Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Nov;83(5):2587–2594. doi: 10.1016/S0006-3495(02)75269-7

Modulation of the conductance of unitary cardiac L-type Ca(2+) channels by conditioning voltage and divalent ions.

Ira R Josephson 1, Antonio Guia 1, Edward G Lakatta 1, Michael D Stern 1
PMCID: PMC1302344  PMID: 12414692

Abstract

The accompanying paper (Josephson, I. R., A. Guia, E. G. Lakatta, and M. D. Stern. 2002. Biophys. J. 83:2575-2586) examined the effects of conditioning prepulses on the kinetics of unitary L-type Ca(2+) channel currents using Ca(2+) and Ba(2+) ions to determine the ionic-dependence of gating mechanisms responsible for channel inactivation and facilitation. Here we demonstrate that in addition to alterations in gating kinetics, the conductance of single L-type Ca(2+) channels was also dependent on the prior conditioning voltage and permeant ions. All recordings were made in the absence of any Ca(2+) channel agonists. Strongly depolarizing prepulses produced an increased frequency of long-duration (mode 2) openings during the test voltage steps. Mode 2 openings also displayed >25% larger single channel current amplitude (at 0 mV) than briefer (but well-resolved) mode 1 openings. The conductance of mode 2 openings was 26 pS for 105 mM Ba(2+), 18 pS for 5 mM Ba(2+), and 6 pS for 5 mM Ca(2+) ions; these values were 70% greater than the conductance of Ca(2+) channel openings of all durations (mode 1 and mode 2). Thus, the prepulse-driven shift into mode 2 gating results in a longer-lived Ca(2+) channel conformation that, in addition, displays altered permeation properties. These results, and those in the accompanying paper, support the hypothesis that multiple aspects of single L-type Ca(2+) channel behavior (gating kinetics, modal transitions, and ion permeation) are interrelated and are modulated by the magnitude of the conditioning depolarization and the nature and concentration of the ions permeating the channel.

Full Text

The Full Text of this article is available as a PDF (154.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Caffrey J. M., Josephson I. R., Brown A. M. Calcium channels of amphibian stomach and mammalian aorta smooth muscle cells. Biophys J. 1986 Jun;49(6):1237–1242. doi: 10.1016/S0006-3495(86)83753-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Church P. J., Stanley E. F. Single L-type calcium channel conductance with physiological levels of calcium in chick ciliary ganglion neurons. J Physiol. 1996 Oct 1;496(Pt 1):59–68. doi: 10.1113/jphysiol.1996.sp021665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cloues R. K., Sather W. A. Permeant ion binding affinity in subconductance states of an L-type Ca2+ channel expressed in Xenopus laevis oocytes. J Physiol. 2000 Apr 1;524(Pt 1):19–36. doi: 10.1111/j.1469-7793.2000.00019.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gondo N., Ono K., Mannen K., Yatani A., Green S. A., Arita M. Four conductance levels of cloned cardiac L-type Ca2+ channel alpha1 and alpha1/beta subunits. FEBS Lett. 1998 Feb 13;423(1):86–92. doi: 10.1016/s0014-5793(98)00070-2. [DOI] [PubMed] [Google Scholar]
  5. Guia A., Stern M. D., Lakatta E. G., Josephson I. R. Ion concentration-dependence of rat cardiac unitary L-type calcium channel conductance. Biophys J. 2001 Jun;80(6):2742–2750. doi: 10.1016/S0006-3495(01)76242-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hess P., Lansman J. B., Tsien R. W. Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists. Nature. 1984 Oct 11;311(5986):538–544. doi: 10.1038/311538a0. [DOI] [PubMed] [Google Scholar]
  7. Hirano Y., Yoshinaga T., Murata M., Hiraoka M. Prepulse-induced mode 2 gating behavior with and without beta-adrenergic stimulation in cardiac L-type Ca channels. Am J Physiol. 1999 Jun;276(6 Pt 1):C1338–C1345. doi: 10.1152/ajpcell.1999.276.6.C1338. [DOI] [PubMed] [Google Scholar]
  8. Josephson Ira R., Guia Antonio, Lakatta Edward G., Stern Michael D. Modulation of the gating of unitary cardiac L-type Ca(2+) channels by conditioning voltage and divalent ions. Biophys J. 2002 Nov;83(5):2575–2586. doi: 10.1016/S0006-3495(02)75268-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kokubun S., Reuter H. Dihydropyridine derivatives prolong the open state of Ca channels in cultured cardiac cells. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4824–4827. doi: 10.1073/pnas.81.15.4824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kunze D. L., Ritchie A. K. Multiple conductance levels of the dihydropyridine-sensitive calcium channel in GH3 cells. J Membr Biol. 1990 Nov;118(2):171–178. doi: 10.1007/BF01868474. [DOI] [PubMed] [Google Scholar]
  11. Pietrobon D., Hess P. Novel mechanism of voltage-dependent gating in L-type calcium channels. Nature. 1990 Aug 16;346(6285):651–655. doi: 10.1038/346651a0. [DOI] [PubMed] [Google Scholar]
  12. Stern M. D. Theory of excitation-contraction coupling in cardiac muscle. Biophys J. 1992 Aug;63(2):497–517. doi: 10.1016/S0006-3495(92)81615-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Yue D. T., Herzig S., Marban E. Beta-adrenergic stimulation of calcium channels occurs by potentiation of high-activity gating modes. Proc Natl Acad Sci U S A. 1990 Jan;87(2):753–757. doi: 10.1073/pnas.87.2.753. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES