oriented manner in the
programming language C+ + (Stroustrup, 1997). All functions of each
object were tested separately for correctness. The cooperation of the
objects was tested thoroughly. We used the high performance debugging
tool insure++ (Parasoft, Monrovia, CA) for verifying the formal correct-
ness of the code. We implemented two different mechanisms for checking
the self-consistency of the objects. In the testing phase and the early
production phase we used them to check all parts of the program during run
time. Furthermore, we computed simplified models like chains with only
stretching interaction or chains with stretching and bending interaction by
setting the parameters of the other interactions to 0. The computed values
of the end-to-end distance agreed with the theoretical exact values.

The program was made parallel using POSI X threads, yielding atypical
speedup of 1.9 using 2 processors and 3.3 using 4 processors.

To check for a possible influence of the used R250 random number
generator (r250) we computed aso some fibers with the built-in C-random
number generator and the R16807 random number generator. Comparing
the end-to-end distances of the different calculations, we found no differ-
ences within the range of the statistical error.

Correlation lengths and number of
simulation steps

Configurations computed with the given Monte Carlo agorithm are cor-
related. To check whether enough simulation had been done to ensure good
statistics, we computed the autocorrelation time of the energy, end-to-end
distance, and mass density of the fibers. The autocorrelation function C, o
function of a quantity A is defined as

(ARAK +))) — (A
(M) = (N?

CAA(j) = (13)
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TABLE 1 Integrated correlation times 7;,, in number of
Monte Carlo steps from a simulation with « = 26°, 8 = 110°

Corréelation time

Quantity Short Long
Energy 541 2500
End-to-end distance 751 600
Mass density 2440 1570

For “short” every configuration was taken into account, for “long” every
1000th configuration.

j and k are indices that number the computed configurations. The integrated
autocorrelation time 7, 4 is defined as

1 ¢ .
TinA = 5 + 1_21 Can()). (14)

Two configurations at a distance of more than 27;,, A can be considered
statistically independent (Sokal, 1996). We computed ;. 5 for a typical
trajectory where each configuration was stored and for trgjectories where
each one-thousandth was stored to detected long range correlations. The
maximal value of the computed ;. 5 in Table 1 is 2500, which means that
after 5000 simulation steps the configuration can be considered statistically
independent from the previous one. Similar results were found in the other
calculations.

For each simulation we performed at least 2.5 X 10° simulation steps.
The first 0.5 X 10° steps corresponding to 100 independent configurations
were not included in the analysis of the data because they are needed for
relaxation. A typical computation of a polynucleosome with 100 nucleo-
somes took ~2 weeks of computer time on a 500-MHz Intel Pentium 111
processor.

Data analysis

First we define an approximate backbone of the fiber as the connecting line
of the geometric centers of al chromatosomes and DNA segments in a
window of 40 segments, which is moved in steps of eight segments over
the chain. To avoid artifacts at the ends, the eight outermost segments are
ignored. The contour length L is defined as the sum of the distances
between adjacent backbone points. On both ends of the fiber, 20 chroma-
tosomes are checked whether they are located inside a half space with the
boundary surface orthogonal to the last segment of the backbone. These
chromatosomes plus the number of the remaining chromatosomes are the
effective number of chromatosomes Ng;. Thus, the mass density iS Ngq/L..
The mean radius of the fiber is defined as the average distance of all chain
segments to the nearest segment of the backbone. The mean tilt of the DNA
segments or the chromatosomes is computed from the angle between the
DNA, respectively, chromatosome axis, to the nearest segment of the
backbone. The persistence length |5 of a fiber can be computed as

(u(s+ sHu(s)) = e (15)

in which u(s) is the tangent vector to the fiber at the contour length s (Doi
and Edwards, 1986). We compute this by interpolating natural cubic
splines through the points of the backbone (Press et al., 1992). From these
splines we determine the tangent vectors at the ends of the backbone. From
the mean value of the product of these two vectors, we compute Ig
according to Eq. 15.

RESULTS
Parameters used in the simulation

Before describing the results, we shall discuss the parame-
ters used for the simulation, in particular the internucleo-
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TABLE 2 Elastic and interaction parameters used in
the simulations

Parameter Measure

1.10 X 107 Jnm
2.06 X 107 Jnm
2.67 X 10 *°Jnm
1.2nm

1.10 X 10 *® Jnm
1.30 X 10 *¥Jnm

Stretching module DNA

Bending module DNA

Torsion module DNA
Electrostatic radius DNA
Stretching module chromatosome
Torsion module chromatosome

Gay-Berne parameters 0o = 10.3nm
For internucleosome x = —0.506
Interaction x' = 0.383

Temperature 20°C

some interaction potential. An overview of these parameters
is given in Table 2. The bending and torsion elasticities
correspond to a persistence length of 50 and 75 nm, respec-
tively. For the DNA stretching modulus, we used the value
determined in stretching experiments with laser tweezers
(Smith et al., 1996). The elasticity of the chromatosome has
not yet been determined experimentally; therefore we as-
sumed that the chromatosome is stiff. Because a tiff seg-
ment is numerically difficult to handle, we chose a torsion
potential 5 times larger than for DNA and the same stretch-
ing potential asfor DNA. The DNA is assumed to be tightly
bound to the chromatosome (Morse and Cantor, 1985).

The anisotropy of the potential depth of the internucleo-
somal interaction potential x’ can be estimated as described
for prolate ellipsoids (Gay and Berne, 1981). The disk is
approximated by six Lennard-Jones spheres with radius 5.5
nm as in Fig. 2, and the minimum of the potential is
computed for longitudinal and lateral orientation of the
disks. Nearly independent of the radial orientation of the
spheres one gets efe, = 1/5 and x’ = 0.383.

The actual depth and the position of the potential mini-
mum can be obtained from the properties of liquid crystals
of nucleosome core particles (Leforestier and Livolant,
1997). Under suitable conditions, core particles form a
hexagonal-columnar phase with adistance of 11.55 = 1 nm
between the columns and a mean distance of 7.16 = 0.65
nm between the particles in one column. We assume that
these distances correspond to the minima of the internucleo-
somal potential. The minimum of Eq. 6 in lateral-latera
orientation is at r'®, = 2Y¢ ¢, and in longitudinal orienta-
tionat rl%9 = g, (2Y6 — 1 + (1 — 2x/(1 + x))). Thisleads
to oy = 10.3 nm and x = —0.506. The potential depth is
estimated from a comparison of the experimental data with
acomputer simulation of a Gay-Berne discogen («x = 0.345,
k' =025 v =1 wn = 2) a ascaed density of p* =
gV = 2.5. In the simulations the discogen undergoes a
phase transition from the nematic phase to the hexagonal-
columnar phaseat T* = kgT/ep = 4. Because the parameters
of this Gay-Berne-discogen are similar to the parameters
used above, we expect a phase transition at approximately
the same T*. Thus we can chose €, = (1/4) kgT. Thisvalue
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FIGURE 2 Approximation of a disk by spheres for calculation of the
anisotropy of the internucleosome interaction potential. The total potential
is approximated by summing over the Lennard-Jones contributions of the
individual spheres. Two different possibilities of radial orientation are
shown.

isequal to a potential depth of 5 X (1/4) kgT = 1.25KkgT for
both core particles oriented axialy, which is not too far
from the value of 2 kgT determined recently using laser
tweezers (Cui and Bustamante, 2000).

The geometry of the connection between the DNA and
the chromatosome is sketched in Fig. 3. We assume that the
linker DNA is either connected directly to the chromato-
some (defining the chromatosome as a histone core with
exactly two superhelix turns) or aternatively to a nucleo-
some stem, which is rigidly coupled to the rest of the
chromatosome. In the following, we first analyze the situ-
ation where the linker DNA is connected via a stem
(“stemmed” chromatosome). The entry and exit points of
the DNA have a vertical distance (in the direction of the
cylinder axis) of 3.1 nm and aradial distance of 8 nm from
the symmetry axis of the core particle.

Thetotal length of the free linker DNA segments between
two chromatosomes in our model depends on the nucleo-
some repeat length and on the coupling between flexible
linker DNA and chromatosome (i.e., the presence or ab-
sence of the nucleosome stem). The precise path of the
DNA outside the chromatosome is unknown; however, the
length of the flexible linker may be estimated from the
geometry of the core particle and the stem motif. The core
particle contains 146-bp DNA in a superhelix with 1.65
turns, thus two turns correspond to 177 bp. Therefore,

Biophysical Journal 82(6) 2847-2859
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chromatosomes

FIGURE 3 Geometry of the linker DNA-chromatosome connection. « is
the angle between linker DNA arms, B is the twist angle between adjacent
nucleosomes, and d is the vertical offset between incoming and outgoing
linker DNA.

without a stem the length of the DNA connecting two
chromatosomes equals the repeat length less 177 bp. The
nucleosome stem ends at a distance of ~8 nm from the
center of the core particle (Bednar et al., 1998). Assuming
that the DNA follows a straight line from the exit point of
the core particle to the end of the stem (Fig. 4), the total
length of the DNA is 146 bp + 2 X 22 bp = 190 bp. The
length of the DNA connecting two stemmed chromato-
somes is then the repeat length less 190 bp.

We defined the entry-exit angle of the linker DNA («)
and the twist angle between adjacent nucleosomes () for
elastic equilibrium in the absence of electrostatic forces and
thermal fluctuations. Studies by cryoelectron microscopy

FIGURE 4 Sketch for computation of the DNA content of a chromato-
some with stem. R is the nucleosome core radius, d is the distance between
chromatosome axis and the end of the stem, and | is the length of the DNA
that is not bound to the core particle.
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have determined « to 35° at 80 mM Na" (Bednar et a.,
1998). Because electrostatic and entropic forces change this
angle in the simulation, we had to adjust the initial value of
« inthe absence of external forces so that the effective angle
measured on the simulated structure agrees with the exper-
imental value. To this am we performed simulations of
polynucleosomes with 100 nucleosomes and a linker length
of 10 bp, corresponding to arepeat length of 200 bp (e.g., in
rat liver) at 100 mM NaCl, varying « and keeping B = 80°
constant (Fig. 5). For an elastic equilibrium angle a = 26°,
the effective entry-exit angle ag,, in the simulations coin-
cides with the experimental value of 35° to 40°. In subse-
guent simulations, this value was used. B is not known
directly from experiments and had to be determined indi-
rectly. Therefore, we performed simulations at different 8
and compared the mass density with the experimental value
(Fig. 6). At B = 110°, the mass density of the fiber is 6.1
nucleosomes per 11 nm, which is in agreement with the
experimental value of 6 nucleosomes/11 nm (Gerchman and
Ramakrishnan, 1987). We therefore used this value in the
subsequent simulations, if not stated otherwise.

Structural properties of the simulated
chromatin fibers

A visualization of the simulated structure (Fig. 7) showsthat
the computed fiber has an external aspect very similar to the
solenoid model, although the nucleosomes are not ordered
in a superhelix. The diameter of thisfiber is31.8 = 0.1 nm,
the mean tilt angle between the nucleosome axis and the
fiber axisis 50.7° = 0.7° and between linker DNA and fiber
axis 92.5° = 0.6°. The persistence length is 265 nm.

If the angle B is not kept fixed along the fiber, but is set
for each pair of chromatosomes randomly according to a
Gaussian distribution, very similar results are found within
a large range of the width of the distribution for most
parameters (Table 3). We performed six simulations for
systems with a width (1) of 10°, 20°, and 30°. The radius
and the mass density are nearly unchanged. However, the
value of the persistence length decreases dramatically while
increasing the width of the B distribution (Fig. 8). At a
width of 30°, the persistence length is only 28 nm, which is
~10% of the value at 0°.

The previous calculations were started from a condensed
structure, where the sum of the elastic potentialsis zero. To
check whether the final result depends on the initial struc-
ture or represents some local minimum, we performed sim-
ulations starting from a configuration where al segments
are ordered in astraight line (Fig. 9) In this case, a structure
very close to the final equilibrium configuration is reached
after 160,000 Monte Carlo steps (Fig. 9 €); energy equili-
bration, however, takes ~5 X 10° steps (data not shown).
For three simulations over 5 X 10° steps each, we obtained
valuesfor all tested properties (persistence length, diameter,
mass density, total energy) that agreed with those starting
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from the condensed initial configuration within statistical
error.

Because the strength of the internucleosomal interaction
was not measured directly, we had to estimate it from
experiments on liquid crystals of nucleosome core particles
(Leforestier and Livolant, 1997) as described above. Be-

a (%)

cause this estimation is rather crude, we studied the sensi-
tivity of the model to changes in the strength of the inter-
nucleosomal interaction. We performed simulations at
values of €, of the Gay-Berne potential from 0.1 kT up to
0.4 KT. In the axial direction, this corresponds to a potential
depth of 0.5 to 2 KT. The data exhibit only small changes of

FIGURE 6 Mass density of a simulated
chromatin fiber (100 nucleosomes with stem,
linker length 11 bp, « = 26°) asafunction of
the twist angle between adjacent nucleo-
somes (B).
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FIGURE 7 Visualization of two configurations of a simulated 100-
nucleosome fiber, starting from a fully condensed straight configuration.
Nucleosomes with stem, linker length 11 bp, « = 26°, B = 110°.

the mass density (Fig. 10) and the persistence length (data
not shown) depending on the value of ;.

The calculations described so far were done for stemmed
chromatosomes with alinker length of 10 bp, corresponding
to a repeat length of 200 bp. The mass density of polynu-
cleosomes with stem and a linker length of 22 bp, corre-
sponding to a repeat length of 212 bp (e.g., in chicken
erythrocytes) has its highest value of 4.6 = 0.1 nucleo-
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TABLE 3 Mean radius, mass density, and persistence length
of simulated polynucleosomes with random g along the fiber

lo-Width Persistence
of the Mass density length
distribution  Mean radius (hnm)  (nucleosomes/11 nm) (nm)
0° 31801 6.14 £ 0.11 265
10° (31.8=00) =01 (6.15=0.01) 010 240+ 29
20° (316+02) =02 (611+ 005 =025 169+ 77
30° (314+02)+04 (629+0.18)+020 2818

For anonzero width 6 different systems were simulated. The 8 are chosen
according to a Gauss-distribution with center at 110° and different widths.
The first error value (in parentheses) is the error of the mean; the second
error value is the standard deviation.

somes/11 nm at B = 110°. The mean diameter of this fiber
is36.1 £ 0.4 nm, thetilt of the nucleosome axis to the fiber
is55 + 2°, and of the DNA 84 = 2°, the persistence length
is 49 nm.

At arepesat length smaller than 200 bp, it is unlikely that
nucleosomes have a stem (see above). Therefore, we per-
formed calculations of stem-less polynucleosomes with
linker DNA of alength of 15 bp directly connected to the
chromatosome, corresponding to a repeat length of 192 bp
(e.g., in HeLacells). Here we chose o = 30°. At B = 120°,
the mass density is 5.6 = 0.1 nucleosomes/11 nm. If B is
increased above this value, a stable fiber is no longer
formed. The mean diameter of the fiber is 28.0 = 0.1 nm,
the persistence length 265 nm, the mean tilt of the nucleo-
some axis to the fiber axisis 55.2° = 0.7° and between the
linker DNA and the fiber axis 85.6° = 0.8°. These values
are in agreement with the experimental data. However, for
stemless polynucleosomes with a linker length of 40 bp
corresponding to arepeat length of 217 bp, it was not possible
to obtain stable fibers at any chosen vaue of 8 and .

DISCUSSION

Several experimental structural properties of the chromatin
fiber at physiological ionic strength could be reproduced in
our simulation.

The general aspect of the fiber resembles that of the
classical solenoid model: nucleosomes stack to form a helix
with a diameter of ~30 nm. However, other than in the
solenoid model, the linker DNA is straight and crosses the
fiber, so that next-nearest neighbors stack onto each other.
Experimentally, the radius of the fiber was determined to
~30 nm by electron microscopy (Finch and Klug, 1976).
The computed values of all fibers are between 28 and 36
nm, which isin good agreement with this value.

Data on the linear mass density of the fiber are contro-
versia in the literature. An overview of older data can be
found in the textbook by van Holde (1989). The most
reliable data of linear mass density of the fiber were gained
with neutron scattering and scanning transmission electron
microscopy experiments. At physiological ionic strength
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one finds a value of 6 nucleosomes per 11 nm (Gerchman
and Ramakrishnan, 1987). In the cited experiments, sperm-
ine was used to prepare the samples. Spermine binds tightly
to DNA; it might actually lead to an additional compaction
of the chromatin fiber because older neutron scattering
experiments without spermine show lower values of the
linear mass density at corresponding ionic strength (Suau et
a., 1979). On the other hand, light scattering data (Camp-
bell et a., 1978) agree well with the data from Gerchman
and Ramakrishnan (1987). Furthermore, in all cited exper-
iments chromatin was prepared by micrococcus nuclease
digestion; one could speculate that preferentially open chro-
matin structures are digested and only the more condensed
structures are left. In summary, a value of 6 nucleosomes
per 11 nm or somewhat smaller seemsto be compatible with
the experiments. The values of the computed fibers are
between 4.6 and 6 nucleosomes per 11 nm, which isin good
agreement with these data. A value of 6 nucleosomes per 11
nm was also used to fit the tilt angle between adjacent
nucleosomes 3. However, it is not trivial that this value of
compaction of the fiber can be reached, as it can be seen
from the fact that for a fiber with a repeat length of 212 bp
the maximal value found in our simulations was 4.6 nucleo-
somes per 11 nm.

The angle between nucleosomes and linker DNA to the
fiber axis can be determined from experiments using linear
dichroism. In the past, rather different results were reported
by various groups, but most were later attributed to prepa-
ration artifacts (Dimitrov et al., 1990). Through a consistent
reinterpretation of the valid data of flow linear dichroism

1o-width of the distribution (degree)

and electric linear dichroism, the angle between the linker
DNA and the fiber axis was estimated to be 50° to 90° and
the angle between the axis of the nucleosomal DNA super-
helix and the fiber axis to be 45° to 60°. These data are in
very good agreement with the values found for the simu-
lated fibers.

The experimental value of the persistence length of the
chromatin fiber depends on the technique that was used to
determine its value. Analysis of the distances between ge-
netic markers in nuclei from human fibroblasts (repeat
length ~190 bp) obtained from experiments using fluores-
cence in situ hybridization (van den Engh et al., 1992
Yokota et al., 1995) using a Flory (statistical segment)
model resultsin avalue of 100 to 140 nm, an analysis using
the Porod-Kratky wormlike chain model in 70 to 110 nm
(Mehring, 1998). The persistence length was aso deter-
mined by an analysis of the end-to-end distances of chro-
matin fibers of unknown origin bound to a mica surface and
measured with scanning force microscopy. The analysis
results in a value of 30 to 50 nm (Castro, 1994) as cited in
Houchmandzadeh et al. (1997). It is unclear whether the
binding of the fiber to mica causes artifacts. Very recent
experiments stretching single chromatin fibers from chicken
erythrocytes with laser tweezersresulted in avalue of 30 nm
(Cui and Bustamante, 2000) at low salt concentrations; no
data for the persistence length was given at physiologica
sat. In summary, it seems that for short repeat lengths the
persistence length is in the range of 30 to 140 nm. The
values from our simulations of regular fibers with shorter
repeat lengths (192 and 200 bp) are 200 and 265 nm, which

Biophysical Journal 82(6) 2847-2859
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FIGURE 9 Simulation of the condensation of a 100-
nucleosome fiber, starting from a stretched bead-string
structure (a), and after (b) 15,000, (c) 30,000, (d)
45,000, (e) 60,000, and (f) 160,000 steps. Nucleosomes
with stem, linker length 11 bp, « = 26°, B = 110°.

is larger than the experimental value, whereas the value of
49 nm for larger repeat length (212 bp) agrees well. The
persistence length of fibers with smaller repeat length de-
creases dramatically if we increase the width of the distri-
bution of B; a 1-o- width of 20° to 30° yields a persistence
length that fits very well to the experimental values. This
irregularity in B, i.e, in the twist between successive nu-
cleosomes, should in principle be implemented in the model
together with a corresponding change in linker length (to
keep the correct orientation of the DNA on the nucleosome).
However, in our model DNA is approximated by a homo-
geneous elastic rod whose rotational orientation on the
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histone core does not enter the model. Therefore, for sim-
plifying the simulation, we have chosen to neglect the linker
length change, taking into account the variation in 8 only.
Because the twist variation of 20° to 30° necessary to
reproduce the experimental persistence length of the chro-
matin fiber would correspond to a variation in linker DNA
length of only *1 bp, neglecting this length change should
not have dramatic consequences on the structure of the fiber
as long as the twist variation is accounted for correctly.
Theionic environment of the solvent is known to have an
important influence on the conformation of the chromatin
fiber. To assess the dependence of our model on the ionic
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strength, we performed simulations of a stemmed polynu-
cleosome with « = 26°, B = 110°, and alinker-DNA of 11
bp. The mass density of the simulated fiber does decrease
slightly with lowering the ionic strength (data not shown);
however, the measured decrease below 70 mM NaCl, which
is much more pronounced (Gerchman and Ramakrishnan,
1987), could not be reproduced quantitatively. This is not
surprising because we neglect in our model all effects of the
ionic strength on the nucleosomal interaction and on model
parameters such as «, B. Thus, the structural conclusions
that we draw from our model are for the moment only
valid at the near-physiological ionic conditions used in
most of our simulations. Here, the total contribution of
the electrostatic interaction (i.e., DNA-DNA repulsion)
to the chain energy is ~18% (data not shown); the
elastic, Gay-Berne contributions, and therefore the geo-
metrical effects dominate.

Changing the ionic strength will most probably act on the
chromatin conformation by changing the nucleosome-nu-
cleosome interactions,; however, this would require a pa-
rameterization of the ionic strength dependence of this
interaction. This can in principle be implemented in our
model by changing, e.g., the parameters of the Gay-Berne
potential in such away that the experimental dependence of
the linear mass density on salt concentration is reproduced.
However, a systematic investigation of the electrostatics
will require another extensive set of simulations; together
with a study of the dependence of the force-extension
curve on salt concentration, these calculations are cur-
rently underway and will form the subject of a forthcom-
ing publication.

0.2 0.3 0.4
gg [KT]

In a recent Brownian dynamics simulation where the
interaction potential between nucleosomes was described by
a point-charge approximation based on the known crysta
structure, Beard and Schlick (2001b) could demonstrate an
opening of the chromatin fiber structure when the ionic
strength was lowered from 50 to 10 mM. However, the
complexity of the interaction potential (Beard and Schlick,
20014) as well as the Brownian dynamics algorithm will
make the simulation much more computationally intensive
than a Monte Carlo approach. For systematic studies of
effects of linker DNA geometry on the structure of the
chromatin fiber, as well as for simulation of much larger
structures (such as entire chromatin loops of a size of
100—-200 kb), we therefore prefer the Monte Carlo proce-
dure used here.

Another Monte Carlo model for the chromatin fiber was
proposed recently (Katritch et al., 2000). The nucleosomes
were approximated by spheres interacting through simple
steplike potentials, and electrostatic interactions were not
included explicitly. Whereas the authors were able to repro-
duce the stretching experiments on single chromatin fibers
with laser tweezers at 5 and 40 mM NaCl, no data at
physiological ionic strength was shown. Also, no results of
the model for other well-known properties of the fiber, such
as mass density or diameter, were given in that work.

A long-standing debate in chromatin research is whether
the shape and properties of the fiber are regulated by the
internucleosomal forces (Luger et a., 1997) or geometrical
congtraints (Krajewski and Ausio, 1994). Our simulations
suggest that changes in the connection geometry between
subsequent nucleosomes might have a much larger influ-

Biophysical Journal 82(6) 2847-2859
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ence on the mass density than changes in internucleosomal
interaction forces. Further studies of this point, as well as a
more precise analysis of the persistence length and the salt
dependence of structural parameters will require the devel-
opment of more detailed potentials for the electrostatic
interactions of the DNA at short distances and for the
internucleosomal interactions.
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