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ABSTRACT The dynamic behavior of proteins in crystals is examined by comparing theory and experiments. The Gaussian
network model (GNM) and a simplified version of the crystallographic translation libration screw (TLS) model are used to
calculate mean square fluctuations of C_, atoms for a set of 113 proteins whose structures have been determined by x-ray
crystallography. Correlation coefficients between the theoretical estimations and experiment are calculated and compared.
The GNM method gives better correlation with experimental data than the rigid-body libration model and has the added
benefit of being able to calculate correlations between the fluctuations of pairs of atoms. By incorporating the effect of
neighboring molecules in the crystal the correlation is further improved.

INTRODUCTION

To understand a protein’s function, one must know about
both its structure and dynamics. X-ray crystalography can
give good structural information by allowing the determi-
nation of the average position of atoms and the amplitudes
of their displacements from these average positions. How-
ever, this classic analysis tells little about the ways the
molecule moves. Many methods, such as molecular dy-
namic simulations, have been devised for modeling protein
dynamics (MacKerell et a., 1998), but these often involve
complicated and/or inaccurate potential functions and are
computationally expensive. Some researchers have shown
that simplified potentias, involving only a few parameters,
can give results that are just as accurate as those of more
complicated methods for many purposes (Tirion, 1996;
Levitt et a., 1985; ben-Avraham and Tirion, 1998; Hinsen
and Kneller, 1999; Higo and Umeyama, 1997).

The Gaussian network model (GNM) proposed by Bahar
and colleagues (Bahar et a., 1997, 1998; Haliloglu et al.,
1997; Haliloglu and Bahar, 1999) describe protein mobility
in terms of the atoms' local packing density and exploits
concepts developed in the theory of elastic networks (Eich-
inger, 1972; Kloczkowski and Mark, 1989). Tirion (1996)
has shown that such single-parameter potentials can effec-
tively model low-frequency modes of protein motion. Bahar
et a. (1997) have further shown that for myoglobin the
GNM gives measurable agreement with experimental crys-
tallographic B-factors and furthermore can be used to cal-
culate cross-correlations between motions of different at-
oms and compare them with NMR data (Haliloglu and
Bahar, 1999). Although the GNM contains very little detail
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and is not amino acid specific, it gives remarkably reliable
results for the C, atoms with much less computation time
than traditional dynamics simulations.

Crystallographic structure determination includes infor-
mation about thermal and other fluctuations of the atomsin
a crystal. Each atom can be assigned a Debye-Waller tem-
perature factor or B-factor with the latter proportional to the
mean square amplitude of the fluctuations. Although these
factors have some limitations (Kuriyan et al., 1986) they
represent a solid experimental source of information on the
dynamics of proteins.

The trandation libration screw (TLS) model (Schomaker
and Trueblood, 1968; Sternberg et al., 1979; Kuriyan and
Weis, 1991; Harata et al., 1999), developed by Schomaker
and Trueblood, models a crystalline protein as an internally
rigid body undergoing motion along translation, libration,
and screw axes. Determining B-factors with the TLS model
requires performing a six-parameter |east-squares optimiza-
tion of the observed and calculated diffraction patterns. In
our study, we are interested in protein structure-based ab
initio calculation of protein motion, so we modify the full
TL Streatment to depend only on the molecular coordinates,
calculating the square of the displacement of each C_, from
the center of mass of the protein, corresponding to the
| attice-independent libration component. For simplicity, we
will refer to this simplified model as the libration model.

Although the GNM and libration models have both been
shown to be capable of reproducing experimental B-factors
for some test cases, no studies involving more than a few
structures have been reported. Furthermore, debate contin-
ues as to which is more physically accurate and realistic and
why (Haliloglu and Bahar, 1999).

In this context, we have completed a comparative study
between librational and GNM methods in reproducing crys-
tallographic B-factors with a set of 113 high-resolution
(2.0 A or better) proteins. We further modified the GNM
calculations by incorporating the effects of neighboring
atoms and molecules in the crystal lattice (Fig. 1). The
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(A)

FIGURE 1 A pictoria diagram of the dif-
ferent models used in this work: (A) rigid
body motion around the center of mass (RB);
(B) GNM with an isolated protein molecule
(GNM); (C) GNM with neighbor atoms

within a certain distance equal to the spring (C)
length used for that calculation (GNM con- 7
tact); and (D) GNM with all neighboring
molecules (GNM neighbor).

GNM method has just two critical adjustable parameters,
the maximum C_,-C, distance for which the Hookean
springs are attached and the associated force constant. The
sengitivity of the calculation to this first parameter and
analysis of the force constant are also explored.

MODEL AND METHODOLOGY
GNM background

The GNM describes a protein as an elastic network of « carbons attached
by Hookean springs where the atoms fluctuate about their mean positions.
The Kirchhoff or valency-adjacency matrix of such a structure is con-
structed using Eq. 1:

-1 ifi#jand Ry =r,
0 ifi #jandR;>r,
- 2Ty fi=j

ii#]

r= (1)

where i and j are indices of a-carbons and r. is the cutoff distance,
normally ~7.0 A. The close relationship of this matrix to the Hessian from
classic normal mode analysis has been described (Atilgan et a., 2001).
A quantity proportional to the mean-square fluctuations of each atom
and the cross-correlation fluctuations between different atoms are the
diagonal and off-diagonal elements, respectively, of the pseudo inverse of
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the Kirchhoff matrix. This inverse can also be expressed as a sum of
eigenvectors as in Eq. 2:

n—1
I =3 A el (2

where A are the eigenvalues of I, arranged in descending order, with the
smallest, zero-valued eigenvalue omitted. The g, are the eigenvectors of T',
and the superscript T indicates the transpose. For our symmetric positive
semi-definite matrices the identical pseudo inverse can also be constructed
using singular value decomposition

= V'M;'S,
where Mt is adiagonal matrix of the reciprocals of M singular values and
V and Sare orthogonal and satisfy the usual singular value decomposition.
Of course the terms with vanishing singular values must be omitted.

The variance/covariance matrix and B-factor of each atom can be
calculated from the mean-square displacements by Egs. 3 and 4:

(uuy) = (3kBT/’Y)[F71]ij (3
Bi = 87TZ<Uin>/3, (4)

where kg is the Boltzmann constant, T is temperature, and vy is a constant
scaling factor.
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In the first part of the work we are interested in calculating the linear
correlation coefficient between the experimental and calculated B-factors
as given by

;1 (X =X, —y)

p= 2 (5)

;1 (% — X)Zj:E1 (v, — y)?

where x; is the experimental B-factor value of the jth C,-atom, x is the
mean value of the x; values, y; and y are the corresponding quantities for
calculated B-factors, and n is the total number of C_-atoms. This number
measures only the relative rise and fal of the two curves (Eq. 5) and does
not require that they be scaled properly. The correlation coefficient can
range from —1 (perfect anti correlation) to +1 (perfect correlation). The
absolute scale of the theoretical predictions depends on a spring constant,
which can aso be determined by comparing the experimental and theoret-
ical curves (see below).

Method of calculation
Structures

For the comparative study between GNM and libration model to ex-
perimental B-factors, a set of 113 proteins from two different nonre-
dundant sets were used. Researchers at Duke (Word et al., 1999) and
Stanford (Singh and Brutlag, 1997) have each compiled a list of
nonredundant high-resolution structures. We have combined these two
lists, using only structures that were solved by x-ray diffraction, that are
not oligomeric assemblies, and that have only one chain in the asym-
metric unit, leaving 113 structures for comparisons of the two models.
They are listed in Table 3.

All of the proteins examined in this study had a resolution better than or
equal to 2.0 A, with the exception of 1ACC, which had aresolution of 2.1
A. All of the structural coordinates were obtained from the Brookhaven
Protein Data Bank (PDB) (Bernstein et a., 1977). Some of the structures
contained in the nonredundant lists were unavailable from the PDB, and the
following substitutions were made: 1CY O for 3B5C (cytochrome B5) and
5PTP for 4PTP (b-trypsin). Because the distinction between homodimers
and structures with two identical chains in the asymmetric unit was rather
subjective, we have excluded such structures.

Consistent with past research, the « carbons alone were used to model
the protein structures. Though many structures contained counterions or
cofactors on the surface or in the active site, there exists no good systematic
method for modeling these, and it must be done entirely ad hoc. The only
cofactor we have modeled is the heme group, where the four bridging
methylene carbons and the iron atom are al treated as C, atoms. When
calculating the center of mass, al atoms were given a mass of 12 atomic
mass units.

Numerical calculations

We used Mathematica to calculate the GNM-based B-factors for each
protein in a batch mode. The Kirchhoff matrix is formed first from Eq. 1.
We invert the Kirchhoff matrix with the help of Eq. 2 and with each
eigenvector contributing toward the B-factor. We ignore the eigenvector
with value zero. Arranging the eigenvectors in the ascending order of their
eigenvalues, we found that the first 30% of them are the major contributors
toward the B-factor, but inclusion of all eigenvectors helps slightly (Fig. 2).
For the anisotropic network model calculations we used Mathematica's
Pseudo Inverse function, which uses a singular value decomposition for-
malism instead of eigen analysis.

725

GNM with contacts and neighbors

Usually GNM assumes springs between C, atoms only within the same
molecule. But these molecules are not isolated entities in crystals. Instead
they reside in a lattice with neighbors. We included the neighbors in our
calculation to incorporate the effect of environment on dynamic behavior.
We first included only C,, within 7.0 A of the concerned molecule but also
considered all neighboring molecules surrounding the central molecule.
We used the program CNS (Brunger et al., 1998) to identify the neighbor-
ing atoms and molecules.

Libration model

As previously mentioned, the TLS model is approximated by assuming
mean square fluctuations are proportional to the square of the distance of
each a carbon from the protein’s centroid. The square of the distance,
rather than the distance itself, is used to give the calculated B-factors the
same units as those in the GNM calculations. Correlation coefficients were
calculated by standard procedures.

Determination of kgT/y

To calculate B-factors from Egs. 3 and 4 we determined the value of kgT/y
by least-sguares fitting to the observed B-factors. kgT/y" was also deter-
mined by least-squares fitting with a combined scale and offset parameter
to allow a measure of rigid-body translation components.

RESULTS AND DISCUSSION

The comparison between theory and experiment was per-
formed for several models, including libration only, GNM
on al C, atoms, GNM omitting from the correlation coef-
ficient those atoms making crystal contacts, GNM including
the central molecule and only neighboring atoms, and GNM
including complete neighboring molecules in the lattice.

Because each eigenvector isweighted as the reciprocal of
its respective eigenvalue, it is possible that only the small-
eigenvalue terms contribute significantly to the total sum.
Therefore, the sum in Eq. 2 was evaluated using the eigen-
vectors corresponding to the smallest 30% as well as using
100% of the eigenvalues. As described previously, a subset
of the eigenvalues are most important in the computation of
the inverse of the Kirchhoff matrix (Haliloglu et a., 1997),
but for best results all nonzero eigenvalues/singular values
should be included when computationally feasible.

The average correlation coefficient for the agreement
between experimental B-factors and those calculated by the
simple GNM procedure using r. = 7.3 A was 0.594 with all
and 0.581 with 30% of the eigenvectors (Table 1). The best
value for the cutoff for assigning C, valuesto be connected,
r., was also determined to be 7.3 A by evaluating the GNM
model with various values (Table 1). The individua protein
correlations ranged from 0.000 (1DDT) to 0.831 (1FRD)
(see Table 3). The average coefficient for the libration
method was 0.515 (Table 2), with values ranging from
—0.423 (10SA) to 0.886 (1ARU) (Table 3). However, the
GNM gave higher correlation coefficients than the libration
method for 70 (62%) of the 113 structures.
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FIGURE 2 Plot of B-factor or mean square fluctua-
tion with residue number. Exp is from the experimental
data, Nei is that from the GNM model with neighbors,
and Lib is from the libration model. (A) Camodulin
(10SA). The libration model severely underestimates
the mobility of the central helix and overestimates the
mobilities of the end domains. The GNM model with
neighbors does a much better job in this highly asym-
metric molecule. (B) Lithostathine (1LIT). For this
rather spherical protein, the GNM and librational mod-
els both predict the experimental B-factors reasonably
well. (C) Diptheria toxin (1DDT). The last 200 amino
acids of this protein form a distinct loosely connected
domain that is predicted to be highly mobile in absence
of crystal contacts (GNM) but pinned down in the
crystal lattice (Nei).
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TABLE 1 Average correlation coefficient with different
spring length and using 30% and 100% of the eigenvalues in
the GNM model

. . GNM
Maximum spring
length, r. 30% 100%
6.0 A 0.520 0.525
6.5 A 0.548 0.557
70A 0.572 0.582
71A 0.576 0.585
72 A 0.579 0.590
73A 0.581 0.594
74 A 0.579 0.592
75 A 0.577 0.591
80A 0.565 0.583

There exists the question of whether the GNM or
libration model might be more accurate for certain types
of structures. There are 21 cases (for 7.3 A) where the
GNM and libration correlation coefficients differ by at
least 0.2. In 18 of these, the GNM coefficient is better.
Many of these structures are irregularly shaped (e.g.,
concave or dumbbell-shaped).

Indeed, one might expect that the libration method would
work best on highly spherical structures. The libration the-
ory implicitly assumes that atoms far away from the cen-
troid are closer to the surface. It makes sense that this model
would be most applicable when atoms that are the same
distance from the centroid are aso roughly the same dis-
tance from the surface.

In contrast, the theory underlying the GNM rests on local
packing density as the determinant of thermal fluctuation. If
a structure is not well packed with respect to its centroid, if
it is concave, for example, there will be atoms quite near the
centroid that are also near the surface. The GNM presumes,
however, that tightly packed C, atoms will fluctuate less
than loosely packed C_, atoms. For irregularly shaped struc-
tures, the local C, packing density becomes much more
important in defining the mobility of the atoms, hence the
overall superiority of the GNM models.

Fig. 2, A and B, shows the structures and experimental
and calculated B-factors for calmodulin (1OSA) and litho-
stathine (1LIT). The GNM method gave much better results
than the libration for calmodulin, which is shaped like a

TABLE 2 Average correlation coefficient for different models
with two different spring lengths

Model 70A 73A
Libration 0.515
GNM 0.582 0.594
GNM omit 0.651 0.662
GNM contact 0.628 0.640
GNM neighbor 0.651 0.661

The standard spring length used by earlier workersis 7.0 A, and 7.3 isthe
optimized spring length around 7.0 A.
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dumbbell. For litostathine, which is much more regular,
though dlightly oblong, the libration method gave a higher
correlation coefficient, although both methods gave quali-
tatively similar results. A particularly interesting case is
diphtheriatoxin (1DDT) where an entire domain is tethered
to the rest of the protein by only a single strand of polypep-
tide. Of course the smple GNM method, which does not
include neighbors, severely overestimates the mobility of
this domain as seen in the crystallographic B-factors (Fig. 2
C). This high degree of mobility is, however, likely for the
protein in solution. (When contacts are included in the
calculation, the domain is immobilized, and theory and
experiment agree. (see below.) It should be noted, however,
that although most of the structures where GNM is superior
to libration are nonspherical, some of the structures where
the two methods perform equally well are also shaped
irregularly.

Additionally, the omission of cofactors from many of the
structures may affect their behavior in the computations. A
protein that has a cofactor in the active site may experience
higher stability in that region than the models account for
when the cofactor is omitted. Of the 113 structures in the
list, 6 of them contained a heme group. For 5 of these,
correlation coefficients were computed with and without the
heme, and in all 5 cases, the values improved upon the
inclusion of a subset of atoms from the heme in the struc-
ture. This suggests that the modeling of other structures can
be improved with a systematic and reliable method of
treating the cofactors.

Another issue to be noted is that the atomic coordinates
used in these models comes from crystallographic struc-
tures. In some of these structures (mainly atoms near the
surface), there is an interaction not only among atoms
belonging to the same protein chain but also between pro-
teins that are adjacent to one another inside the crystal. If
one omits from the correlation coefficient calculation the C,,
atoms within 7.0 A of neighbors, the agreement between
theory and experiment improves (Table 2).

By including these crystal packing effects the results are
dramatically improved. Adding only neighboring atoms
(GNM contact model) is not as effective as adding entire
neighboring molecules (GNM neighbor model). By includ-
ing neighboring molecules but taking only the central mol-
ecule for comparison the average correlation coefficient was
improved from 0.594 in the simple GNM method to 0.661
in GNM with all neighboring molecules. Again a maximum
spring length of 7.3 A is better than 7.0 A (Table 2).
Attempts to use the anisotropic version of the GNM model
(Atilgan et a., 2001; Doruker et al., 2000) failed to improve
the results.

The correlation coefficient analysis measures the relative
agreement between B-factors and GNM dynamics in terms
of its positions of peaks and valleys in the functions, but
does not include any measure of the overall scale of the
motions. The factor kgT/y is essentially aforce constant for
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the virtual springs connecting C,, atoms and sets the overall
scale factor. We determined optimal values for kgT/y and
also define kg T/y" as the scaling factor including a constant
additive offset for each PDB entry (Table 3). The constant
was added because of previous evidence that both static
lattice and dynamic sources of displacements exist in crys-
tals (Kuriyan et al., 1986).

The mean and standard deviation of kgT/y, 0.87 = 0.46
A2, suggest that there is some relative variability in the basic
spring constant of the proteins. The temperature dependence
in the theory suggests that those crystal structures deter-
mined at lower temperatures might have smaller kgT/vy
values, athough it is well known that crystal structures
solved from rapidly quenched samples retain much of their
dynamic disorder as static disorder. In fact, the mean kgT/y
for the five crystal structures determined at ~100-150 K is
0.62, which is smaller than the overall average.

The mean kgT/y' and offset are 0.96 + 0.50 A? and
—0.71 = 2.39 A? respectively. The offset, which can
absorb several types of crystallographic artifacts such as
lattice disorder and other sin(6/A)-dependent data process-
ing errors, has a mean vaue very close to zero, implying
that there is no large systematic contribution of lattice
disorder to crystallographic B-factor. The standard devia-
tion of 2 A? suggests, however, that each crystal structure
may have circumstances that lead to the need for such an
offset. It is aso likely that the simplifying nature of the
model itself introduces some errors that are accommodated
by this variable.

CONCLUSION

It appears that the GNM model is better suited for estimat-
ing protein motions than the libration model, especially for
highly irregular or nonspherical structures. Furthermore, it
is able to compute cross-correlations between different at-
oms. These cross-correlations are the determinants of di-
rected motions. Having a theoretical method to test these
cross-correlations against experimental data is extremely
valuable. With further research to determine a good method
for including cofactors in the protein structures, the method
could be even more useful.

Biological implication

The function of a protein depends on both its structure
and dynamics. Crystallographic analysis routinely pro-
vides estimates of the amplitudes of motions of atoms,
but the effect of the surrounding lattice on the motionsis
always an uncertainty. Here we show that a simplified
molecular mechanics model can effectively describe pro-
tein motions, including the effects of crystal contacts.
Because the added neighbors improve our results, our
confidence in the method is increased. The results further
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suggest that GNM calculations on a single protein mol-
ecule may give a different and more accurate picture than
crystallographic temperature factors give on the dynam-
ics of an isolated protein molecule because the constrain-
ing effects of the lattice on the crystallographic result can
be factored out.
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