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ABSTRACT Biological macromolecules are often studied in mixed solvents. To understand cosolvent-macromolecule
interactions, the preferential interaction coefficient, �3, may help determine surface solvent compositions. �3 measures the
amounts of water, B1, and cosolvent, B3, within the “local domain,” the (possibly far-reaching) region surrounding the
macromolecule where the solvent is nonbulk-like. The local domain’s boundary is, however, vague and it is unclear which
molecules are counted in Bi. It is useful to explore a simple model system to make Bi more concrete and to understand which
aspects of the surface solvent distribution, �(x), are sampled by �3. We performed computer simulations on a two-dimensional
(2D) system consisting of a hard-wall solute (the macromolecule) in a mixed solvent (hard disks of different radii). We
simultaneously calculated �3 and �(x). We found that 1) in practice, the local domain’s boundary is demarked by the outer limit
of the first cosolvent (not water) layer; Bi mainly counts the solvent near the macromolecule; 2) assuming B1 to count only the
waters within the first water layer is a poor approximation; 3) when determining B1 and B3, water and cosolvent molecules
must be counted from the same region of space. We speculate that these 2D results may serve as a first-order approximation
for the dominant contributions to �3 even in three dimensions, so long as the cosolvent is not strongly excluded from the
macromolecular surface and there is no significant long-ranged solvent structure.

INTRODUCTION

Mixed solvent systems are important to the understanding
of the structure and stabilities of macromolecules. For ex-
ample, the cosolvents urea and guanidine hydrochloride
have long been used to study protein denaturation, sucrose
is added to stabilize proteins, and alcohols are condensing
agents for DNA. (Technically, molecules such as urea,
guanidine hydrochloride, and sucrose are cosolutes. How-
ever, at typical concentrations, they make up a significant
fraction of the solution—8M urea is 43 wt % urea and 2 M
sucrose is 55 wt % sucrose. These cosolute molecules bathe
and solvate the macromolecular solute as water does. To
emphasize the cosolvents’ role in solvation and to treat them
on an equal footing with water, we refer to both cosolvents
and cosolutes as “cosolvent” molecules.)

To understand cosolvent-macromolecule interactions, it
is necessary to determine where the cosolvent molecules
are; do they tend to lie within the bulk solvent or do they
prefer to associate with the macromolecule? In particular,
what is the distribution (or the composition) of solvent at the
macromolecular surface? Currently, there is little informa-
tion on this. The primary experimental means of obtaining
atomic-resolution data on solvent structure are x-ray dif-
fraction and nuclear magnetic resonance (NMR) experi-
ments (Wiithrich et al., 1996). Both types of experiments
are fairly complex and require specialized equipment. Also,

they tend not to see all solvent molecules equally. Crystal-
lography detects the more ordered waters (Levitt and Park,
1993) whereas NMR more easily sees those with longer
residence times and those that are closer to the surface
(Otting et al., 1991; Otting, 1997). (In several NMR studies
of proteins in mixed solvents, only a few cosolvent mole-
cules could be unambiguously identified (Liepinsh and Ot-
ting, 1997; Ponstingl and Otting, 1997; Liepinsh et al.,
1999).) Other techniques, such as hydrodynamic, small-
angle x-ray and neutron scattering, calorimetric, dielectric,
and vapor-pressure absorption isotherm experiments, pro-
vide only low-resolution data on surface-associated solvent
(see, e.g., Kuntz and Kauzmann, 1974; Pessen and Ku-
mosinsky, 1985; Rupley and Careri, 1991; Svergun et al.,
1998). Atomic-resolution molecular mechanics simulations
pose as an alternative to experiment; in practice, however,
equilibrating the mixed solvent in the presence of a macro-
molecule is time-consuming and, to date, only two works
(Tirado-Rives et al., 1997; Sprous et al., 1998) have pub-
lished the distributions of neutral cosolvents at a macromo-
lecular surface.

Measurement of the preferential interaction coefficient,
�3,

�3 �
�m3

�m2
(1)

is a potentially powerful tool for examining the solvent at a
macromolecular surface. (We use the following notation:
component 1 is water, 2 is the macromolecular solute,
which we sometimes refer to simply as the “solute,” and 3
is the cosolvent. We use the term “solvent” to mean the
mixed solvent, not water; mi is the molality of species i.)
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Experiments to measure �3 are straightforward (although
tedious) and can be done by a variety of methods (see, e.g.,
Casassa and Eisenberg, 1964; Kuntz and Kauzmann, 1974;
Eisenberg, 1976; Schellman, 1990; Timasheff, 1993, 1998;
Zhang et al., 1996; and references therein). Many �3 data
have already been gathered on proteins and DNA in the
presence of many cosolvents as discussed in several review
articles (Kuntz and Kauzmann, 1974; Timasheff, 1993,
1998).

To understand what �3 tells us about the water and
cosolvent distributions (or compositions) at a solute surface,
let us first describe in molecular terms what �3 measures by
using the “local-bulk domain” (AKA “two-domain“) model
(see Record et al., 1998 and references therein), depicted in
Fig. 1. The “bulk domain” consists of the region where the
solvent displays the same properties as the mixed solvent in
the absence of macromolecular solutes. That region is suf-
ficiently far away from any solute so that the solvent doesn’t
“know” anything about the presence of solutes. In the “local
domain” the solvent properties have in some way been
affected by the solute. When all species are uncharged and
when �3 is measured at dilute concentration of solute, �3

can be interpreted as (Record and Anderson, 1995; Inoue
and Timasheff, 1972; Reisler et al., 1977)

lim
m230

�3 � B3 �
m3

bulk

m1
B1 (2)

where Bi is the number of i molecules (per solute) in the
local domain (i � water or cosolvent; m3

bulk is the cosolvent

molality of the mixed solvent in the absence of solute; m1 is
a constant, equal to 55.5 mol/kg for water). Record and
Anderson (1995) put this equation on a more rigorous
footing by showing that it is exact for the common situation
of measurement of �3 by dialysis equilibrium even when m2

is not negligibly small. (They also proposed functional
forms for how B3 and B1 depend on m3

bulk, in terms of
coefficients of partition and stoichiometry of solvent-cosol-
vent exchange. However, representation in terms of these
coefficients is not necessarily unique.) It is not necessary to
make any assumptions regarding the nature of the interac-
tion between either solvent species and the solute (Na and
Timasheff, 1981); the interactions can be attractive or re-
pulsive or the solute may merely change the structure of the
mixed solvent such that the local density of either or both
solvent species is altered. One can also write for the pref-
erential hydration, �1 � � �m1/m3

bulk� �3 (see Schellman,
1990 and references therein),

lim
m230

�1 � B1 �
m1

m3
bulk B3. (3)

�1 is merely a different way of presenting the information in
�3. In this work we consider only uncharged species. The
equations for �3 and �1 are modified when charges are
present (see, e.g., Record et al., 1998).

(Note that in the literature there is another valid interpre-
tation of Eqs. 2 and 3, in which the Bi values are heuristi-
cally thought of as “effective total numbers of [cosolvent]
and water molecules in contact with sites on the [solute]
surface” (Timasheff, 1998). The exact interpretation used
here and by others (Arakawa and Timasheff, 1982b; Record
and Anderson, 1995; Hammou et al., 1998) is different in
that the Bi values count the number of real solvent mole-
cules in the entire local domain, not solvent molecules
effectively contacting the solute surface.)

The sign of �3 tells us about the local solvent composi-
tion as compared to that of the bulk solvent. Dividing Eq. 2
by B1 (which is positive by definition), we see that the sign
of �3 is determined by the quantity B3/B1 � m3

bulk/m1. B3/B1

and m3
bulk/m1 are the cosolvent:water number ratios in the

local domain and of the bulk binary solvent, respectively.
When �3 � 0 (�1 � 0), the solvent composition (but not
necessarily the solvent density) of the local domain is de-
pleted in cosolvent and/or enriched in water relative to that
of the bulk binary solvent. This is what is meant by the term
“preferential hydration.” Likewise, when �3 � 0 (�1 � 0)
the solvent composition of the local domain is depleted in
water and/or enriched in cosolvent relative to bulk, and is
described by the term “preferential binding” (although there
may be no actual binding going on) or “preferential accu-
mulation” of cosolvent. “Preferential solvation” by water/
cosolvent is another commonly used term.

FIGURE 1 The two-domain model. The “bulk domain” is the region
where the solvent has characteristics of bulk solvent, as if there were no
solute present. The solvent in the “local domain” is in some way altered by
the presence of the solute. There is no well-defined boundary between the
local and the bulk domains (Kuntz and Kauzmann, 1974).
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Unfortunately, it is not yet clear how to interpret the
magnitude of �3. Because solvent interactions are relatively
weak, there is unlikely to be a sharp physical boundary
between the local and bulk domains (Kuntz and Kauzmann,
1974). Hence, one cannot say definitively which solvent
molecules are counted in Bi and contributing to �3. Also, for
the purpose of understanding solute-solvent interactions,
information on the solvent population right next to the
solute is desired. However, experimental evidence indicates
that the local domain can extend over quite a large territory,
even when the interactions are short-ranged. For example,
changes in water structure due to solid hydrophobic surfaces
can be sensed tens of nanometers away (see, e.g., Blokzijl
and Engberts, 1993; Vogler, 1998). Even the water distri-
bution around proteins (Komeiji et al., 1993; Lounnas et al.,
1994; Makarov et al., 1998), peptides (Gerstein and
Lynden-Bell, 1993), and small solutes (e.g., argon (Blokzijl
and Engberts, 1993) and N-methylacetamide (Beglov and
Roux, 1996)) as well as the distributions of urea and triflu-
oroethanol around a methane solute (Smith, 1999) display
two or more peaks, corresponding to two or more layers of
structured solvent. Thermodynamic experiments suggest
that the protein perturbs solvent beyond the first water shell
(see Lounnas et al., 1994 and references therein). In sum-
mary, not only is it not clear which solvent molecules are
counted in Bi, but also the counted solvent molecules may
not be contacting, nor binding, nor necessarily even close to
the solute. Because of these two issues, it is not yet clear
how to turn �3 data into quantitative information on the
solvent population near the solute.

The broad goal of our research is to get quantitative
information on the solvent distribution (or composition) at
the solute surface from �3. In particular, we would like to
obtain the number of cosolvent (water) molecules within the
first cosolvent (water) shell at the solute surface. We call
this quantity B3

fs(B1
fs), “fs” standing for first shell. To obtain

B1
fs and B3

fs from �3 and Bi data two hurdles need to be
overcome.

The first hurdle is that the relationship between Bi
fs and Bi

needs to be determined. The latter measures the number of
i’s in the entire local domain, which clearly encompasses i’s
first shell but likely extends further (i.e., Bi � Bi

fs). How-
ever, in practice, because the solvent molecules that are
most affected by the solute lie close to it, one expects that
the major contribution to �3 should be due to the first-shell
solvent molecules. If �3 is mostly a function of the Bi

fs

values, then Bi should in some way also be dominated by
Bi

fs. However, this relationship between Bi and Bi
fs has not

yet been worked out. Another way to phrase the issue is that
the exact definition of Bi is not very useful for understand-
ing solvent behavior near a solute, as Bi counts the solvent
over a poorly demarked and potentially large territory. Can
we find an approximate definition of Bi based on the nearby

solvent distribution that, when plugged into Eq. 2, gives a
good first-order approximation to �3? If so, then we can get
a sense of how �3 samples the properties of the nearby
solvent distribution.

Second, a validated method of obtaining B1 and B3 from
�3 is needed. With one experimental quantity (�3) and two
desired unknowns (B1 and B3), some assumptions on the Bi

values or on the solvent distributions must be made. For
example, 1) it has been suggested that B1 be obtained from
(or compared to) independent experiments on the macro-
molecular solute in the absence of cosolvent (Inoue and
Timasheff, 1972; Lee and Timasheff, 1974, 1981; Lee and
Lee, 1981; Na and Timasheff, 1981; Arakawa and Ti-
masheff, 1982a, b, 1985; Timasheff, 1998; Courtenay et al.,
2000a), e.g., by the NMR method of Kuntz (1971) or by the
vapor pressure measurements of Bull and Breese (1968), or
that B1 be obtained using a different cosolvent (e.g., a
“completely excluded” one (Courtenay et al., 2000a)). The
assumption here is that B1 is unchanged by the addition of
(or a change in the) cosolvent. 2) Various researchers have
made comparisons of B1 values to the amount of water in a
monolayer (Zhang et al., 1996; Hammou et al., 1998; Cour-
tenay et al., 2000a) suggesting that B1 � B1

fs and that the
local domain extends only through the first shell of the
water, the mixed solvent further out behaving (mostly) like
bulk. 3) To explain the effects of denaturants on proteins, it
has been assumed that the cosolvent partition coefficient
and water-cosolvent exchange stoichiometry are indepen-
dent of cosolvent concentration (Courtenay et al., 2000b). 4)
A steric-exclusion model (Arakawa and Timasheff, 1985;
Bhat and Timasheff, 1992) attributes preferential hydration
to the cosolvent molecules’ larger-than-water size. The co-
solvent molecules cannot closely approach the solute, and
the region right up against the solute is assumed to be filled
only with pure bulk water. 5) In the analysis of osmotic
stress experiments, which often aim to measure the number
of water molecules “bound” or “released” in a reaction like
the binding of a ligand to a protein (Parsegian et al., 1995),
it is assumed that 	B3 � 0 (see Parsegian et al., 1995;
Timasheff, 1998, references therein, and below). Parsegian
et al. (1995) discuss under what conditions this approxima-
tion is valid, but not all works have followed their careful
guidelines. (To translate the language of osmotic stress to
that of preferential interactions, see Table 1 of Parsegian et
al., 2000; also, what is called New, the “excess number of
waters,” is equivalent to �1; similarly, Nes, the “excess
number of [cosolvent molecules],” is �3. By equating 	New

with a difference in number of waters associated with the
product versus with the reactant, the implicit assumption is
that 	B3 � 0.) 6) By assuming that B1 and B3 values are
constant, independent of solvent composition, the Bi values
can be readily obtained from the slope and intercept of
linear �3 versus m3

bulk (or �1 versus 1/m3
bulk) plots (Reisler et

2878 Tang and Bloomfield

Biophysical Journal 82(6) 2876–2891



al., 1977; Lee and Lee, 1979, 1981; Na and Timasheff,
1981; Lee and Timasheff, 1981; Eisenberg, 1994).

Clearly, various assumptions have been used to under-
stand �3 (or �1) data or to extract B1 and B3 values from
these data; to date, none of these assumptions has been
validated against surface solvent distributions.

To overcome these two hurdles, what is needed is a
way to measure, on the same solute-mixed solvent sys-
tem, both �3 and the water and cosolvent distributions
around the solute. From the latter, Bi and Bi

fs values can
be calculated. As discussed above, obtaining solvent dis-
tribution data on mixed solvents from either experiment
or from atomic-resolution simulations is difficult. We
therefore turn to modeling simple systems. In this work,
we have performed Monte Carlo simulations on two-
dimensional (2D) systems consisting of a 2D “box” with
two hard “walls”; the box contains a binary mixture of
small (component 1) and large (component 3) circular
hard disks (see the sample configuration in Fig. 2 A). The
hard wall mimics a macromolecular surface (component
2). The small and large hard disks are simplified repre-

sentations of the water and cosolvent molecules, respec-
tively. The number and size ratios of the small-to-large
disks are varied to study different solvent compositions
and cosolvents of different sizes. Because of the absence
of directed soft interactions, we can investigate excluded-
volume contributions to �3. We chose to model a 2D
system because the lower dimensionality lets us simulate
a system with many fewer molecules (a ratio of �N�1/3

fewer than in three dimensions) with a considerable sav-
ings in computational time. This is critical because it is
difficult to gather sufficient statistics to precisely deter-
mine �3 (which is a measure of fluctuations). The time
savings allows us to examine many different water:co-
solvent compositions—including those fairly dilute in
cosolvent—and several different cosolvent sizes. Equili-
bration was not a serious issue (as it is for more realistic
simulations) except in cases of very dilute cosolvent
and/or large cosolvent molecules. Because our conclu-
sions are qualitative, originating from a sound physical
basis, extending our results to three dimensions and to
complex-shaped molecules is straightforward.

TABLE 1 Simulation details

R3/R1 r3
bulk Cos:Wat “Volume” Ratio* Box Dimensions† �3

‡

1.3 0.5847 0.99 28.0 
 28.5 �0.00842 � 2.9%
1.3 0.2953 0.50 28.0 
 42.6 �0.00571 � 2.4%
1.6 0.5825 1.50 28.0 
 35.8 �0.0135 � 1.2%
1.6 0.3867 0.99 28.0 
 71.8 �0.0110 � 1.1%
1.6 0.2941 0.75 28.0 
 49.9 �0.0099 � 1.2%
1.6 0.1927 0.49 28.0 
 64.7 �0.072 � 1.6%
2.0 0.2463 0.99 40.0 
 47.1 �0.0118 � 1.5%
2.0 0.1641 0.66 40.0 
 49.1 �0.00937 � 1.9%
2.0 0.1232 0.49 40.0 
 47.1 �0.00813 � 2.2%
2.0 0.08210 0.33 40.0 
 47.1 �0.00584 � 4.0%
2.0 0.06211 0.25 40.0 
 58.9 �0.00460 � 2.7%
2.0 0.03070 0.12 40.0 
 106 �0.00257 � 6.7%
2.0 0.01539 0.062 40.0 
 200 �0.00140 � 3.9%
2.0 0.007692 0.031 40.0 
 389 �0.00068 � 7.2%
2.3 0.1853 0.98 28.0 
 89.1 �0.0117 � 1.2%
2.3 0.09251 0.49 28.0 
 89.1 �0.0077 � 1.5%
3.0 0.1084 0.98 40.0 
 70.7 �0.0103 � 3.6%
3.0 0.07270 0.65 40.0 
 70.7 �0.0087 � 6.0%
3.0 0.05462 0.49 40.0 
 79.5 �0.0074 � 8.1%
3.0 0.03609 0.32 40.0 
 106 �0.0056 � 7.5%
3.0 0.02720 0.24 28.0 
 189 �0.0044 � 8.0%
3.0 0.01363 0.12 28.0 
 341 �0.0024 � 4.8%
3.0 0.009092 0.082 28.0 
 492 �0.0016 � 7.0%
4.0 0.05991 0.96 32.0 
 157 �0.076 � 10.5%

In addition to the binary solvents listed here, available from the authors are data with � � 0.33, R3/R1 � 1.26, 2.0, 3.0, and 4.0, and � � 0.5, R3/R1 �
2.0. Most of the simulations were run with 1.5 
 109 trial moves, 0.5 
 109 of them during the equilibration phase; the only exceptions were the systems
(R3/R1 � 2.3, r3

bulk � 0.1853 and 0.09251: 3.0 
 109 total trial moves, 0.25 
 109 equilibration); (R3/R1 � 3.0, r1
fs � 0.1084: 1.4 
 109 total trial moves,

0.4 
 109 equilibration); (R3/R1 � 3.0, r3
bulk � 0.02720; 6.0 
 109 total trial moves, 0.5 
 109 equilibration); (R3/R1 � 3.0, r3

bulk � 0.01363: 24 
 109

total trial moves, 0.5 
 109 equilibration); (R3/R1 � 3.0, r3
bulk � 0.009092: 24 
 109 total trial moves, 1.0 
 109 equilibration); and (R3/R1 � 4.0, r3

bulk

� 0.05991: 2.0 
 109 total trial moves, 1.0 
 109 equilibration).
*The ratio of the total 2D volume occupied by cosolvent relative to the total volume occupied by water, (�N3

bulk
�R3
2)/(�N1

bulk
�R1
2).

†In units of R1. Both the ms box and the bulk box are the same dimensions, listed as the distance between the hard walls 
 the length of the hard wall.
‡Per unit length of hard wall.
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For each of the many solvent compositions and cosol-
vents we studied, we analyzed the surface solvent distribu-
tions and made comparisons to �3. We found the following:
1) although the local domain in principle can extend quite
far from the solute surface, in practice, its boundary can be
demarked by a cosolvent (not water) monolayer, if solvent
structure is short-ranged. (The cosolvent monolayer is
thicker than the water monolayer because cosolvent mole-
cules are larger than water molecules.) 2) The solvent struc-
ture associated with the second and further layers of solvent
can mostly be ignored (if solvent structure is short-ranged).
3) Combining 1) and 2) yields a recipe for Bi (see also Fig.
3 B):

B1 � B1
fs � �1

bulk �V 3
fs � V 1

fs� (4)

B3 � B3
fs (5)

where �1
bulk is the average water number density in the bulk

mixed solvent, and (V3
fs � V1

fs) is the difference between the
volume of space corresponding to the cosolvent first shell
(V3

fs) and that corresponding to the water first shell (V1
fs).

�1
bulk (V3

fs � V1
fs) is the amount of water that would be in the

region of space between the end of the water first shell and
the end of the cosolvent first shell if it were filled with bulk
mixed solvent. 4) Including only first-shell waters in B1 is
not a good approximation (B1 � B1

fs). These results are, of
course, specific to the simple 2D solvent/solute system we
studied. However, because the main assumption behind

these conclusions is that the degree of solute-induced sol-
vent structure associated with the first cosolvent shell is
much larger than that associated with the second and further
shells (and likewise for water), these results may serve as a
first-order approximation for real solvents whenever the
solvent-structure induced by the solute is short-ranged and
neither solvent species is strongly repelled by the solute.
Lastly, we also investigated a steric-exclusion model of
preferential hydration (Arakawa and Timasheff, 1985; Bhat
and Timasheff, 1992). The model’s approximations on the
solvent distribution are nonphysical and the predictions of
�1 values are not accurate.

METHODS

Model of the solvent and solute

In our simplified model, the water and cosolvent are small and large hard
circular 2D disks of radii R1 and R3, respectively. The macromolecular
solute’s surface is modeled as a flat hard 2D “wall” of effectively infinite
length. The only interactions are excluded-volume in nature. The solvent
molecule disks cannot overlap with each other or with the solute hard wall.
Fig 2 A displays a sample configuration.

We chose to model this simple system primarily for the savings in
computational time, as mentioned in the Introduction. Representing the
solvent and solute as low-resolution hard circular disks and as a hard flat
surface, respectively, also speeds computation and allows us to examine
excluded-volume effects on �3 without the complication of shape effects.
Future work would involve simulations of the hard sphere model in three
dimensions to make direct comparisons with experiment, and might also

FIGURE 2 Sample configurations of the ms (A) and the bulk (B) boxes. The small light gray circles represent the water molecules, the large dark gray
circles the cosolvent molecules. The dotted box boundaries represent the periodic boundary conditions, and the solid boundaries the hard walls. Here,
R3/R1 � 1.6 and r3

bulk � 0.5825.
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add soft interactions (see, e.g., Silverstein et al., 1998) and examining
differently shaped solutes and solvent.

In this work we performed simulations with several different cosolvent
radii: R3/R1 � 1.3 (which is approximately the cosolvent:water hard-
sphere-radius ratio for methanol); 1.6 (ethanol, ethylene glycol, trifluoro-
ethanol, urea); 2.0, 2.3 (glucose); 3.0 (sucrose); and 4.0 (which is the ratio
of the radius of gyration of PEG 200 to the water radius). To obtain the
values of R3/R1, the hard-sphere radii are averages from values tabulated in
Tang and Bloomfield, 2000, except that of trifluoroethanol is an average
from the values calculated using the methods described in Edward, 1970
and Ben-Amotz and Willis, 1993, and the radius of gyration of PEG 200 is
from Bhat and Timasheff, 1992.

Monte Carlo simulations

We mimic a dialysis equilibrium by simulating two different boxes, one
(denoted the “ms” box) containing the hard-wall macromolecular solute

surface plus binary solvent; and the other box (“bulk”), containing only the
binary solvent. Fig. 2, A and B show sample configurations of the ms and
bulk boxes, respectively. Each box, separately, is simulated under the
grand canonical ensemble with the parameters (	1, 	3, V). This means that
the water and the cosolvent in the ms box are in chemical equilibrium with
the water and the cosolvent of an infinite bath of mixed solvent with
parameters (	1, 	3); the bulk box’s solvent is also in exchange equilibrium
with an infinite bath of mixed solvent with the same parameters (	1, 	3).
Because the solvent of both the ms and bulk boxes are in chemical
equilibrium with the same infinite mixed-solvent bath, the ms and bulk
boxes are, in effect, in chemical equilibrium with each other. This is how
we mimicked a dialysis equilibrium.

Because both boxes (separately) were simulated under the grand ca-
nonical ensemble, the numbers of water and cosolvent molecules (N1 and
N3, respectively) in each box fluctuate, but their equilibrium averages �N1

and �N3
 are well defined. Because of the constraint of not allowing overlap
of solvent with the hard walls, there is a very small net reduction of
particles from the ms box relative to the bulk box (�Nms

i
 � �Nbulk
i
), which

is what �3 detects.
In this paper we examine many different binary solvents, each specified

by the variables (R3/R1, r3
bulk, �), where r3

bulk is the average cosolvent:water
number ratio in the bulk binary solvent (r3

bulk � �N 3
bulk
/�N 1

bulk
 � m3
bulk/

m1), and � is the average packing fraction (fractional volume occupancy)
of the bulk solution (� � (�N 3

bulk
�R3
2 � �N 1

bulk
�R1
2)/V). Except where

indicated, all studies were performed with � � 0.39–0.40. We chose this
value because, at this density, the amount of surface solvent structure is as
much as or more than that seen by experiment and high-resolution simu-
lations (see, e.g., Burling et al., 1996; Tirado-Rives et al., 1997; Sprous et
al., 1998; Pettitt et al., 1998). In any case, changing the overall packing
fraction does not greatly affect the �3 values. For the solvent system of
(R3/R1 � 2, r3

bulk � 0.12) reducing the packing fraction to 0.33 reduces the
magnitude of �3 by 14%; increasing � to 0.5 increases ��3� by 17%. For the
solvent sytem of (R3/R1 � 2, r3

bulk � 0.25), the changes in ��3� are �11%
and �7%, respectively.

Below, we describe the details of the boxes and the simulations. Table
1 lists the simulation parameters for each of the mixed solvents. The ms
box has two opposing hard walls at left and right, and periodic boundary
conditions at top and bottom. The opposing hard walls are sufficiently far
apart that they are separated by a large region of solvent that is bulk-like
(i.e., whose density is uniform at the same value as in the bulk box). The
opposing hard walls are thus not interacting with each other and the limit
of dilute solute is maintained. In the bulk box we have implemented
periodic boundary conditions in all directions. Starting configurations were
created by one by one, placing each solvent molecule at a random location;
if there was an overlap, a new random location was selected repeatedly
until a nonoverlapping location for the molecule was found. The starting
values of Ni were the same for both the ms and bulk boxes.

The Monte Carlo moves for each solvent species, i, consisted of 1)
displace steps, in which a random molecule of species i is displaced to a
new location; the new location is random within a square with sides of
length 2R1 centered at the molecule’s original location; 2) create moves, in
which a molecule of species i is created at a random location in the box;
and 3) destroy moves, in which a random molecule of species i is removed
from the box. The sequence of events during the Monte Carlo sequence is
1) a species (water or cosolvent) is chosen randomly; 2) a type of move
(displace, create, or destroy) is chosen randomly; 3) the move is accepted
or rejected based on a Metropolis criterion (see, e.g., Allen and Tildesley,
1987). In practice, because there are only hard interactions, the displace
move is accepted as long as there is no overlap. The acceptance probability
for the create move is min[1, ziV/(Ni

old � 1)], where zi is the activity of
species i and Ni

old is the number of i’s in the box before the move is
attempted. zi � exp(	i/(kT))/
i

3 (
i is the thermal de Broglie wavelength

i � (h2/2�mikT)1/2). The acceptance probability for the destroy move is
min[1, Ni

old/ziV]. 4) The move is performed. In the case of displace and

FIGURE 3 (A) Sample �(x) data, normalized by the bulk density in the
mixed solvent. This distribution is typical in that there is an unambiguous,
large first peak corresponding to the first layer of solvent, and often several
smaller peaks corresponding to the second and further layers. In this
example, R3/R1 � 2.3 and r3

bulk � 0.1853. (B) Approximated �(x), same
as A with the bumps and wiggles associated with the second and further
layers of solvent flattened to bulk densities. For this approximate
surface solvent distribution, the local domain’s outer boundary is at
x3

min. Therefore, Bi counts the number of solvent molecules out to x3
min.

B1 and B3 are represented by the vertically and horizontally hatched
regions, respectively.
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create moves, if there is an overlap, the move is rejected. Checking for
overlaps was the most time-consuming calculation, and to do it less
frequently, this step was performed after step 3. 5) The cycle of steps 1–4
is repeated until the desired number of Monte Carlo trial moves has been
executed. (Note that this sequence of events is different from in a more
typical scenario when there are soft interactions. In the latter case, the
acceptance criterion depends on the total energy of the system, which
depends on the configuration of molecules; the move must then be at-
tempted before the acceptance criterion is calculated and hence steps 3 and
4 must be reversed.) Because our solvent consists of a mixture of hard
disks, we took advantage of scaled-particle theory to set the solvent
activities, zi, such that the equilibrium values of �i

bulk were very close to the
values we desired. As 	i � kTln(
i

3�i
bulk) � Wi (Wi is the work of inserting

an i at a fixed site; see, e.g., (Ben-Naim, 1974), zi � �i
bulk exp(Wi/(kT). We

obtained Wi/(kT) from scaled-particle theory in two dimensions (Lebowitz
et al., 1965). To increase the computational speed, we used the cell method
of neighbor lists (see Allen and Tildesley, 1987) for the waters. For each
binary solution (R3/R1, r3

bulk, �), we performed at least six simulations with
different random seeds to obtain statistics and error bars. Error bars were
calculated as the standard error.

Calculation of �3 and Bfs

During each simulation run, for each box (ms or bulk), we gathered �N1

and �N3
 data. For the ms box, we also calculated �1(x) and �3 (x), the
average densities of water and cosolvent molecule centers, respectively, at
a distance x from the hard wall. Fig. 3 A, shows an example of such a
distribution.

We calculated �3 based on its definition. If we divide Eq. 1 by the
molecular weight of water, we see that �3 can be recast in terms of the
cosolvent(solute):water number ratios, ri (��Ni
/�N1
): �3 � �r3/�r2. Be-
cause the ms box is essentially the bulk box with two solutes (two hard
walls, far apart) added to it, we can directly calculate �3 by approximating
the derivative by a difference:

�3 �
	r3

	r2
, (6)

where 	 indicates the difference between the ms and bulk boxes (e.g., 	r �
rms � rbulk). Let us now determine 	r3 and 	r2:

	r3 �
�N3

ms


�N1
ms


�
�N3

bulk


�N1
bulk


�
�N3

bulk
 � �	N3


�N1
bulk
 � �	N1


�
�N3

bulk


�N1
bulk


(7)

and

	r2 �
2

�N1
ms


�
0

�N1
bulk


�
2

�N1
bulk
 � �	N1


. (8)

Because the ms box is dilute in solute, �	N3
 �� �N3
bulk
 and �	N1
 ��

�N1
bulk
. Inserting Eqs. 7 and 8 into Eq. 6, and performing a Taylor’s

expansion keeping only first-order terms in �	N3
/�N3
bulk
 and �	N1
/

�N1
bulk
, we obtain

2�3 � �	N3
 �
�N3

bulk


�N1
bulk


�	N1
 � �	N3
 � r3
bulk �	N1
.

(9)

(The factor of 2 arises because there are two solutes.)

Note that this method of obtaining �3 from a grand canonical simulation
is different than that of Record and co-workers (Mills et al., 1986; Olmsted
et al., 1989, 1991, 1995) who simulated without explicit water. Because our
simulations contain explicit water, they are more useful for examining
effects where the interactions with water are comparable in magnitude with
interactions with cosolvent.

Bi
fs is defined as the number of i molecules within the first peak of �i(x):

Bi
fs � �

0

xi
min

�i�x��dx� (10)

where xi
min is the location of the first minimum in the �i(x) distribution (see,

e.g., Fig. 3 A) and demarks the “end” of the first shell of species i; xi
min is

the thickness of a monolayer of i. Note that, as the cosolvent is larger than
water, a cosolvent monolayer is thicker than a water monolayer (x3

min �
x1

min).
In this paper, all lengths are reported in units of the water radius (i.e.,

a water radius is “1”). In the limit of dilute solute, the amount of solvent
accumulated at a surface depends linearly on the surface area if the surface
is uniform. Therefore, �3, �1, Bi, and Bi

fs are all proportional to the length
of the hard wall. In this paper, �3, �1, Bi, and Bi

fs values are all reported per
unit length (�R1) of hard wall.

RESULTS

How Bi depends on the solvent near the solute

In practice, the local domain is demarked by the outer
edge of a cosolvent monolayer; Bi depends mostly on Bi

fs.

First, we describe what a typical solvent distribution
looks like. Fig. 3 A shows an example. There is an
unambiguous, large first peak corresponding to the first
layer of solvent and often several much smaller peaks
corresponding to the second and further layers. These
features of the distribution were observed for all the
cosolvent sizes and solvent compositions, even those that
were dilute in cosolvent. (These features are not artifacts
of two dimensions because distributions of hard-sphere
mixed solvents in three dimensions show the same be-
havior (Tan et al., 1989; Sokolowski and Fischer, 1990;
Noworyta et al., 1998). The infinitely sharp first peak is
due to the absence of soft interactions. For real solvents,
the first peak would be softened with a leading edge of
finite slope (compare Throop and Bearman (1965) with
(1966)).)

If the solvent structure associated with the second and
further shells is ignored, the approximated water and cosol-
vent �(x) curves then look like Fig. 3 B. The local domain
in this approximation has a well-defined outer boundary at
the end of the cosolvent first shell (at x3

min). Even though the
water’s properties are assumed to be bulk-like in the region
beyond x1

min, the overall binary solvent’s properties are not
bulk-like until x3

min, and hence the region between x1
min and

x3
min is still part of the local domain. The bulk domain is at

x � x3
min in this approximation.
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Let us now compare the preferential interaction coeffi-
cient associated with this approximate solvent distribution
(we call it �3

app) with the exact value. We calculate �3
app

using Eq. 2 with the Bi values corresponding to this approx-
imate solvent distribution (Bi is obtained by integrating the
approximate �i(x) out to x3

min). B1 and B3 are represented by
the vertically and horizontally hatched regions, respectively,
in Fig. 3 B. Note that B1 � B1

fs because more than first-shell
waters are counted. Fig. 4 shows that �3

app is an excellent
approximation for �3 for all solvent compositions and co-
solvent sizes.

Also, to check the robustness of our results on overall
solvent density, we increased the total packing fraction from
0.4 to 0.5 (which increases the solvent structure). For two
solvent compositions with R3/R1 � 2, �3

app still exactly
agrees with �3 (data not shown).

�3 is indeed dominated by the first shells of water and
cosolvent. The solvent structure associated with the second
and higher shells can be mostly ignored for the purposes of
determining �3 and for understanding from where the dom-
inant contributions to �3 arise. Also, because the solvent
beyond the first shells can be assumed to be bulk-like in
density, the local domain in practice extends only to the end
of the cosolvent monolayer.

A recipe for relating Bi to Bi
fs is given by Eqs. 4 and 5.

�1
bulk (V3

fs � V1
fs) counts the water molecules that would lie

in the space between x1
min and x3

min. This region is part of the
local domain and the waters in it must be counted in B1. For
our simple 2D model with a planar solute, (V3

fs � V1
fs) �

(x3
min � x1

min) 
 [the length of the hard wall]. For a three-
dimensional (3D) spherical solute of radius R2, (V3

fs � V1
fs)

would be 4/3�[(R2 � x3
min)3 � (R2 � x1

min)3].

Assuming that B1 counts only the water in a monolayer
leads to the prediction of the wrong sign for �3

Various researchers (Zhang et al., 1996; Hammou et al.,
1998; Courtenay et al., 2000a, b) have suggested obtaining
B1 from (or compared their predictions of B1 to) the number
of molecules within a monolayer of water, implying that
B1 � B1

fs, omitting the waters in the volume (V3
fs � V1

fs). To
find out whether this a good approximation, we set B1 to B1

fs

and B3 to B3
fs, and calculated the corresponding preferential

interaction coefficient, B3
fs � r3

bulkB1
fs (from Eq. 2). In Fig. 5,

which compares the exact �3 to B3
fs � r3

bulkB1
fs, we see that

this is clearly a bad approximation because B3
fs � r3

bulkB1
fs �

0, whereas �3 � 0. (When there are only excluded-volume
interactions, the smaller species is always preferentially
accumulated relative to the larger because the smaller mol-
ecules can better fit in the cavities and crevices between the
larger ones and the solute surface. That’s why potato chip
crumbs are at the bottom of the bag.)

Assuming B1 � B1
fs is a poor approximation because the

number of waters counted in B1 is too small. Because
cosolvent molecules are almost always larger than water,
the cosolvent monolayer is thicker than the water mono-
layer. The cosolvents counted in B3 are in the shell 0 � x �

 

FIGURE 4 The bumps and wiggles in the solvent distribution associated
with the second and further solvent layers can be ignored. If the peaks and
valleys associated with these further solvent shells have been flattened to
bulk density (see, e.g., Fig. 3 B), the resulting approximate preferential
interaction coefficient (�3

app) compares excellently to the exact �3. The key
indicates the values of R3/R1. Except where shown, the y-error bars are
smaller than the points.

 
 

 

 

FIGURE 5 Assuming that B1 is the amount of water in a water mono-
layer predicts the wrong sign for �3. If it is assumed that Bi is the amount
of i in an i monolayer, then B3

fs � r3
bulkBi

fs is the corresponding preferential
interaction coefficient. Comparing these values with the exact �3 values,
we see that for all the mixed solvents we investigated, B3

fs � r3
bulkB1

fs values
are positive, whereas the �3 values are negative. (The key indicates the
values of R3/R1; y-error bars for R3/R1 � 1.6 and 2.3 were omitted because
they are smaller than the point.)
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x3
min, whereas the waters are counted from the thinner shell

0 � x � x1
min. The predicted �3 is then too positive.

Even though we can ignore water’s nonbulk properties
beyond its first shell (and assume bulk behavior in these
farther regions), we cannot ignore the actual water mole-
cules beyond the water’s first shell. Some of them still need
to be counted in B1. The region from which one counts
water molecules to obtain B1 must be the same as that from
which one counts cosolvent molecules for B3 (more below).

How thick is a cosolvent monolayer?

We’ve established earlier that, for practical purposes, the
local domain extends only to the end of the cosolvent first
shell. How far from the surface is that?

Let us describe in physical terms approximately where
the peaks and troughs in the �3(x) distribution should lie.
(The argument is based on that by Ben-Naim (1974) to
understand the radial distribution functions (g(r)) of a bi-
nary solution.) Fig. 6 shows the configurations correspond-
ing to the first two peaks of the cosolvent distribution. The
dark gray molecules are the cosolvent molecules under
“observation,” i.e., the ones for which �3(x) is considered.
The light gray molecule, which is usually a water because
most molecules are waters, fills the space between the
observed cosolvent and the wall. We see that in the cosol-

vent distribution, the first and second peaks lie approxi-
mately distances R3 (plus a little for thermal motion) and
2R1 � R3 (plus a little) from the wall, respectively. The first
minimum (the end of the first cosolvent peak) should lie
somewhere in between, �R1 � R3 (plus some) from the
wall.

To demonstrate that this rough argument holds, at least
for our simple solvent system, in Fig. 7 we graph x3

min as a
function of cosolvent size. The heavy solid line is our
heuristic lower bound for the location of the x3

min. We find
that as a rough rule of thumb that x3

min � 2R1 � R3, which
is shown as the light solid line. In other words (plus some)
is about a water’s radius.

Because this heuristic argument only assumes that hard
interactions are the primary determinants of the packing
arrangement of a liquid (it has been argued that this is true
for many liquids (Reiss, 1966)), it should roughly hold for
real solvents against a real solute surface. If, however, other
interactions predominate the packing arrangment, this argu-
ment should break down.

Because the local domain’s size grows with the cosol-
vent, for larger cosolvents, one must count more water
layers to determine B1 than for smaller ones. The local
domains of even moderately sized cosolvents can extend
quite a bit beyond a water monolayer. For example, when
R3/R1 � 3.0 (corresponding in size to sucrose), the local
domain and Bi encompass two water layers (data not
shown).

FIGURE 6 How thick is a cosolvent monolayer? This figure accompa-
nies the heuristic argument in the text that describes where the peaks and
valleys in the surface cosolvent distribution should be. It shows the
molecular configurations corresponding to the first two peaks of the
cosolvent distribution. The dark gray circles correspond to the cosolvent
molecules for which �3(x) is observed; the light gray circle corresponds to
the water that serves as a spacer between the wall and the observed
cosolvent molecule.

FIGURE 7 The thickness of a cosolvent monolayer increases linearly as
a function of cosolvent size. The outer delimiter of the cosolvent mono-
layer, x3

min, is shown as a function of cosolvent size (in units of R1). For a
given cosolvent, x3

min depends only weakly on the solvent composition, so
data for all solvent compositions are plotted together (x3

min and x1
min shift

slightly closer to the solute surface as the cosolvent concentration in-
creases; data not shown). The heavy solid line is our underestimate x3

min �
R3 � R1. x3

min � R3 � 2R1 (light solid line) provides a rough rule of thumb
for locating the end of the first cosolvent layer. The best-fit straight line,
x3

min � aR3 � bR1 where a � 0.99 � 0.02 and b � 1.83 � 0.05, is also
shown (dashed line).
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When determining B1, count waters from the same region
of space as when determining B3

We wish to emphasize, at this point, that when counting
water molecules for B1, one needs to count molecules from
the same region of space as when counting cosolvent mol-
ecules. Above, we showed that when B1 counts waters to the
end of the water first shell (to x1

min) and B3 counts cosolvent
molecules to the end of the cosolvent first shell (to x3

min), the
predicted �3 values had the wrong sign.

Next, we show that even if there is a small difference in
the regions from which one counts water and cosolvent
molecules, the resulting error in �3 is not small. Say the
region from which one counts the water molecules is just
0.2R1 too narrow. For R3/R1 � 1.3, the region from which
one counts water molecules is then 7% smaller than that
from which one counts cosolvent molecules; for R3/R1 �
3.0, the difference in the sizes of the regions is 4%. (Note,
not all of this region is occupied, the slice at x � R1 being
free of solvent centers. If we consider only the regions
occupied by solvent centers, then the size differences are
10% and 6% for R3/R1 � 1.3 and 3.0, respectively.) The
predicted �3 values (shown in Fig. 8) not surprisingly are
less negative than the exact values because the B1 values are
too small. The deviation from the correct �3 values is quite
large—tens of percentage points. Our results are for a planar
macromolecular surface. If the macromolecule is spherical,
then the error in �3 would be larger due to the x2 depen-
dence of the volume of thin spherical shells.

The reason �3 is sensitive to errors in Bi is because it is
the small difference of two larger numbers, and any error in
one of the larger numbers causes a significant error in �3.
To see this one can think of Bi as the amount of solvent that
would be in the local domain if there were no solute, Bi

bulk,
plus the solute-induced deviation �Bi; Bi � Bi

bulk � �Bi.
When the regions for counting waters for B1 and cosolvent
molecules for B3 are the same, the B3

bulk and Bi
bulk terms

exactly cancel and �3 � �B3 � (m3
bulk/m1)�B1. The differ-

ence between two large numbers comes from this exact
cancellation. If one erroneously counts waters from a dif-
ferent region than that from which the cosolvent molecules
are counted, the B3

bulk and B1
bulk terms do not cancel, and this

is where the error lies.

For real solvents and solutes, these results may serve as a
first-order approximation for the major contributors to �3

Because we studied a simple solvent-solute system, it is not
a priori clear how our results apply to real solvents and
solutes. Below, we present two pieces of indirect evidence
that our system bears resemblance to real solvents and we
discuss the physical arguments that suggest that for some
cosolvents our results may serve as a first-order approxima-
tion for the major contributors to �3.

First, experimental data show that �3 is proportional to
m3

bulk over a wide range of cosolvent concentrations (Cour-
tenay et al., 2000a). Despite the differences in physical
model, our simulations show similar results. Over the range
of cosolvent concentrations we used, plots of �3 versus r3

bulk

are mainly linear for low-to-moderate cosolvent concentra-
tions with slight upward curvature at higher r3

bulk (data not
shown). With R3/R1 � 3, when r3

bulk � 0.036 (correspond-
ing to the cosolvent:water total “volume” ratio �0.32,
which is distinctly above the dilute cosolvent limit), a
straight-line fit gives �3 � �0.168 (�0.005) 
 r3

bulk with
reduced �2 � 0.70. With R3/R1 � 2, when r3

bulk � 0.031
(corresponding to the cosolvent:water total “volume” ratio
�0.12), a similar fit yields �3 � �0.089 (�0.002) 
 r3

bulk

with reduced �2 � 0.57.
Second, we calculated the local-bulk partition coefficient,

Kp, to see whether the simple hard interactions of our model
can induce as much nonbulk character at a solute surface as
is seen for real solvents. Kp compares the local cosolvent:
water ratio to that of bulk (Courtenay et al., 2000a):

Kp �
cosolvent:water mole ratio in the local domain

cosolvent:water mole ratio in the bulk domain

�
B3/B1

m3
bulk/m1

. (11)

We demonstrate below that Kp values obtained from our
model are of the same magnitude as experimental values.

 

 

FIGURE 8 The region from which one counts water molecules for B1

must be the same as that from which one counts cosolvent molecules for
B3. This figure is the same as Fig. 4 except that instead of counting waters
to the end of the cosolvent first shell (to xmin

3), we stopped 0.2R1 shy of it
(to xmin

3 0.2R1). The key indicates the values of R3/R1 and the y-error bars
were smaller than the points, except where shown. With B1 just slightly
undercounted, the predicted �3 values are quantitatively off.
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Courtenay et al. (2000a) showed that, if it is assumed that
the amount of water in the local domain is the same as when
the solute is immersed in pure water (which is probably the
case when the solvent is infinitely dilute in cosolvent), Kp

can be related to �3 by

�3/ASA

m3
bulk �

�Kp � 1�b1
°

m1
(12)

where �3/ASA is the preferential interaction coefficient per
water-accessible surface area, and b1° is the amount of
water, per accessible surface area, in the local domain when
the solute is immersed in pure water. We calculated Kp

values for our simple system using Eq. 12 with the left-hand
side obtained from the slope of �3 as a function of r3

bulk in
the linear regime (see previous paragraph), and b1° values
obtained from simulations with pure water. For R3/R1 � 2,
Kp � 0.67; for R3/R1 � 3, Kp � 0.39. We compare our Kp

values with experimental values for “neutral” cosolvents
(urea, glycerol, trehalose, trimethylamine N-oxide, proline,
and betaine glycine); the latter vary between 0.14 (betaine
glycine) to 1.12 (urea) (Courtenay et al., 2000a). We see
that the Kp values obtained on our simple solvent system are
of the same order of magnitude as those from experiment
for neutral cosolvents. This suggests that the forces within
our simple system (which cause the solvent composition in
the local domain to deviate from that of bulk) may be of
similar magnitude to the forces between real solvents and
solutes. Hence, the results from our simple model may have
some bearing on real systems. The similarity of the magni-
tudes of the simple-model and experimental Kp values also
suggests that excluded-volume forces may play a large role
in the depletion of neutral cosolvents near real solute sur-
faces. (Now, we comment further on the calculation of Kp.
Because the experimental Kp values of Courtenay et al. use
the amount of water within a water monolayer for b1°
(Courtenay et al., 2000a), we have done the same solely for
the purpose of comparing our Kp values to those of Cour-
tenay et al. Except when the cosolvent is completely ex-
cluded, including only a water monolayer in b1° provides
only an imprecise lower bound on the degree of hydration
(Courtenay et al., 2000a). The resulting values of Kp � 1
may be too large, and the correct Kp values may be closer to
1 (implying less disturbance of the local solvent compared
to bulk).)

Earlier, we showed that, for our simple model, the local
domain is demarked by the outer edge of a cosolvent mono-
layer. A recipe for relating Bi to Bi

fs is given by Eqs. 4 and
5. Does this conclusion apply to real solvents and solutes?
The main assumption here was that the amount of solvent
structure beyond the first shell is negligible compared to
that of the first shell. More explicitly, the heights of the
second and further peaks in the surface solvent distribution

are much smaller than that of the first peak (corresponding
to the monolayer), and that the deviation from the bulk
composition in these more distant regions plays a negligible
role compared to the region near the solute. To determine
the applicability of this assumption and the resulting con-
clusions to real solvents and solutes, we examined the
surface solvent distributions obtained from experiments on
and atomic-resolution computer simulations of proteins and
DNA in pure water and in neutral mixed solvents. Because
there were usually only one or two peaks visible in �i(x)
(see, e.g., Burling et al., 1996; Tirado-Rives et al., 1997;
Sprous et al., 1998; Pettitt et al., 1998), long-ranged solvent
structure appears to be absent in these systems. Hence, we
believe that for at least these real mixed solvent/solute
systems with mainly short-ranged solvent structure, the
results determined from our study will serve as a first-order
approximation for �3 (and may possibly do better) and that
the recipe given by Eqs. 4 and 5 should provide the largest
contribution to �3. (The lack of extensive structure for real
solvents near real solutes may be due to the larger number
of length scales than in our simple system and to the
bumpiness of the macromolecular surface.) If, however, the
solvent displays significant long-ranged structure (i.e., if the
degree of structure associated with the second and higher
shells is significant compared to that of the first), or if either
solvent species is strongly excluded from the solute surface
(leading to a depletion of that species in the first shell), our
results probably would not apply because the fundamental
assumptions are likely not true. (For example, the surface
distribution of charged species can have more than one large
peak or can be quite long-ranged. See, e.g., the distribution
of cations and anions at the surface of a methane solute
(Smith, 1999) and the radial distribution functions of mixed
solvents (Chitra and Smith, 2000).)

Additionally, we concluded that when determining B1, it
is important to count waters from the same region of space
as when counting cosolvent molecules for determining B3;
assuming that B1 counts only a water monolayer results in a
poor approximation for �3, at least in our 2D, hard disk
model system. This view of the local domain and the main
contribution to �3 is different from that of Courtenay et al.
(2000a, b), who analyzed �3 data for the highly excluded
betaine glycine and found that if they assumed complete
exclusion (Kp � 0 and B3 � 0), this would predict b°1 to be
close to a water monolayer. This led to their “working
hypothesis” that the amount of water in the local domain
(estimated with an excluded solute) is a monolayer. Accu-
mulation of a cosolvent molecule at the solute surface (Kp �
0; B3 � 0) is modeled as replacement of water by cosolvent,
based on relative molecular cross-sectional areas. This in-
terpretation of the local-bulk domain model by Courtenay et
al. is consistent with the extant data on �3 for solute-
biopolymer interactions and solute effects on biopolymer
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processes (Courtenay et al., 2000a, b). Despite the differ-
ences in physical model, our values of �3 and Kp behave
similarly to those of real mixed solvents (see above). With-
out simulations of the hard sphere model in three dimen-
sions with which one could make direct comparisons with
experiment, it is not clear how to distinguish between these
two pictures.

All of these results apply to �3 data obtained under
dialysis conditions. We do not know whether they apply to
other thermodynamic ensembles. The two-domain model
was derived for preferential interaction coefficients mea-
sured under dialysis conditions (Record and Anderson,
1995), and to our knowledge, it has not been extended to
other ensembles. In addition, although Schellman (1990)
has suggested that preferential interaction coefficients mea-
sured under isopiestic, dialysis, and electrochemical cell
(constant cosolvent chemical potential) conditions should
not differ much, in practice this is not the case for some
cosolvents (see Courtenay et al., 2000a).

Test of a steric-exclusion model of
preferential hydration

Timasheff and co-workers put forth a steric-exclusion
model for preferential hydration (Arakawa and Timasheff,
1985; Bhat and Timasheff, 1992) founded on an idea pro-
posed by Kauzmann, as cited by Schachman and Lauffer
(1949). In this model, the cosolvent molecules are limited in
their approach to the solute. There is an exclusion shell of
thickness R3 which contains no cosolvent molecule centers,
and it is thought that, when the binary solution is dilute in
cosolvent, the exclusion shell is filled with pure bulk water.
(Note that there may be parts of cosolvent molecules in the

exclusion shell, even if the cosolvent center cannot lie
within it.) Outside the exclusion shell, the distributions of
water and cosolvent are assumed to be those of the bulk
mixed solvent. The excess water and lack of cosolvent in the
exclusion shell lead to preferential hydration (�1

(e) � 0; the
superscript indicates the limit of dilute cosolvent).

The solvent distribution as approximated by this model
does not reflect the true solvent distribution. Certainly �3(x)
is 0 within the exclusion shell 0 � x � R3. However, �3(x)
is not featureless, like that of bulk solvent, outside the
exclusion shell. We find in our simulations of various sol-
vent compositions with R3/R1 � 2.0 and 3.0 that all surface
cosolvent distributions have a dominant first peak starting at
x � R3, even when the cosolvent concentration is low. The
height of this peak—the density of cosolvent right up
against the surface—is several times that of the bulk den-
sity; this observation is independent of the cosolvent con-
centration. In other words, the “structure” in the cosolvent
distribution doesn’t diminish as the cosolvent concentration
is lowered. Likewise, the solvent distribution of the water is
not steplike, as assumed in the steric-exclusion model, but
has the usual dominant first peak plus smaller wiggles
further out. Also, data from small-angle x-ray and neutron
scattering indicate that the water at a protein surface is 10%
denser than in neat water (Svergun et al., 1998). The solvent
distribution assumed by the steric-exclusion model does not
well reflect the true solvent distribution, at least not for
these smaller cosolvents with R3/R1 � 2.0 and 3.0. (How-
ever, it is possible that the steric-exclusion shell of very
large cosolvents is so thick, encompassing many water
layers, that on average the water distribution within the shell
may be like that of neat water. The steric-exclusion model’s
picture of the water distribution may be more accurate for
these very large cosolvents. Unfortunately, our Monte Carlo
algorithm is not able to sample such large cosolvents at
dilute cosolvent concentration, and we know of no such
simulations done by other researchers.)

We also believe that the assumptions on the solvent
distribution in the steric-exclusion model are not accurate
for the purposes of determining �1

(e). In the model, any
solvent structure beyond the sterically excluded shell is
assumed to be negligible. The local domain then comprises
only the steric-exclusion shell, x � R3. Within this shell
there are no cosolvent molecule centers, so B3 is set to zero.
In other words, this model assumes the (m1/m3

bulk)B3 term in
Eq. 3 to be negligible compared to the B1 term. However,
since m1/m3

bulk � 1/r3
bulk 3 �, dividing by r3

bulk brings any
bumps and wiggles in the cosolvent distribution to a size
comparable to those in the water distribution. One expects,
then, the (m1/m3

bulk)B3 � B3/r3
bulk term should be roughly the

same order of magnitude as the B1 term, and thus cannot be
ignored. Indeed, for the most dilute solutions for which we
obtained �(x) data (R3/R1 � 3.0, r3

bulk � 0.027 and R3/R1 �
2.0, r3

bulk � 0.0077), this is the case. In addition, for all the

FIGURE 9 Even in the absence of specific interactions, �1 still depends
on the cosolvent concentration. Shown are data for a cosolvent with
R3/R1 � 3.0. The straight line is the best linear fit with the intercept equal
to 0.183 � 0.002 and a slope of �0.81 � 0.02.
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solvents we studied, the first layer of cosolvent contributes
as much to �1

(e) as the water within the exclusion shell.
Next, we tested the prediction of �1

(e) based on the steric-
exclusion model against the �1

(e) values from our simulation
(obtained by extrapolating �1 to r3

bulk3 0). For R3/R1 � 3.0
(Fig. 9), a straight-line fit yields �1

(e) � 0.183 � 0.002.
Now, what does the steric-exclusion model predict for �1

(e)?
In this model B3 is set to zero and B1 is the amount of neat
water that fits in a shell of thickness R3 at the solute surface.
Carrying over the steric-exclusion model to two dimensions
with a planar solute, the model predicts that the preferential
hydration per unit length of wall is �1

(e) � n1°R3R1, where
n1° is the number density of neat water; n°1° � �/(�R1

2).
(The factor of R1 in the formula for �1

(e) arises because the
unit length is equal to R1.) Assuming that the packing
fraction of neat water remains � � 0.4, then the model
predicts that �1

(e) � 0.38, in poor agreement with the actual
�1

(e) value. Now, let us perform the same analysis for R3/
R1 � 2.0 (see Fig. 10). The value of �1

(e) is 0.085 � 0.002
(0.092 � 0.002) for a linear (quadratic) fit of the �1 versus
r3

bulk data. The steric-exclusion model predicts �1
(e) � 0.25,

which again doesn’t agree. In summary, the steric-exclusion
model makes poor approximations of �1

(e) for both cosol-
vents (R3/R1 � 2 and 3).

We also point out that the preferential hydration values
do depend on the cosolvent concentration, even though
specific interactions are absent and all solvent species are
chemically inert. �1 decreases as the concentration of co-
solvent increases (see Figs. 9 and 10). For R3/R1 � 3, �1

drops by a factor of about two as the total cosolvent:water
volume ratio rises from near zero to 0.98. Similar behavior
has been observed for polyethylene glycols at protein sur-
faces (Arakawa and Timasheff, 1985; Bhat and Timasheff,

1992). This anticorrelation of �1 with cosolvent concentra-
tion must at least be partly due to excluded-volume inter-
actions, because those are the only interactions present in
our simulations.

CONCLUSIONS

When the preferential interaction coefficient, �3, is mea-
sured in a dialysis equilibrium experiment, it can be related
to the solvent distribution surrounding the solute by Eq. 2,
where B1 and B3 are the numbers of water and cosolvent
molecules, respectively, in the local domain, the region of
solvent that displays nonbulk characteristics (Record and
Anderson, 1995). This relationship (for uncharged solute
and solvent) is exact, but in practice it is not so useful for
understanding solute-solvent interactions because the local
domain has an ill-defined boundary and it is unclear which
solvent molecules are counted in Bi, and are thereby sam-
pled by �3. Also, the local domain can extend quite far from
the solute, tens of nanometers in some cases (see Blokzijl
and Engberts, 1993; Vogler, 1998, and references therein),
and solvent molecules distant from the solute may contrib-
ute to B1 and B3, and therefore to �3. However, because
most of the nonbulk structure is associated with the solvent
right next to the solute, one expects that �3 should mostly
depend on the nearby solvent, and not on farther reaches of
the local domain, and therefore the Bi values should mostly
count the solvent close to the solute. We find that this is
indeed true. In practice, the outer boundary of the local
domain is demarked by a cosolvent (not water) monolayer if
solvent structure is short-ranged. Also, the second and fur-
ther solvent shells can mostly be ignored (again, if solvent
structure is short-ranged). A recipe for approximating the Bi

values is given by Eqs. 4 and 5: B3 can be set to the amount
of cosolvent in a monolayer; B1 is the amount of water in a
monolayer plus the amount of water that would lie between
the end of the water first shell and the end of the cosolvent
first shell, if that space were filled with bulk mixed solvent.

Positioning the local domain’s boundary at the outer edge
of the cosolvent monolayer is a practical, not exact, defini-
tion for the purpose of interpreting �3 data. The basic
physical principle underlying this result is that the amount
of solute-induced solvent structure associated with the sec-
ond and further solvent shells is small compared to that of
the first shell, and hence these further shells, to a first-
approximation, can be ignored. This result, of course, ap-
plies directly only to our simple 2D, hard-disk solvent
model and the conditions under which we performed our
simulation. Also, for solvents with long-ranged solvent
structure (i.e., with a second solvent shell of significant size
compared to the first shell) or for those that are strongly
repelled from the solute (in which case the first shell is
diminished or absent), this rule of thumb would not be

FIGURE 10 Same as Fig. 9 except with R3/R1 � 2.0. The solid line is the
best-fit straight line with intercept 0.085 � 0.002 and slope of �0.15 �
0.01. The best-fit second-order polynomial, ar2 � br � c where r � r3

bulk

and a � 0.38 � 0.10, b � �0.27 � 0.03 and c � 0.092 � 0.002, is also
shown (dashed line).
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expected to apply. However, because the solvent distribu-
tions of water and some neutral mixed solvents at the
surfaces of proteins and DNA (as obtained by experiments
and atomic-resolution simulations) show neither significant
long-ranged solvent structure nor strong solvent repulsion
(see Burling et al., 1996; Tirado-Rives et al., 1997; Sprous
et al., 1998; Pettitt et al., 1998), locating the local domain’s
boundary at the outer edge of the first cosolvent shell might
serve as a first-order approximation for the dominant con-
tribution to �3 for some real cosolvents and solutes as well.

When determining B1 and B3, it is important to count
water and cosolvent molecules from within the same
region of space. If one counts water molecules from a
region that is slightly different from that from which one
counts cosolvent molecules, the resulting error in �3 is
not small, �3 being sensitive to differences in the regions.
If, for example, one were to assume that B1 is the number
of waters within a monolayer of water (i.e., assuming
B1 � B1

fs, omitting the waters that lie between the end of
the water first shell and the end of the cosolvent first
shell) and that B3 is the number of cosolvent molecules
within a monolayer of cosolvent (i.e., B3 � B3

fs), then one
would predict the wrong sign for �3 (Fig. 5). Even small
discrepancies between the two regions leads to a larger
error in �3 (Fig. 8).

Because as a first approximation the outer edge of the
cosolvent first shell demarks (in practice if not in principle)
the outer limit of the local domain, one would like to know
approximately where that location is. We have presented a
heuristic argument to show that the end of the cosolvent first
shell should lie a distance R3 � R1 (plus some) from the
solute surface. For our system of hard-disks up against a flat
hard wall, (plus some) is about R1 (see Fig. 7). For real
solvents by a real solute surface, if solvent structure is
short-ranged, we expect (plus some) to be of similar mag-
nitude.

One of the implications of our findings is that the local
domain is not a fixed region of space around the solute. It
depends on the cosolvent size, larger cosolvents giving rise
to larger local domains, which means more water layers to
include in B1. (Even for R3/R1 � 3.0, corresponding to the
sucrose:water radius ratio, around two layers of water are
included in B1.) This makes comparison of preferential
interaction data for differently sized cosolvents somewhat
complicated, because the �3 data count solvent from differ-
ent regions of space. Also, because more than one water
layer is often included in B1, interpreting B1 as the amount
of contacting water or the amount of water in a monolayer
is not accurate.

Because our model of the solvent and solute has only
excluded-volume interactions, our results demonstrate
what may happen when interactions are “neutral.” For
every solvent composition and cosolvent size we inves-
tigated in our model system, the surface cosolvent dis-
tribution is not in any way featureless. The first layer of

cosolvent at the solute surface always has a density
several times that of the bulk solvent. Therefore, even
when interactions are fairly “neutral,” one cannot ignore
the cosolvent and view things only from the point of view
of the water (or vice versa). B1 and B3 are not zero.
Lastly, we tested a steric-exclusion model of preferential
hydration. Assumptions about the solvent distribution are
nonphysical, and the model made poor predictions of �1.
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