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ABSTRACT The assembly of virus capsids or other spherical polymers—empty, closed structures composed of hundreds
of protein subunits—is poorly understood. Assembly of a closed spherical polymer is unlike polymerization of a filament or
crystal, examples of open-ended polymers. This must be considered to develop physically meaningful analyses. We have
developed a model of capsid assembly, based on a cascade of low-order reactions, that allows us to calculate kinetic
simulations. The behavior of this model resembles assembly kinetics observed in solution (Zlotnick, A., J. M. Johnson, P. W.
Wingfield, S. J. Stahl, and D. Endres. 1999. Biochemistry. 38:14644–14652). We exhibit two examples of this general model
describing assembly of dodecahedral and icosahedral capsids. Using simulations based on these examples, we demonstrate
how to extract robust estimates of assembly parameters from accessible experimental data. These parameters, nucleus size,
average nucleation rate, and average free energy of association can be determined from measurement of subunit and capsid
as time and concentration vary. Mathematical derivations of the analyses, carried out for a general model, are provided in an
Appendix. The understanding of capsid assembly developed in this paper is general; the examples provided can be readily
modified to reflect different biological systems. This enhanced understanding of virus assembly will allow a more quantitative
analysis of virus stability and biological or antiviral factors that affect assembly.

INTRODUCTION

Virus capsid assembly is an example of protein polymer-
ization. Most spherical virus capsids exhibit icosahedral
quaternary structure. They are constructed from multiples of
60 monomeric or oligomeric structural subunits, arranged in
equivalent or quasi-equivalent environments (Caspar and
Klug, 1962). To be viable, virus capsids must assemble
efficiently and with high fidelity. The specific mechanisms
of capsid assembly are poorly understood for spherical
viruses. There is little experimental information describing
intersubunit binding energies, rates, and orders for assembly
reactions, and formation of nucleating structures.

In vitro capsid assembly has been observed for many
viruses. Cowpea chlorotic mottle virus (CCMV) provided
the first example of in vitro assembly of a spherical virus
(Bancroft et al., 1967). Both empty CCMV capsids and
infectious RNA-filled virions have been assembled (Ban-
croft and Hiebert, 1967; Bancroft et al., 1968; 1969; Adolph
and Butler, 1976; Zhao et al., 1995; Fox et al., 1998).
Characteristics common to capsid assembly were first ob-
served with CCMV, including extreme sensitivity to solu-
tion conditions, concentration dependence, and an apparent
critical concentration (Adolph and Butler, 1976). Since
1967 many other systems have been studied. Polyoma virus
assembly was pleiomorphic, resulting in the production of
icosahedral T � 1, octahedral, and T � 7 particles, as well

as sheets and other polymers (Salunke et al., 1989). Polio-
virus assembly from oligomeric intermediates demonstrated
the fragility of the provirion form of picornaviruses (Rom-
baut et al., 1990; Basavappa et al., 1994; Rueckert, 1996).
Assembly of related bacteriophages MS2 and R17 required
a specific nucleic acid oligomer (Beckett et al., 1988; van
den Worm et al., 1998). In vitro assembly of bacteriophage
P22 demonstrated a relationship between scaffold and cap-
sid proteins; these experiments also demonstrated sigmoidal
capsid assembly kinetics for the first time (Prevelige et al.,
1993). We present a framework linking experimental data to
physically meaningful assembly parameters.

Previously, we have developed models based on thermo-
dynamics and kinetics (Zlotnick, 1994; Zlotnick et al.,
1999). Capsid accumulation exhibits the sigmoidal kinetics
typical of multistep reactions (c.f. discussion of consecutive
reactions in Fersht (1999)). During the initial lag phase,
successive intermediates transiently accumulate and are
consumed in turn by subsequent reactions. However, with-
out regulation, the assembly reaction is susceptible to ki-
netic trapping (see Caspar (1980); Zlotnick (1994); Zlotnick
et al. (1999, 2000)). Several regulating mechanisms have
been proposed that decrease susceptibility to kinetic trap-
ping. Autostery, in which free subunits equilibrate between
assembly-competent and -incompetent states, has been pro-
posed (Caspar, 1980); a form of it was used in the local rules
model of quasi-equivalent assembly to decrease susceptibil-
ity to trapping (Berger et al., 1994; Schwartz et al., 1998).
We have focused on regulation through nucleation by in-
corporating a “kinetically limiting” early step in the reac-
tion, described as KL assembly (Zlotnick et al., 1999),
wherein the first few intermediates either assemble slowly
or are unstable. Nucleation is common with other biopoly-
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mers and has been observed in virus capsid assembly
(Sorger et al., 1986; Beckett et al., 1988; Bartenschlager and
Schaller, 1992), where a nucleating structure might be a
completed vertex or a closed ring of subunits, much as the
completion of the first turn nucleates a helical filament
(Oosawa and Asakura, 1975). These and other regulatory
mechanisms can be incorporated into the general models
discussed here.

In this paper we further develop techniques for analyzing
assembly (Zlotnick, 1994; Zlotnick et al., 1999) using two
specific model systems to illustrate the kinetic analysis
derived more generally in the Appendix. The example sys-
tems show two specific cases of the differential rate equa-
tions (A2) for subunit, intermediate species, and capsid
concentrations. In its complete generality the model system
allows the assignment of different rates and/or orders for
each of the cascade of assembly reactions and is in some
respects the spherical analog of a helical filament model
(Flyvbjerg et al., 1996). Fundamental geometric differences
between filament and shell assemblies require distinct math-
ematical treatments, as the former is open-ended and the
latter is closed.

METHODS

See Table 1 for naming conventions.

Modeling capsid assembly at equilibrium

Two model capsids were used for calculating simulations (Fig. 1). The
first, initially developed without nucleation as the equilibrium (EQ) model

in Zlotnick (1994), consists of 12 pentavalent pentagonal subunits assem-
bling as faces of a dodecahedron by making 30 intersubunit contacts (Fig.
1 A). This geometry resembles picornavirus quaternary structure (Rueckert,
1996). The second system is built from 30 tetravalent rectangular subunits
(making 60 intersubunit contacts), which can be thought of as a T � 1
icosahedron assembled from “dimeric” subunits (Fig. 1 B). The tetravalent
subunit resembles the geometry used in schematic representations of hep-
atitis B virus capsid protein dimer (Zlotnick et al., 1996).

To describe capsid polymerization we develop the system of rate
equations for the concentrations of species formed in the assembly cascade
detailed in the Appendix (Eq. A2). The equations are determined by capsid
geometry, assembly path, and intersubunit binding energies. At equilib-
rium, the differential rate equations reduce to a series of algebraic equa-
tions from which it is possible to determine equilibrium values for subunit,
capsid, and intermediate species. For a simplest model, at equilibrium, only
monomer and capsid are present at appreciable concentrations (Zlotnick,
1994). The equilibrium relationship between the reaction cascade end-
points is:

KAcap �
�N��

�u��
N (1)

where N is the number of subunits in a complete capsid, e.g., N � 12 for
the dodecahedral and N � 30 for the icosahedral model.

Equation 1 results in the unwieldy units of M1�N for the association
constant KAcap. Two expressions that are more convenient are KDapp, the
apparent dissociation constant defined where equilibrium concentrations of
subunit and capsid are equal (Eq. 2) and KAcon, the pairwise (per-contact)
association constant between subunits (see Eq. 3) (Zlotnick, 1994). Be-
cause N is typically large, it is more practical to use the logarithmic form
of equations involving KAcap when manipulating numerical data.

KDapp � �KAcap�
1/1�N (2)

Successive substitutions through the sequence of model equations at
equilibrium give KAcap as the product of 1) a statistical coefficient account-
ing for the overall degeneracy of the reaction, and 2) a power of KAcon

accounting for each contact formed in capsid assembly. This can be written
generally for the assembly of a polyhedral structure of N subunits with c
contacts per subunit where each subunit has j-fold degeneracy. Such an
N-hedral structure will have a total of C � cN/2 pairwise contacts, leading

TABLE 1 Naming conventions for constants and variables

N Number of subunits in a complete capsid
[N] Capsid concentration
[m] Concentration of the mth species
[u] Subunit concentration
u0 Initial subunit concentration
nuc Number of subunits composing the nucleating structure
j Degeneracy (number of planar rotational symmetries) of an

individual subunit
c Number of contact sites on an individual subunit
cm Number of intersubunit contacts in the mth intermediate
C Number of intersubunit contacts in a complete capsid
KAcap Association constant for a complete capsid, in units

of M�N

KAcon Association constant for a single intersubunit contact
felong Microscopic forward rate constant for elongation reactions
fnuc Microscopic forward rate constant for nucleation reactions
sm Statistical factor, degeneracy of the forward reaction

leading to the mth species
�m Statistical factor, degeneracy of dissociation of the

mth species
bm Backward rate constant for dissociation of the mth species
� Ratio fnuc/felong of forward rate constants, for nucleated

reactions � �� 1
[m]� Concentration of the mth species at t � �, equilibrium
KDapp Apparent dissociation constant, [u]� value for which

[N]� � [u]�

Km Equilibrium constant for [m]/([m � 1][u])

FIGURE 1 Capsid geometries. (A) The dodecahedral model capsid has
12 pentagonal subunits. (B) The icosahedral model capsid has 30 twofold
symmetrical subunits. The subunits for the icosahedral model are tetrava-
lent, with binding sites at each corner; subunits for the dodecahedral model
are pentavalent, with a binding site at each edge.
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to the general form where jN�1/N is the product of the statistical factors for
the degeneracy of the component reactions (Eq. 3).

KAcap �
jN�1

N
�KAcon�

C (3)

Individual statistical factors can be determined explicitly for each assembly
step as previously described (Zlotnick, 1994). Applying Eq. 3 to our
dodecahedral and icosahedral models gives Eqs. 4.

KAcap �
511

12
KAcon

30 dodecahedral

KAcap �
229

30
KAcon

60 icosahedral (4)

In general, equilibrium is described for a system of rate equations by
setting the derivative equal to zero. For models like those discussed here
(Eqn A2), having a single representative conformation for each size of
intermediate, this algebraic system is easily solved by back-substitution,
giving the equilibrium concentrations of all species in terms of subunit

�m�� �
s2· · ·sm

�2· · ·�m
KAcon

cm �u��
m (5)

where cm gives the total number of intersubunit contacts formed in assem-
bling the mth species (composed of m subunits). For models incorporating
several paths, the expression (Eq. 5) exhibits a complicated dependence on
KAcon and degeneracy.

In principle, KAcon need not be the same for all interactions. For
example, the KAcon used for the nucleation interactions might be less than
that used for contacts established during elongation. If this were a simple
entropy penalty, one would expect the penalty to be recouped once the
nucleus is assembled (Oosawa and Asakura, 1975). For simplicity, we use
the same KAcon for all reactions.

Modeling assembly kinetics

The above model of assembly allows calculation of assembly kinetics with
few additional assumptions. We assume for simplicity that every contact
scores the same per-contact association energy, 	Gc, from which we define
KAcon via the Arrhenius relation 	Gc � �RT ln KAcon. Second, we limit
our simulations to only two microscopic forward rate constants, for nucle-
ation (fnuc) and elongation (felong), which are modified by appropriate
statistical factors. Third, we have restricted assembly to proceed only by
addition of individual subunits, without high-order or pseudo-high-order
elongation steps. Finally, some consideration must be given to the choice
of assembly paths that are used in kinetic simulations: a typical capsid may
have hundreds or thousands of possible paths through tens or hundreds of
intermediates. This is analogous to an energy landscape model of protein
folding (Dinner et al., 2000; Dill, 1999). However, the first and last few
reactions in capsid assembly have little degeneracy; the greatest degener-
acy is encountered when assembly is half complete.

There are two obvious strategies for limiting the number of paths used
in the model: 1) use the “best” paths, and 2) use the “average” path. In the
first strategy, we define a measure of “significance” or the likelihood of a
path. In the second, we specify only one intermediate of each size, the
“average” intermediate of that size. Both of these paths follow steep energy
descents with no intrinsic energy minima other than capsid; these paths are
akin to a smooth, steep trajectory on an energy landscape.

One realization of the best-path strategy is to use paths through m� axi-
mally s�table i�ntermediates, an msi-measure. For example, there are typi-
cally two configurations for the trimer: open (linear) and closed (triangu-
lar). Given that subunit geometry admits both, closed trimers are a lower-

energy intermediate than open trimers because they gain one additional
unit of contact energy from closure. The msi-measure assigns a measure of
one to paths rooted in the most stable intermediates and zero to all others,
deleting them. We have used the msi-measure to choose intermediates for
our dodecahedral model. Statistical coefficients are still required to reflect
degeneracy of the msi-path(s).

In the “average-path” strategy, energy and degeneracy are distributed
evenly among the steps along a single assembly path, which may or may
not be an actual path. Although we developed a version of our icosahedral
model using the msi-measure, the behavior of the msi model was not
significantly different from that of the average-path version with regard to
the concentrations of capsid ([N]) and subunit ([u]). In the average-path
construction for the icosahedral model there are 29 reactions over which
we distribute the energy from the 60 contacts. The dimerization step
yielded only one energy unit because there is only one contact. The next 26
steps were assigned two energy units each (two intersubunit contacts per
subunit association) because actual paths have from one to three new
contacts formed per step. The final two subunits make three and four
contacts on association and were assigned three and four energy units,
respectively. Reaction degeneracy was distributed in a similar manner.

Assembly kinetics are simulated as species concentrations [u], [2], . . . ,
[N] evolve according to the differential rate equations (Eq. A2) from which
we extract a typical example for convenient reference as Eq. 6.

d�m�

dt
� fmsm�u��m � 1� � fm
1sm
1�u��m�

� bm
1�m � 1� � bm�m� (6)

This equation takes account of both subunit-intermediate association (for-
ward “f-terms”) and dissociation (backward “b-terms”) contributing to the
kinetics of the mth intermediate. The statistical factors sm and �m adjust the
rates to account for the degeneracy of the reactions; examples of their
calculation for the dodecahedral model are given in Zlotnick (1994). The
reverse rate constant for the mth reaction

bm � �m

fm

�KAcon�
r (7)

is calculated from the forward rate (fm), the per-contact energy (from
KAcon), the number (r) of contacts broken in dissociating the mth subunit,
and the reverse reaction’s degeneracy �m.

The system of rate equations (A2) developed from the above formalism
is not amenable to exact solution, unlike filament assembly (Flyvbjerg et
al., 1996). Solutions were calculated using BERKELEY MADONNA
(Berkeley Software, Berkeley, CA), with either RK4 or Rosenbrock nu-
merical integration methods, and Waterloo MAPLE (Waterloo, ON, Can-
ada) implementations of the RKF45 integrator. MAPLE simulations were
calculated using 14 of the 15 digits available in standard floating-point
precision, consuming no more than a few minutes of CPU-time per initial
concentration. In no case was high precision required to obtain accurate
values for parameter estimators. Different models were fit to synthetic
data sets by minimizing the RMSD, as implemented in BERKELEY
MADONNA.

RESULTS AND DISCUSSION

An overview of simulated assembly kinetics

Sigmoidal kinetics such as those exhibited by capsid assem-
bly (Fig. 2) are typical for the synthesis of product by any
multistep reaction (Fersht, 1999). For capsid assembly, the
three stages of kinetics (lag, rapid assembly, and asymp-
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totic) can be associated with well-defined characteristics of
the reaction cascade.

The initial lag phase is characterized by the sequential
building-up of assembly intermediates. Each intermediate
reaches a peak concentration in its turn, then slowly relaxes
toward its eventual equilibrium concentration. Until the
final intermediate begins to approach its peak concentration,
capsid production is very slow. The lag phase can be char-
acterized as the initial interval during which a near steady-
state “assembly line” of intermediates is constructed. In
reactions with nucleation and elongation components, the
elongation rate has its clearest effect on the lag duration (see
assertion 4).

During the rapid stage of kinetics there is a burst of
capsid synthesis as free subunits react with intermediates,
effecting a nearly steady conversion of mass in free subunit
into mass in capsid state. The rapid rate of capsid synthesis
is supported by the relatively high concentrations of reac-
tants, both free subunit and intermediate. During this stage,
intermediate concentrations remain almost constant. Both
nucleation and elongation rates make contributions to the
slope of this part of the kinetic trajectory.

It turns out that assembly path degeneracy is not an
important issue for simulations where intermediate concen-
trations are low. Different assembly paths lead to small
changes in the concentrations of different intermediates, but
not subunit or capsid. We found that the back reactions are
insignificant in the elongation steps until reactions approach
equilibrium. Because all assembly reactions proceed one
subunit at a time at nearly identical forward rates, all pos-
sible paths will take roughly the same time to complete,
although some paths are more likely than others.

The asymptotic phase occurs when the depletion of free
subunit becomes significant. Low subunit concentration
causes the slow rate of nucleus formation to be the major
regulating factor in capsid synthesis (see assertion 2).

Conceptually, nucleation occurs when the first few inter-
mediates in a series of reactions are less stable than subse-
quent products, as might occur in a helical polymer prior to
the first interactions between turns (Oosawa and Asakura,
1975; Flyvbjerg et al., 1996). Nucleation of a spherical
polymer might depend on formation of a primitive closed
structure, such as the first face or vertex of a polyhedron
(e.g., an HBV trimer (Zlotnick et al., 1999)). Energetically,
nucleation reactions can be differentiated from subsequent
elongation reactions by a slower forward rate and/or weaker
association energy. For simplicity, we have chosen to focus
on a rate-delimited nucleation step, observing that our re-
sults do not significantly depend on the mechanism by
which nucleation differs from elongation.

Reaction simulations are less susceptible to kinetic traps
when assembly is regulated by a nucleation step (Zlotnick et
al., 1999). Nucleated reactions can yield near-equilibrium
concentrations of capsid without trapping despite relatively
high association energies, high initial concentrations of sub-
unit, and fast rates (see assertion 1). Resistance to kinetic
trapping results from prevention of over-initiation of assem-
bly. Because the forward rate is proportional to subunit
concentration, when subunit concentration is too high, vir-
tually all subunits are assembled into intermediates in the
absence of a regulatory step. In nucleated reactions, or in
reactions “autosterically” regulated by the persistence of
assembly-competent and -incompetent forms of the subunit
(Caspar, 1980; Schwartz et al., 1998), unbound subunit is
held in reserve. The introduction of an assembly-incompe-
tent subspecies amounts to no more than the formal addition
of a slow, initial, first-order reaction step. Mathematically
speaking, it is not surprising that either mechanism resists
trapping because both introduce slow coordinates in the
early equations of the assembly cascade.

Nucleation and the steady-state assembly line

In the absence of a regulating step, successful assembly
requires a balance between protein concentration and asso-
ciation energy (Zlotnick, 1994). As we increase either con-
tact affinity, KAcon, or initial subunit concentration, u0, the
amount of subunit in the assembly line increases. During the
rapid-production phase, subunit can be thought of as being
converted, via the assembly line, “directly” from free to
bound-in-capsid state: the concentrations of intermediates
approximate a steady state. When KAcon or u0 is too large,
assembly is over-initiated; too much mass has entered the
assembly line, leaving the reactions starved for available
subunits: a kinetic trap. Conversely, too little mass in the
assembly line will result in a slow reaction that is starved for
intermediates. Because capsid production is slow for either
extreme, there is an optimal steady-state concentration of
intermediates for KAcon at some value of u0 (cf. assertion 1
and Fig. 4).

FIGURE 2 Assembly kinetics calculated for the icosahedral model. The
cascade of reactions exhibits the sigmoidal kinetics experimentally ob-
served for in vitro capsid assembly. Subunit concentration declines. Inter-
mediates successively rise during lag phase and then slowly decrease to
extremely low equilibrium concentrations. After all intermediates are syn-
thesized, rapid production of capsid begins.
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In nucleated assembly the concentration of free subunit
falls much more gradually than during assembly lacking a
regulating step (Zlotnick et al., 1999). Nucleated assembly
is resistant to kinetic trapping, but not immune to it. The
degree of resistance depends on the distinction between
nucleation and elongation phases. For example, when the
ratio of the forward rate constants, fnuc/felong, is ��0.001,
assembly may be extremely resistant to trapping; when
fnuc/felong � 0.05, the reaction resembles EQ assembly and
may be easily trapped. A weaker contact energy for nucle-
ation reactions enhances the resistance of nucleated assem-
bly to kinetic trapping.

Apparent KD and pseudo-critical concentrations

As u0 is increased, the equilibrium capsid concentration
increases rapidly because of the high algebraic degree of Eq.
1. As Fig. 3 shows, the point of greatest sensitivity to
change in u0 is well approximated by KDapp (Eq. 2), the
subunit concentration for which equilibrium subunit and
capsid concentrations will be equal. Because KDapp is cal-
culated on a molar basis, the initial concentration required to
achieve it is (N 
 1)KDapp. In these models KDapp is a
pseudo-critical concentration (Fig. 3). From Eq. 1 it is clear
that free subunit concentration [u]� will vary, albeit slowly,
for u0 �� (N 
 1)KDapp. Because [u]� increases so slowly
as a function of u0, there is the appearance of a constant
[u]�, approximated by KDapp. This same effect was pre-
dicted and observed with micelle formation (Tanford,
1980). It is not surprising that critical concentrations have
been indicated for CCMV (Adolph and Butler, 1976) and

HBV (Seifer et al., 1993), whose capsids have 90 and 120
subunits, respectively, as CCMV and HBV would be ex-
pected to have much steeper isotherms than the 30-subunit
model (Fig. 3).

Scaling assembly simulations

We searched for intrinsic units of concentration and time for
kinetic simulations (see Eq. A5) similar to those observed in
the case of filament assembly (Flyvbjerg et al., 1996).
Approximately the same trajectories are observed for reac-
tions where concentration is expressed in units of u0KAcon

and time in units of t/KAcon. This scale invariance is intrinsic
to the model equations A2, simplifying comparison of dif-
ferent kinetic simulations. The rescaling is most nearly
exact during the lag and rapid-assembly stages when the
forward-reaction terms dominate the kinetics and all cas-
cade reactions are essentially unidirectional.

Assertion 1: KAcon can be estimated from kinetic
trajectories at long times

A reaction must be at equilibrium for precise determination
of association energy, yet kinetic simulations of virus as-
sembly reactions (Fig. 2) approach equilibrium asymptoti-
cally. We examined simulations over long times to observe
how closely they approached equilibrium and to test our
estimation of the pairwise association energy, 	Gc. Reac-
tions were simulated for a range of KAcon values. For any
fixed concentration, reactions at modest KAcon approached
their equilibria rapidly; at higher values reactions were
susceptible to stalling. Stalling occurs when the concentra-
tion of reactants is so low that bimolecular reactions do not
proceed at an appreciable rate.

As assembly kinetics approach equilibrium, capsid con-
centration changes very slowly. Approximate values for
	Gc were calculated using the concentrations of capsid [N]
and subunit [u] measured at long times in place of their
equilibrium values in Eqs. 1, 3, and 4. Intermediates were
not included in these calculations to make our results more
“realistic” because intermediate concentrations are expected
to be so low that they are experimentally undetectable. In
long-time simulations with modest KAcon, the estimated
per-contact energy 	Gc was well within 10% of the exact
value. Estimates for reactions with stronger association en-
ergies yielded worse approximations because these reac-
tions stall when they became starved for free subunits and
intermediates at long times. This is because a large KAcon

corresponds to a very low equilibrium concentration of
subunit, [u]� (Eqs. 1 and 3) so reactions reached a starvation
condition and stalled before approaching equilibrium. Esti-
mation of 	Gc was slightly more accurate at low initial
subunit, even though higher initial subunit concentrations
yielded a larger mole fraction of capsid. This seems coun-

FIGURE 3 An assembly isotherm for the icosahedral (30-mer) model.
The mass fraction capsid (solid line, right axis) as a function of the initial
subunit concentration, [u0]. Capsid concentration increases as a 30th power
of free subunit (Eq. 3). Free subunit concentration (dashed line) varies little
when it approaches KDapp, but it is not constant; i.e., there is no true critical
concentration. Subunit concentration [u] will reach KDapp, the horizontal
line at 3.78 �M [u], when [u]� � [N]�; on a mass fraction basis, this will
occur at 117 �M total subunit with �97% of the mass as capsid. The
isotherm was calculated for log(KAcon) � 2.5, corresponding to 	Gc �
�3.4 kcal/mol.
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terintuitive in light of stalling due to starvation; however,
this is simply an effect of u0 being closer to [u]�, when u0

is small. The dodecahedral model proved to be more strin-
gent than the icosahedral model for this estimation (Fig. 4)
because subunit geometry results in a lower KDapp for a
given 	Gc, as can be seen by combining Eqs. 2 and 4 to
generate the approximations of Eq. 8.

KDapp � 0.27KDcon
5.5 dodecahedral

KDapp � 0.21KDcon
2 icosahedral (8)

In either case, a KDapp much lower than �0.2 �M will result
in a stalled reaction.

Assertion 2: Nucleation rate can be determined
from the rate of capsid formation

The regulatory step has a profound effect on assembly
kinetics. For nucleated assembly, both the size of the nu-
cleus and the rate of nucleation must be considered. We
consider the case where nucleation proceeds from slow
association of subunits to form a metastable nucleus.

When a reaction enters the asymptotic phase, the assem-
bly line of intermediates is still in steady state, though the
rate of capsid production is attenuated. Because every new
nucleus enters the assembly line and proceeds to form a
capsid, we assert that the rate of capsid production is pro-

portional to the rate of nucleus formation. More accurately,
the average forward rate constant for the nucleation steps is
proportional to the rate of capsid formation divided by
[u]nuc. This is expressed in

d�N�

dt
� fnucsnucKsubnuc�u�nuc (9)

where Ksubnuc is the equilibrium constant for the formation
of [nuc � 1]. The value for Ksubnuc is the coefficient in Eq.
5. The derivation of Eq. 9 is provided in the Appendix (see
A7–A12). We are able to arrive at Eq. 9 because in nucle-
ated assembly 1) elongation reactions are essentially unidi-
rectional, and 2) from relatively early times forward, sub-
nuclear intermediates are already near their equilibrium
concentrations. Equation 9 holds at early times in the as-
ymptotic phase, before intermediates in the assembly line
have begun to disassemble. Under these conditions, almost
every nucleus produced leads to the formation of a complete
capsid, i.e., the rate of capsid production is approximately
the same as the forward-rate of nucleus production.

Given the size of the nucleus (see assertion 3), nucleus
geometry and statistical factors can be deduced. The value
for Ksubnuc can be calculated from KAcon (see assertion 1)
and the statistical factors. Equation 9 is then an equation in
only one unknown, fnuc. Fig. 5 shows plots of the ratio

d�N�

dt ��u�nuc (10)

calculated for simulations using three values of fnuc reflect-
ing the impact that decreasing the forward nucleation rate
has on the ratio in Eq. 10. The value of the ratio is concen-
tration-independent after the reaction has reached steady
state. The plateau height in each case is equal to the forward
rate constant, fnuc, multiplied by Ksubnuc. We emphasize that
the estimator depends only on the nucleation rate and not on
the elongation rate. In simulations where the nucleation rate
was fixed and the elongation rate varied, the plateau height
remained fixed.

In general, concentration independence of a quantity cal-
culated from concentration-dependent data indicates that the
calculated quantity is a parameter of the system. In this case,
the concentration independence in the plots illustrates the
dependence of the ratio (Eq. 10) on the coefficients in the
governing equations (Eq. A2) and not on the initial
conditions.

Assertion 3: Nucleus size can be determined
from the concentration dependence of the extent
of assembly

Simulations show that nucleus size cannot be determined
accurately by searching for a best fit to the exponent in Eq.
9. In the analysis given in the Appendix (Eqs. A13–A18) we
develop a sensitive estimator (Eq. 12) for nucleus size. This

FIGURE 4 Energy per contact, 	Gc, calculated from the KAcap observed
at the end of kinetic simulations of a 24-h assembly experiment for the
dodecahedral (open symbols) and icosahedral (closed symbols) models.
The simulations all use fnuc � 100 M�1 s�1, felong � 106 M�1 s�1.
Association constants were calculated using Eqs. 1 and 2, and converted
into energy units using 	Gc � �RTlnKAcon, where T is set to 298 K and
R is the gas constant, 1.987 cal (deg mol)�1. Simulations for the 12-mer
model correspond to �2.5 (circles), �2.7 (squares), and �3.4 kcal/(mol
contact) (triangles). Simulations for the 30-mer were calculated for 	Gc of
�3.4 (circles), �4.1 (squares), and �4.8 kcal/(mol contact) (triangles).
Though the ranges of 	Gc are different, the 	Gapp values are similar due
to capsid and subunit geometry. Ignoring the relatively small statistical
component, for the 12-mer, 	Gapp is �30/11(	Gc); for the 30-mer, 	Gapp

is �60/29(	Gc) (see Eq. 7).
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analysis rests on two assumptions: 1) the ratio in Eq. 10 is
independent of u0, and 2) the reactions considered are in a
transient steady state where formation of capsid is equal to
the depletion of free subunit (Eq. 11).

N
d�N�

dt
� �

d�u�

dt
(11)

Our results (see Appendix) show that the nucleus size
appears as the temporal minimum value of the function

L � ��ln�N�

�u0
��ln�u�

�u0
� (12)

The function L is the slope of a plot of ln[N] versus ln[u] at
a single time across a range of initial protein concentrations,
u0 (Zlotnick et al., 1999). The minimum will only be found

for a family of reactions that are simultaneously in steady
state. This means that there is a range of times and concen-
trations for which the function L, near its minimum, approx-
imates nucleus size.

Fig. 6 A shows the graph of the function L over a range
of times and concentrations for our icosahedral model with
nucleus size nuc � 3. The minimum value of L varies little
from the nucleus size. Fig. 6 B shows the series of simula-
tions used to calculate the surface in Fig. 6 A, with the
shaded region delineating the domain in which nucleus size
is approximated to within 0.33. Nucleus size is unambigu-
ously approximated over a fairly wide range of initial con-
centrations at early time. For lower concentrations, the
approximation holds at later times. Fig. 7 shows the surfaces
z � L(u0, t) for nucleus sizes 3, 4, and 5 in the dodecahedral
model.

Assertion 4: Elongation kinetics are most
apparent in the early phases of
assembly reactions

Examination of kinetic simulations (Fig. 2) shows that
the lag phase is due to the time required to assemble

FIGURE 5 The rate of capsid formation can be related the nucleation
rate, fnuc. Time and concentration series for the ratio (Eq. 10) of capsid
production rate, d[N]/dt, to free subunit concentration raised to the nucleus
size power, [u]nuc. The concentration-independent plateau height is directly
proportional to the nucleation rate. The value of fnuc was set to 104 M�1 s�1

(A), 103 M�1 s�1 (B), and 102 M�1 s�1 (C). For these three families of
reactions, felong � 106 M�1 s�1, and 	Gc � �4.1 kcal/mol.

FIGURE 6 Determination of nucleus size for the icosahedral model. The
minimum of the function L (Eq. 16) gives the nucleus size estimate. (A)
The surface of L (light gray) is shown for the nuc � 3, � � 7  10�5,
icosahedral model. The minimum of the surface is partially obscured by the
error plane z � 3.33 and lies above the error plane z � 2.67, which are dark
and medium gray, respectively. (B) The corresponding kinetic simulations
(black) show where (shaded region) nucleus size is estimated to within
�0.3.
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intermediates. The duration of this phase is affected by
nucleus size, nucleation rate, the stability of subnuclear
intermediates (i.e., KAcon), and elongation rate. Other
parameters remaining constant, simulations indicate a
localized dependence of the lag duration on the elonga-
tion rate, felong (Fig. 8). This is clearest when comparing
a series of kinetic trajectories where only felong was
varied (Fig. 8 A). Note that the different simulations
coalesce at longer times, where the nucleation rate reg-
ulates the rate of capsid formation (assertion 2). When
examining a range of subunit concentrations, the effect of
felong on the lag duration is most evident at lower [u0]
(Fig. 8, B–E). The variation in lag duration makes it clear
that it should be possible to approximate felong by curve-
fitting.

For small nuclei in large capsids felong becomes more
important because of the many post-nuclear steps. The
elongation rate principally regulates the lag phase while the
nucleation rate regulates all phases. Because the nucleation
rate affects all phases (Eq. A2), it approximates a global
time rescaling factor.

Because the rapid phase includes contributions from fnuc

and felong, we examined the concentration dependence of
ln(d[N]/dt) against ln u0, a classical kinetic approach for
estimating reaction order in single-step reactions. We ob-
serve the concentration dependence of maximal rate is �1.
This is consistent (though not conclusive) with a pseudo-
first-order reaction, as previously suggested (Zlotnick et al.,
1999). There is no simple relationship between the depen-
dence of ln(d[N]/dt) on ln u0 and nucleus size.

Sensitivity of kinetic trajectories to model
and parameters

How reliable are parameters estimated from assembly ki-
netics? How well can we discriminate between the correct
model of an assembly reaction and a model that mimics the
data but does not represent a physically reasonable descrip-
tion of the reaction?

We find that the models are sensitive to variations in
parameters. A simulation produced using the wrong param-
eter values, though it may mimic data at one concentration,
could not fit a concentration series. We demonstrate this by
examining two reactions (Fig. 9). In the first case we fit
KAcon, fnuc, and felong for an icosahedral (30-mer) model to
data from a dodecahedral simulation. In the second case, the
correct model was used to fit simulated data for an icosa-
hedron, but we held KAcon to an incorrect value. In both
experiments residuals showed a systematic error that was
more pronounced when calculated for a concentration se-
ries, though the initial fit may have looked attractive.

Calculated kinetic trajectories are sensitive to model ge-
ometry and kinetic-thermodynamic parameters. Fitting ex-
perimental data requires an appropriate model, e.g., a 120-
mer msi-path model for hepatitis B assembly. A close fit
across a concentration series indicates that the assembly is
well represented by the model and that the parameters
extracted from the experimental data (as outlined in our
assertions 1-3) give a fair representation of the true param-
eters. We stress, however, that there is no need for such a
comparison to extract parameter values from experimental
data. A poor fit calculated with parameters extracted from
the experimental data indicates that mechanisms not in-
cluded in the initial model need to be included in further
refinements. In this way the extraction of parameters
followed by model fitting serves as a basic probe of the
assembly process.

FIGURE 7 Determination of nucleus size for three different families of
dodecahedral simulations. Nucleus size estimation surfaces z � L(u0, t) for
the dodecahedral model with nucleus sizes of 3 (A), 4 (B), and 5 (C). The
figure follows the use of grayscales as in Fig. 6.
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CONCLUSIONS

In conjunction with studies of the assembly of CCMV and
HBV, we have developed a simple model of capsid assem-
bly that makes limited assumptions. Based on this mathe-
matically expressed model, we have derived techniques to
determine reaction parameters from kinetic data.

The basic assembly model consists of defined capsid
geometry and four parameters: the microscopic, per-contact
equilibrium constant (KAcon), the nucleus size (nuc), the
nucleation on-rate (fnuc), and the elongation on-rate (felong).
We have shown how good approximations of three of these
parameters can be extracted from the kinetics of capsid

formation. In our experience, these are the most accessible
data from assembly experiments. We have illustrated these
methods by extracting parameters from simulated data cal-
culated from 12- and 30-subunit models. Practically, the
larger model gave more robust results, as mathematically
expected. The mathematical analysis was carried out for an
arbitrary capsid size and spherical capsid geometry consis-
tent with equivalent subunits. Estimation of other assembly
parameters will most likely require fitting observed kinetics
with a more detailed model of the assembly reaction.

In the first few minutes of a typical in vitro assembly
reaction, �1012 nuclei form and go on to yield capsids
(Zlotnick et al., 1999, 2000); this is unlike polymeriza-

FIGURE 8 The effect of elongation rate is most obvious in the early stages of assembly kinetics. (A) Elongation rate is varied for a constant initial subunit
concentration. The elongation rates are 105, 4.6  104, 2.2  104, and 104 M�1 s�1, from left to right; the nucleation rate is 100 M�1 s�1. At long times,
where the nucleation governs the rate of capsid formation, the four curves are coincident, as predicted for a common nucleation rate. (B–E) Families of
kinetic simulations where [u0] is 20, 10, 6, and 2 �M, corresponding to [u0]/KD of 0.063, 0.032, 0.019, and 0.0063. For these reactions, felong is 105 (B),
4.6  104 (C), 2.2  104 (D), and 104 M�1 s�1 (E). All simulations in this figure were calculated using a 30-mer model with a trimeric nucleus, 	Gc �
�4.1, and fnuc � 100 M�1 s�1.
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tion of a crystal, where a single nucleus leads to forma-
tion of a polymer of up to 1012 subunits. The general
model of capsid assembly described in this paper is a
logical outgrowth of our previous work (Zlotnick, 1994;
Zlotnick et al., 1999, 2000). To our knowledge, it is the
only rigorous description of the thermodynamics and
kinetics specific to spherical polymerization. Using qua-
si-molecular dynamics simulations to examine assembly
of individual capsids, Berger and co-workers (Schwartz
et al., 1998) were able to reproduce the sigmoidal assem-
bly curves expected for assembly of large populations,
essentially a statistical mechanical approach to capsid
assembly, though their system was not suitable for de-
veloping analyses of experimental data. However, our
results are distinctly different from analyses of capsid
assembly based on formation of open-ended polymers
such as crystals, sheets, or filaments (Oosawa and
Asakura, 1975; Prevelige et al., 1993).

The model developed here is completely general. For clar-
ity, we have not incorporated many possible features into the

model. Such mechanisms include autostery (Schwartz et al.,
1998; Caspar, 1980), energy penalties for nucleation, cooper-
ativity of association, cooperativity of dissociation, scaffolding
proteins, protein-nucleic acid interaction, and the role of post-
assembly conformation changes (c.f. Conway et al., 2001).
These modifications to the model represent directions for fu-
ture investigation. Divergence between predicted assembly
kinetics and experimental observation is expected if one fails to
account for biologically relevant reactions. It is this divergence
that will allow investigators to progressively develop and re-
fine accurate descriptions of virus assembly.

These models of assembly improve our ability to under-
stand the behavior of free capsid protein during an infection
and the effect of nucleating factors. They are readily applied
to analysis of in vitro assembly reactions for virions and
other spherical nanoparticles. We can speculate that some
day there will be antiviral drugs directed at interfering with
normal virus assembly; evaluating such antivirals will re-
quire accurate models of the assembly reactions that they
inhibit.

FIGURE 9 Fitting models to synthetic data. Data calculated for a dodecahedron (solid line, log KAcon � �3.3; fnuc � 30 s�1; felong � 1500 s�1) with
a 10-�M subunit were fit with an icosahedral model (dashed line, log KAcon � �3.84; fnuc � 80 s�1; felong � 21,760 s�1) (A, B); data calculated for an
icosahedron with a 10-�M subunit (solid line, log KAcon � �3.5; fnuc � 100 s�1; felong � 30,000 s�1) were fit with an icosahedral model with the log(KAcon)
restrained to �4 (dashed line, log KAcon � �4.0; fnuc � 44 s�1; felong � 440,000 s�1) (C, D). Kinetic trajectories of the starting model and fit model were
also compared for 5 �M and 2.5 �M subunits. Residuals are expressed as the difference between the correct mass fraction capsid and the mass fraction
calculated for the wrong model.
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APPENDIX

Mathematical details

In its most general setting, the model kinetics are described by a system of
equations

dX

dt
� V�X� (A1)

where X � (X1, . . . , XN) gives the concentrations of reactants and products
and V � (V1, . . . , VN) gives rates of change for the species. The specific
form of V is determined by details of the reaction cascade. We solve Eq. A1
for a time series X(t, X0) whose coordinates are the concentrations at a
given time, subject to the vector of initial concentrations, X0. Generally,
Eq. A1 cannot be solved explicitly in terms of elementary functions, so
solutions are obtained numerically.

To facilitate developing a simplest-case generalizable model we assume
that 1) subunits add one at a time, 2) each species contains a different
number of subunits, 3) there is perfect geometry of association where
iso-energetic contacts lead to a single product, and 4) all energies are
additive. With these assumptions the system of equations A1 becomes

d�u�

dt
� �fnuc�2s2�u�2 � · · · � snuc�u��nuc � 1��

� felong�snuc�u��nuc� � · · · � sN�u��N � 1��

� ��2b2�2� � · · · � bnuc�nuc��

� bnuc
1�nuc � 1� � · · · � bN�N�

d�2�

dt
� fnuc�s2�u�2 � s3�u��2�� � ��b3�3� � b2�2��

···

d�nuc�

dt
� fnucsnuc�u��nuc � 1� � felongsnuc
1�u��nuc�

� bnuc
1�nuc � 1� � �bnuc�nuc�

···

d�m�

dt
� felong�sm�u��m � 1� � sm
1�u��m��

� bm
1�m � 1� � bm�m�

···

d�N�

dt
� felongsN�u��N � 1� � bN�N�. (A2)

Back-reaction coefficients bm are determined by

bm � �mfmKDcon
r (A3)

with r � cm � cm�1 giving the number of contacts that must be broken to
dissociate a subunit from the mth intermediate and KDcon � (KAcon)�1.

Equations A2 are solved using the initial condition X0 � (u0, 0, . . . , 0),
i.e., the reaction begins with exclusively free subunits. For each u0 � 0, the
solution approaches an equilibrium X�(u0) obtained explicitly by solving
the algebraic system V(X) � 0 subject to the equation of conservation of
mass

u0 � �u� � �
m�2

N

m�m�. (A4)

Scaling assembly kinetics

The conservation equation A4 is invariant under arbitrary time and mass
rescaling. The solutions to the differential equations A2 are not, although
they are nearly invariant under the transformation

�t, X� � �KDcont,
X

KDcon
� (A5)

(i.e., where time t is replaced with KDcont, and concentration X with X/KDcon).
The transformed equations are identical to Eq. A1 except that an extra factor
of KAcon � 1/KDcon appears in each back-reaction term. For example, the result
of this transformation applied to a typical equation from A2,

d�m�

dt
� fm�sm�u��m � 1� � sm
1�u��m��

� bm
1�m � 1� � bm�m�

gives rise to

d�m�

dt
� fm�sm�u��m � 1� � sm
1�u��m��

� KAcon�bm
1�m � 1� � bm�m��. (A6)

The back-terms in the transformed equations are least significant when 1)
the assembly path distributes at least two contacts to each step, 2) KDcon ��
1, 3) subunit is not too depleted, and 4) � � KDcon. The first point follows
because the back-terms will contain at least one extra factor of KDcon to
cancel the KAcon coming from the transformation, whenever there are r 	 2
contacts formed in a given reaction (see Eq. A3). Consequently, points 2)
and 3) follow because the forward terms—invariant under the transforma-
tion (identical in A2 and A6)—dominate the rate equations. The require-
ment described in point 4) is specific for the initial dimerization step, where
there is typically only one contact, r � 1.

Rescaling A2 facilitates comparison of time-series and related quantities
for reactions with differing contact energies by using KDcon as the unit of
concentration. The rescaling is most nearly exact during the lag, rapid-
assembly, and early asymptotic phases, when forward-terms dominate and
subunit is not too depleted. After subunit has become depleted—as the
reaction approaches equilibrium—back-terms become more significant
and the invariance of A2 under the rescaling A5 becomes less exact.

Isolation of the nucleation rate

After peaking during the reaction’s rapid-assembly phase, intermediate con-
centrations decay exponentially (by standard linearization theorems (Hartman,
1982)) to their equilibrium values. For the mth intermediate this implies

��m� � �m��� � �m�tme�rm�t�tm� (A7)

where [m]� and [m]tm
indicate concentrations at equilibrium and at a time

tm, after which the approximation is valid to within some prescribed
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relative error. Combining the corresponding approximations (Eq. A7) for
consecutive intermediates gives (using Eq. 5 and letting the net change in
the number of intersubunit contacts r � cm � cm�1)

�m�

�m � 1�
�

�m��

�m � 1��
� Km�u�� �

sm

�m
KAcon

r �u�� (A8)

with the approximation improving in time t � tm. Standard multistep
assembly data depicted in Fig. 2 illustrate why tm rapidly increases with m,
i.e., higher intermediates can only be built from lower ones, so the approx-
imation (Eq. A8) is accurate much sooner for early intermediates. In
particular, Eq. A8 is valid for subnuclear intermediates long before it holds
for the nucleus and elongation intermediates. We find then, that upon
stabilization of the assembly line, the subnuclear intermediate concentra-
tions will maintain ratios approximating equilibrium conditions that can be
written as

�nuc � j� � Knuc-j�u��nuc � 1 � j�, j � 1 · · · nuc � 2.

(A9)

In addition, for a strongly forward reaction, while [u] is not too small, i.e.,
before the later part of the asymptotic phase, the forward reaction terms
will tend to dominate the right-hand side of

d�nuc�

dt
� fnucsnuc�u��nuc � 1� � felongsnuc
1�u��nuc�

� bnuc
1�nuc � 1� � bnuc�nuc�. (A10)

From the onset of the rapid assembly phase, as long as the mass bound in
the assembly line remains approximately constant, intermediate concen-
trations are in their steady state and, in particular, [nuc] is nearly constant.
Under these conditions the back-terms are negligible. This means that
almost every nucleus produced leads to the formation of the next larger
intermediate. The same can be said of each supernuclear intermediate as
well, so each nucleus leads to a complete capsid. The rate of capsid
production is then approximately the same as the forward-rate of nucleus
production, and we have

d�N�

dt
� fnucsnuc�u��nuc � 1�. (A11)

Sequential substitution for [nuc-1], [nuc-2]. . . in Eq. A11 using the ap-
proximations A9 gives

d�N�

dt
� fnucsnucKnuc�1 · · · K2�u�nuc. (A12)

The constants Km are determined by the capsid geometry and are
obtainable by back-substitution in A2 at equilibrium (as given in Eq. 5; also
in Zlotnick, 1994). When subunit becomes depleted, the steady-state as-
sembly line and the estimate A11 gradually fail.

Estimation of nucleus size

Our remaining work concerns dependence of [u] and [N] on both t and u0.
In the interest of clarity, we will begin to indicate differentiations with
respect to time as partial derivatives. In keeping with convention we will
not explicitly indicate such dependence (as [u](u0, t) and [N] (u0, t)),
because it is understood implicitly.

We observe that simulated reactions, initiated with an ample supply of
subunit, rapidly enter a steady state in which intermediate concentrations
are slowly varying. Under such conditions A12 holds and the ratio


p �
��N�

�t ��u�p (A13)

is independent of u0 for p � nuc. Furthermore, the mass bound in the
assembly line is nearly constant so that the mass not in the assembly line
(capsid and subunit) is nearly constant as well, giving

�

�t
�N�N� � �u�� � 0. (A14)

In simulations the accuracy of the approximation A14 is also independent
of u0 for u0 sufficiently large to drive assembly (for reactions with u0 �

KDapp there is no stable size for the assembly line as there is no rapid-
assembly phase). Solving A14 for �[u]/�t, dividing through by [u]p and
differentiating with respect to u0, we obtain

�

�u0
�N

��N�

�t ��u�p� � �
�

�u0
���u�

�t ��u�p� � 0

leading to the conditions

N�u�p
�

�u0

��N�

�t
� Np�u�p�1

��u�

�u0

��N�

�t

� �p�u�p�1
��u�

�u0

��u�

�t

� ��u�p
�

�u0

��u�

�t
.

Under these conditions we also have

�

�u0
���N�

�t ��N�� �
1

�N�2 �p�N�

�u�

��u�

�u0
�

��N�

�u0
� ��u�

�t

and

�

�u0
���u�

�t ��u�� �
p � 1

�u�2

��u�

�u0

��u�

�t
.

Forming their ratio and exchanging the order of mixed partials we find

��2 ln�N�

�t�u0
��2 ln�u�

�t�u0
�

�
�u�

�p � 1��N��p � ��ln�N�

�u0
��ln�u�

�u0
�� . (A15)

Suppose for the moment that for each u0, at a particular time t � t(u0), that

��2 ln�N�

�t�u0
��2 ln�u�

�t�u0
� �

�ln�N�

�u0
��ln�u�

�u0
. (A16)
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As a consequence, momentarily at t � t(u0), by virtue of A16, Eq. A15
becomes

�� ln�N�

�u0
�� ln�u�

�u0
�
�

�u�

�p � 1��N��p � ��ln�N�

�u0
��ln�u�

�u0
�� .

which can be solved for

�ln�N�

�u0
��ln�u�

�u0

� p
�u�

�u� � �p � 1��N�

� p�1 �
�p � 1��N�

�u�
� ��p � 1��N�

�u� �2

� · · ·�
so that the approximation

L � ��ln�N�

�u0
��ln�u�

�u0
� � p (A17)

holds to within p(p � 1)[N]/[u], if [u] � (p � 1)[N] at t � t(u0). The value
p � nuc is the desired nucleus size.

How can we find this special time t(u0) when this approximation holds?
As it turns out, p is the temporal minimum value of the function

L � ��ln�N�

�u0
��ln�u�

�u0
�

achieved during steady-state at the time t � t(u0). To see that this is the
case we differentiate L with respect to t:

�L

�t
�

� ln�u�

� u0

�2 ln�cap�

�t�u0
�

� ln�cap�

�u0

�2 ln�u�

�t�u0

��ln�u�

�u0
�2 (A18)

This derivative (A18) will equal 0 at the time t � t(u0) when the temporal
minimum of L is reached by the reaction with initial concentration u0.
Consequently, the numerator of A18 must be zero, leaving A16, conclud-
ing our analysis.

Conditions under which 
p (A13) is independent of u0 persist over a
wide temporal interval, but the onset of this interval is delayed as u0

decreases. When u0 is small compared to KDapp, the assembly line fails to
persist. For A14 to hold, the total mass bound in intermediate species must
be held constant.

Assembly cascades are susceptible to both starvation and kinetic trap-
ping. For [u] � KDapp reactions are starved for available subunits; for [u]
sufficiently large, reactions are well-supplied with available free subunits.
For u0 �� KDapp, free subunits are abundant ab initio unless assembly is
over-initiated, causing a kinetic trap. In a starved reaction there is no
surplus of subunit mass to be transferred through the assembly line, so
dissociation of intermediates becomes a significant source of mass for
capsid production. Fortunately, concentrations for which A14 can be
expected to hold are just those concentrations that lead to the experimen-
tally measurable values of capsid and subunit required to calculate the
value of L.
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(MCB0111025) to A.Z. D.E. was also supported by CGS&R at the Uni-
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