Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jun;82(6):2906–2915. doi: 10.1016/S0006-3495(02)75631-2

Homology modeling and molecular dynamics study of NAD-dependent glycerol-3-phosphate dehydrogenase from Trypanosoma brucei rhodesiense, a potential target enzyme for anti-sleeping sickness drug development.

Igor Z Zubrzycki 1
PMCID: PMC1302078  PMID: 12023213

Abstract

Sleeping sickness and Chagas disease are among the most severe diseases in Africa as well as Latin America. These two diseases are caused by Trypanosoma spp. Recently, an enzyme of a glycolytic pathway, NAD-dependent glycerol-3-phosphate dehydrogenase, of Leishmania mexicana was crystallized and its structure determined by x-ray crystallography. This structure has offered an excellent template for modeling of the homologous enzymes from another Trypanosoma species. Here, a homology model of the T. brucei enzyme based on the x-ray structure of LmGPDH has been generated. This model was used as the starting point for molecular dynamics simulation in a water box. The analysis of the molecular dynamics trajectory indicates that the functionally important motifs have both a very stable secondary structure and tertiary arrangement.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aronov A. M., Suresh S., Buckner F. S., Van Voorhis W. C., Verlinde C. L., Opperdoes F. R., Hol W. G., Gelb M. H. Structure-based design of submicromolar, biologically active inhibitors of trypanosomatid glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4273–4278. doi: 10.1073/pnas.96.8.4273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aronov A. M., Verlinde C. L., Hol W. G., Gelb M. H. Selective tight binding inhibitors of trypanosomal glyceraldehyde-3-phosphate dehydrogenase via structure-based drug design. J Med Chem. 1998 Nov 19;41(24):4790–4799. doi: 10.1021/jm9802620. [DOI] [PubMed] [Google Scholar]
  3. Bairoch A., Apweiler R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 2000 Jan 1;28(1):45–48. doi: 10.1093/nar/28.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barrett M. P., Mottram J. C., Coombs G. H. Recent advances in identifying and validating drug targets in trypanosomes and leishmanias. Trends Microbiol. 1999 Feb;7(2):82–88. doi: 10.1016/s0966-842x(98)01433-4. [DOI] [PubMed] [Google Scholar]
  5. Barrett M. P. The fall and rise of sleeping sickness. Lancet. 1999 Apr 3;353(9159):1113–1114. doi: 10.1016/S0140-6736(98)00416-4. [DOI] [PubMed] [Google Scholar]
  6. Bellamacina C. R. The nicotinamide dinucleotide binding motif: a comparison of nucleotide binding proteins. FASEB J. 1996 Sep;10(11):1257–1269. doi: 10.1096/fasebj.10.11.8836039. [DOI] [PubMed] [Google Scholar]
  7. Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E. The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235–242. doi: 10.1093/nar/28.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bernstein B. E., Michels P. A., Hol W. G. Synergistic effects of substrate-induced conformational changes in phosphoglycerate kinase activation. Nature. 1997 Jan 16;385(6613):275–278. doi: 10.1038/385275a0. [DOI] [PubMed] [Google Scholar]
  9. Bernstein B. E., Williams D. M., Bressi J. C., Kuhn P., Gelb M. H., Blackburn G. M., Hol W. G. A bisubstrate analog induces unexpected conformational changes in phosphoglycerate kinase from Trypanosoma brucei. J Mol Biol. 1998 Jun 26;279(5):1137–1148. doi: 10.1006/jmbi.1998.1835. [DOI] [PubMed] [Google Scholar]
  10. Bressi J. C., Choe J., Hough M. T., Buckner F. S., Van Voorhis W. C., Verlinde C. L., Hol W. G., Gelb M. H. Adenosine analogues as inhibitors of Trypanosoma brucei phosphoglycerate kinase: elucidation of a novel binding mode for a 2-amino-N(6)-substituted adenosine. J Med Chem. 2000 Nov 2;43(22):4135–4150. doi: 10.1021/jm000287a. [DOI] [PubMed] [Google Scholar]
  11. Chudzik D. M., Michels P. A., de Walque S., Hol W. G. Structures of type 2 peroxisomal targeting signals in two trypanosomatid aldolases. J Mol Biol. 2000 Jul 21;300(4):697–707. doi: 10.1006/jmbi.2000.3910. [DOI] [PubMed] [Google Scholar]
  12. Denise H., Giroud C., Barrett M. P., Baltz T. Affinity chromatography using trypanocidal arsenical drugs identifies a specific interaction between glycerol-3-phosphate dehydrogenase from Trypanosoma brucei and Cymelarsan. Eur J Biochem. 1999 Jan;259(1-2):339–346. doi: 10.1046/j.1432-1327.1999.00048.x. [DOI] [PubMed] [Google Scholar]
  13. Guex N., Diemand A., Peitsch M. C. Protein modelling for all. Trends Biochem Sci. 1999 Sep;24(9):364–367. doi: 10.1016/s0968-0004(99)01427-9. [DOI] [PubMed] [Google Scholar]
  14. Guex N., Peitsch M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997 Dec;18(15):2714–2723. doi: 10.1002/elps.1150181505. [DOI] [PubMed] [Google Scholar]
  15. Henikoff S., Henikoff J. G. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10915–10919. doi: 10.1073/pnas.89.22.10915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hooft R. W., Vriend G., Sander C., Abola E. E. Errors in protein structures. Nature. 1996 May 23;381(6580):272–272. doi: 10.1038/381272a0. [DOI] [PubMed] [Google Scholar]
  17. Humphrey W., Dalke A., Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996 Feb;14(1):33-8, 27-8. doi: 10.1016/0263-7855(96)00018-5. [DOI] [PubMed] [Google Scholar]
  18. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  19. Kennedy K. J., Bressi J. C., Gelb M. H. A disubstituted NAD+ analogue is a nanomolar inhibitor of trypanosomal glyceraldehyde-3-phosphate dehydrogenase. Bioorg Med Chem Lett. 2001 Jan 22;11(2):95–98. doi: 10.1016/s0960-894x(00)00608-9. [DOI] [PubMed] [Google Scholar]
  20. Kim H., Feil I. K., Verlinde C. L., Petra P. H., Hol W. G. Crystal structure of glycosomal glyceraldehyde-3-phosphate dehydrogenase from Leishmania mexicana: implications for structure-based drug design and a new position for the inorganic phosphate binding site. Biochemistry. 1995 Nov 21;34(46):14975–14986. doi: 10.1021/bi00046a004. [DOI] [PubMed] [Google Scholar]
  21. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  22. Lo T. W., Westwood M. E., McLellan A. C., Selwood T., Thornalley P. J. Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with N alpha-acetylarginine, N alpha-acetylcysteine, and N alpha-acetyllysine, and bovine serum albumin. J Biol Chem. 1994 Dec 23;269(51):32299–32305. [PubMed] [Google Scholar]
  23. Moore A., Richer M., Enrile M., Losio E., Roberts J., Levy D. Resurgence of sleeping sickness in Tambura County, Sudan. Am J Trop Med Hyg. 1999 Aug;61(2):315–318. doi: 10.4269/ajtmh.1999.61.315. [DOI] [PubMed] [Google Scholar]
  24. Opperdoes F. R., Borst P. Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: the glycosome. FEBS Lett. 1977 Aug 15;80(2):360–364. doi: 10.1016/0014-5793(77)80476-6. [DOI] [PubMed] [Google Scholar]
  25. Rodriguez R., Chinea G., Lopez N., Pons T., Vriend G. Homology modeling, model and software evaluation: three related resources. Bioinformatics. 1998;14(6):523–528. doi: 10.1093/bioinformatics/14.6.523. [DOI] [PubMed] [Google Scholar]
  26. Schwede T., Diemand A., Guex N., Peitsch M. C. Protein structure computing in the genomic era. Res Microbiol. 2000 Mar;151(2):107–112. doi: 10.1016/s0923-2508(00)00121-2. [DOI] [PubMed] [Google Scholar]
  27. Suresh S., Turley S., Opperdoes F. R., Michels P. A., Hol W. G. A potential target enzyme for trypanocidal drugs revealed by the crystal structure of NAD-dependent glycerol-3-phosphate dehydrogenase from Leishmania mexicana. Structure. 2000 May 15;8(5):541–552. doi: 10.1016/s0969-2126(00)00135-0. [DOI] [PubMed] [Google Scholar]
  28. Vellieux F. M., Hajdu J., Verlinde C. L., Groendijk H., Read R. J., Greenhough T. J., Campbell J. W., Kalk K. H., Littlechild J. A., Watson H. C. Structure of glycosomal glyceraldehyde-3-phosphate dehydrogenase from Trypanosoma brucei determined from Laue data. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2355–2359. doi: 10.1073/pnas.90.6.2355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wierenga R. K., Noble M. E., Vriend G., Nauche S., Hol W. G. Refined 1.83 A structure of trypanosomal triosephosphate isomerase crystallized in the presence of 2.4 M-ammonium sulphate. A comparison with the structure of the trypanosomal triosephosphate isomerase-glycerol-3-phosphate complex. J Mol Biol. 1991 Aug 20;220(4):995–1015. doi: 10.1016/0022-2836(91)90368-g. [DOI] [PubMed] [Google Scholar]
  30. Wierenga R. K., Terpstra P., Hol W. G. Prediction of the occurrence of the ADP-binding beta alpha beta-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol. 1986 Jan 5;187(1):101–107. doi: 10.1016/0022-2836(86)90409-2. [DOI] [PubMed] [Google Scholar]
  31. van der Spoel D., van Buuren A. R., Tieleman D. P., Berendsen H. J. Molecular dynamics simulations of peptides from BPTI: a closer look at amide-aromatic interactions. J Biomol NMR. 1996 Oct;8(3):229–238. doi: 10.1007/BF00410322. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES