Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Nov;83(5):2595–2609. doi: 10.1016/S0006-3495(02)75270-3

Modeling the structure of agitoxin in complex with the Shaker K+ channel: a computational approach based on experimental distance restraints extracted from thermodynamic mutant cycles.

Mats A L Eriksson 1, Benoît Roux 1
PMCID: PMC1302345  PMID: 12414693

Abstract

Computational methods are used to determine the three-dimensional structure of the Agitoxin (AgTx2)-Shaker complex. In a first stage, a large number of models of the complex are generated using high temperature molecular dynamics, accounting for side chain flexibility with distance restraints deduced from thermodynamic analysis of double mutant cycles. Four plausible binding mode candidates are found using this procedure. In a second stage, the quality and validity of the resulting complexes is assessed by examining the stability of the binding modes during molecular dynamics simulations with explicit water molecules and by calculating the binding free energies of mutant proteins using a continuum solvent representation and comparing with experimental data. The docking protocol and the continuum solvent model are validated using the Barstar-Barnase and the lysozyme-antibody D1.2 complexes, for which there are high-resolution structures as well as double mutant data. This combination of computational methods permits the identification of two possible structural models of AgTx2 in complex with the Shaker K+ channel, additional structural analysis providing further evidence in favor of a single model. In this final complex, the toxin is bound to the extracellular entrance of the channel along the pore axis via a combination of hydrophobic, hydrogen bonding, and electrostatic interactions. The magnitude of the buried solvent accessible area corresponding to the protein-protein contact is on the order of 1000 A with roughly similar contributions from each of the four subunits. Some side chains of the toxin adopt different conformation than in the experimental solution structure, indicating the importance of an induced-fit upon the formation of the complex. In particular, the side chain of Lys-27, a residue highly conserved among scorpion toxins, points deep into the pore with its positively charge amino group positioned at the outer binding site for K+. Specific site-directed mutagenesis experiments are suggested to verify and confirm the structure of the toxin-channel complex.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson C. S., MacKinnon R., Smith C., Miller C. Charybdotoxin block of single Ca2+-activated K+ channels. Effects of channel gating, voltage, and ionic strength. J Gen Physiol. 1988 Mar;91(3):317–333. doi: 10.1085/jgp.91.3.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bernèche S., Roux B. Energetics of ion conduction through the K+ channel. Nature. 2001 Nov 1;414(6859):73–77. doi: 10.1038/35102067. [DOI] [PubMed] [Google Scholar]
  3. Blaustein R. O., Cole P. A., Williams C., Miller C. Tethered blockers as molecular 'tape measures' for a voltage-gated K+ channel. Nat Struct Biol. 2000 Apr;7(4):309–311. doi: 10.1038/74076. [DOI] [PubMed] [Google Scholar]
  4. Bontems F., Gilquin B., Roumestand C., Ménez A., Toma F. Analysis of side-chain organization on a refined model of charybdotoxin: structural and functional implications. Biochemistry. 1992 Sep 1;31(34):7756–7764. doi: 10.1021/bi00149a003. [DOI] [PubMed] [Google Scholar]
  5. Bontems F., Roumestand C., Gilquin B., Ménez A., Toma F. Refined structure of charybdotoxin: common motifs in scorpion toxins and insect defensins. Science. 1991 Dec 6;254(5037):1521–1523. doi: 10.1126/science.1720574. [DOI] [PubMed] [Google Scholar]
  6. Buckle A. M., Schreiber G., Fersht A. R. Protein-protein recognition: crystal structural analysis of a barnase-barstar complex at 2.0-A resolution. Biochemistry. 1994 Aug 2;33(30):8878–8889. doi: 10.1021/bi00196a004. [DOI] [PubMed] [Google Scholar]
  7. Camacho C. J., Vajda S. Protein docking along smooth association pathways. Proc Natl Acad Sci U S A. 2001 Aug 21;98(19):10636–10641. doi: 10.1073/pnas.181147798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cha A., Bezanilla F. Structural implications of fluorescence quenching in the Shaker K+ channel. J Gen Physiol. 1998 Oct;112(4):391–408. doi: 10.1085/jgp.112.4.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cortes D. M., Perozo E. Structural dynamics of the Streptomyces lividans K+ channel (SKC1): oligomeric stoichiometry and stability. Biochemistry. 1997 Aug 19;36(33):10343–10352. doi: 10.1021/bi971018y. [DOI] [PubMed] [Google Scholar]
  10. Cui M., Shen J., Briggs J. M., Luo X., Tan X., Jiang H., Chen K., Ji R. Brownian dynamics simulations of interaction between scorpion toxin Lq2 and potassium ion channel. Biophys J. 2001 Apr;80(4):1659–1669. doi: 10.1016/S0006-3495(01)76138-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cui Meng, Shen Jianhua, Briggs James M., Fu Wei, Wu Jingjiang, Zhang Yingmin, Luo Xiaomin, Chi Zhengwu, Ji Ruyun, Jiang Hualiang. Brownian dynamics simulations of the recognition of the scorpion toxin P05 with the small-conductance calcium-activated potassium channels. J Mol Biol. 2002 Apr 26;318(2):417–428. doi: 10.1016/S0022-2836(02)00095-5. [DOI] [PubMed] [Google Scholar]
  12. Dall'Acqua W., Goldman E. R., Lin W., Teng C., Tsuchiya D., Li H., Ysern X., Braden B. C., Li Y., Smith-Gill S. J. A mutational analysis of binding interactions in an antigen-antibody protein-protein complex. Biochemistry. 1998 Jun 2;37(22):7981–7991. doi: 10.1021/bi980148j. [DOI] [PubMed] [Google Scholar]
  13. Dauplais M., Lecoq A., Song J., Cotton J., Jamin N., Gilquin B., Roumestand C., Vita C., de Medeiros C. L., Rowan E. G. On the convergent evolution of animal toxins. Conservation of a diad of functional residues in potassium channel-blocking toxins with unrelated structures. J Biol Chem. 1997 Feb 14;272(7):4302–4309. doi: 10.1074/jbc.272.7.4302. [DOI] [PubMed] [Google Scholar]
  14. Doig A. J., Sternberg M. J. Side-chain conformational entropy in protein folding. Protein Sci. 1995 Nov;4(11):2247–2251. doi: 10.1002/pro.5560041101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dolly J. O., Parcej D. N. Molecular properties of voltage-gated K+ channels. J Bioenerg Biomembr. 1996 Jun;28(3):231–253. doi: 10.1007/BF02110698. [DOI] [PubMed] [Google Scholar]
  16. Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
  17. Glaser F., Steinberg D. M., Vakser I. A., Ben-Tal N. Residue frequencies and pairing preferences at protein-protein interfaces. Proteins. 2001 May 1;43(2):89–102. [PubMed] [Google Scholar]
  18. Goldstein S. A., Miller C. Mechanism of charybdotoxin block of a voltage-gated K+ channel. Biophys J. 1993 Oct;65(4):1613–1619. doi: 10.1016/S0006-3495(93)81200-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Goldstein S. A., Pheasant D. J., Miller C. The charybdotoxin receptor of a Shaker K+ channel: peptide and channel residues mediating molecular recognition. Neuron. 1994 Jun;12(6):1377–1388. doi: 10.1016/0896-6273(94)90452-9. [DOI] [PubMed] [Google Scholar]
  20. Gross A., MacKinnon R. Agitoxin footprinting the shaker potassium channel pore. Neuron. 1996 Feb;16(2):399–406. doi: 10.1016/s0896-6273(00)80057-4. [DOI] [PubMed] [Google Scholar]
  21. Guillet V., Lapthorn A., Hartley R. W., Mauguen Y. Recognition between a bacterial ribonuclease, barnase, and its natural inhibitor, barstar. Structure. 1993 Nov 15;1(3):165–176. doi: 10.1016/0969-2126(93)90018-c. [DOI] [PubMed] [Google Scholar]
  22. Harvey A. L. Recent studies on dendrotoxins and potassium ion channels. Gen Pharmacol. 1997 Jan;28(1):7–12. doi: 10.1016/s0306-3623(96)00173-5. [DOI] [PubMed] [Google Scholar]
  23. Heginbotham L., Abramson T., MacKinnon R. A functional connection between the pores of distantly related ion channels as revealed by mutant K+ channels. Science. 1992 Nov 13;258(5085):1152–1155. doi: 10.1126/science.1279807. [DOI] [PubMed] [Google Scholar]
  24. Heginbotham L., LeMasurier M., Kolmakova-Partensky L., Miller C. Single streptomyces lividans K(+) channels: functional asymmetries and sidedness of proton activation. J Gen Physiol. 1999 Oct;114(4):551–560. doi: 10.1085/jgp.114.4.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Heginbotham L., Lu Z., Abramson T., MacKinnon R. Mutations in the K+ channel signature sequence. Biophys J. 1994 Apr;66(4):1061–1067. doi: 10.1016/S0006-3495(94)80887-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hidalgo P., MacKinnon R. Revealing the architecture of a K+ channel pore through mutant cycles with a peptide inhibitor. Science. 1995 Apr 14;268(5208):307–310. doi: 10.1126/science.7716527. [DOI] [PubMed] [Google Scholar]
  27. Holmgren M., Shin K. S., Yellen G. The activation gate of a voltage-gated K+ channel can be trapped in the open state by an intersubunit metal bridge. Neuron. 1998 Sep;21(3):617–621. doi: 10.1016/s0896-6273(00)80571-1. [DOI] [PubMed] [Google Scholar]
  28. Hong K. H., Miller C. The lipid-protein interface of a Shaker K(+) channel. J Gen Physiol. 2000 Jan;115(1):51–58. doi: 10.1085/jgp.115.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Horovitz A., Serrano L., Avron B., Bycroft M., Fersht A. R. Strength and co-operativity of contributions of surface salt bridges to protein stability. J Mol Biol. 1990 Dec 20;216(4):1031–1044. doi: 10.1016/S0022-2836(99)80018-7. [DOI] [PubMed] [Google Scholar]
  30. Hurst R. S., Busch A. E., Kavanaugh M. P., Osborne P. B., North R. A., Adelman J. P. Identification of amino acid residues involved in dendrotoxin block of rat voltage-dependent potassium channels. Mol Pharmacol. 1991 Oct;40(4):572–576. [PubMed] [Google Scholar]
  31. Imredy J. P., Chen C., MacKinnon R. A snake toxin inhibitor of inward rectifier potassium channel ROMK1. Biochemistry. 1998 Oct 20;37(42):14867–14874. doi: 10.1021/bi980929k. [DOI] [PubMed] [Google Scholar]
  32. Jan L. Y., Jan Y. N. Cloned potassium channels from eukaryotes and prokaryotes. Annu Rev Neurosci. 1997;20:91–123. doi: 10.1146/annurev.neuro.20.1.91. [DOI] [PubMed] [Google Scholar]
  33. Jiang Youxing, Lee Alice, Chen Jiayun, Cadene Martine, Chait Brian T., MacKinnon Roderick. Crystal structure and mechanism of a calcium-gated potassium channel. Nature. 2002 May 30;417(6888):515–522. doi: 10.1038/417515a. [DOI] [PubMed] [Google Scholar]
  34. Jin W., Klem A. M., Lewis J. H., Lu Z. Mechanisms of inward-rectifier K+ channel inhibition by tertiapin-Q. Biochemistry. 1999 Oct 26;38(43):14294–14301. doi: 10.1021/bi991206j. [DOI] [PubMed] [Google Scholar]
  35. Jones S., Thornton J. M. Principles of protein-protein interactions. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):13–20. doi: 10.1073/pnas.93.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Kalman K., Pennington M. W., Lanigan M. D., Nguyen A., Rauer H., Mahnir V., Paschetto K., Kem W. R., Grissmer S., Gutman G. A. ShK-Dap22, a potent Kv1.3-specific immunosuppressive polypeptide. J Biol Chem. 1998 Dec 4;273(49):32697–32707. doi: 10.1074/jbc.273.49.32697. [DOI] [PubMed] [Google Scholar]
  37. Kelley L. A., Gardner S. P., Sutcliffe M. J. An automated approach for clustering an ensemble of NMR-derived protein structures into conformationally related subfamilies. Protein Eng. 1996 Nov;9(11):1063–1065. doi: 10.1093/protein/9.11.1063. [DOI] [PubMed] [Google Scholar]
  38. Krezel A. M., Kasibhatla C., Hidalgo P., MacKinnon R., Wagner G. Solution structure of the potassium channel inhibitor agitoxin 2: caliper for probing channel geometry. Protein Sci. 1995 Aug;4(8):1478–1489. doi: 10.1002/pro.5560040805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Liman E. R., Hess P., Weaver F., Koren G. Voltage-sensing residues in the S4 region of a mammalian K+ channel. Nature. 1991 Oct 24;353(6346):752–756. doi: 10.1038/353752a0. [DOI] [PubMed] [Google Scholar]
  40. Logothetis D. E., Movahedi S., Satler C., Lindpaintner K., Nadal-Ginard B. Incremental reductions of positive charge within the S4 region of a voltage-gated K+ channel result in corresponding decreases in gating charge. Neuron. 1992 Mar;8(3):531–540. doi: 10.1016/0896-6273(92)90281-h. [DOI] [PubMed] [Google Scholar]
  41. Lu Z., Klem A. M., Ramu Y. Ion conduction pore is conserved among potassium channels. Nature. 2001 Oct 25;413(6858):809–813. doi: 10.1038/35101535. [DOI] [PubMed] [Google Scholar]
  42. MacKinnon R., Cohen S. L., Kuo A., Lee A., Chait B. T. Structural conservation in prokaryotic and eukaryotic potassium channels. Science. 1998 Apr 3;280(5360):106–109. doi: 10.1126/science.280.5360.106. [DOI] [PubMed] [Google Scholar]
  43. MacKinnon R. Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature. 1991 Mar 21;350(6315):232–235. doi: 10.1038/350232a0. [DOI] [PubMed] [Google Scholar]
  44. MacKinnon R., Heginbotham L., Abramson T. Mapping the receptor site for charybdotoxin, a pore-blocking potassium channel inhibitor. Neuron. 1990 Dec;5(6):767–771. doi: 10.1016/0896-6273(90)90335-d. [DOI] [PubMed] [Google Scholar]
  45. MacKinnon R., Miller C. Mechanism of charybdotoxin block of the high-conductance, Ca2+-activated K+ channel. J Gen Physiol. 1988 Mar;91(3):335–349. doi: 10.1085/jgp.91.3.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. MacKinnon R., Miller C. Mutant potassium channels with altered binding of charybdotoxin, a pore-blocking peptide inhibitor. Science. 1989 Sep 22;245(4924):1382–1385. doi: 10.1126/science.2476850. [DOI] [PubMed] [Google Scholar]
  47. Miller C. The charybdotoxin family of K+ channel-blocking peptides. Neuron. 1995 Jul;15(1):5–10. doi: 10.1016/0896-6273(95)90057-8. [DOI] [PubMed] [Google Scholar]
  48. Monks S. A., Needleman D. J., Miller C. Helical structure and packing orientation of the S2 segment in the Shaker K+ channel. J Gen Physiol. 1999 Mar;113(3):415–423. doi: 10.1085/jgp.113.3.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Naini A. A., Miller C. A symmetry-driven search for electrostatic interaction partners in charybdotoxin and a voltage-gated K+ channel. Biochemistry. 1996 May 21;35(20):6181–6187. doi: 10.1021/bi960067s. [DOI] [PubMed] [Google Scholar]
  50. Naranjo D., Miller C. A strongly interacting pair of residues on the contact surface of charybdotoxin and a Shaker K+ channel. Neuron. 1996 Jan;16(1):123–130. doi: 10.1016/s0896-6273(00)80029-x. [DOI] [PubMed] [Google Scholar]
  51. Norel R., Sheinerman F., Petrey D., Honig B. Electrostatic contributions to protein-protein interactions: fast energetic filters for docking and their physical basis. Protein Sci. 2001 Nov;10(11):2147–2161. doi: 10.1110/ps.12901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Novotny J., Bruccoleri R. E., Davis M., Sharp K. A. Empirical free energy calculations: a blind test and further improvements to the method. J Mol Biol. 1997 May 2;268(2):401–411. doi: 10.1006/jmbi.1997.0961. [DOI] [PubMed] [Google Scholar]
  53. Olson M. A. Mean-field analysis of protein-protein interactions. Biophys Chem. 1998 Nov 16;75(2):115–128. doi: 10.1016/s0301-4622(98)00201-4. [DOI] [PubMed] [Google Scholar]
  54. Olson M. A., Reinke L. T. Modeling implicit reorganization in continuum descriptions of protein-protein interactions. Proteins. 2000 Jan 1;38(1):115–119. doi: 10.1002/(sici)1097-0134(20000101)38:1<115::aid-prot11>3.0.co;2-p. [DOI] [PubMed] [Google Scholar]
  55. Palma P. N., Krippahl L., Wampler J. E., Moura J. J. BiGGER: a new (soft) docking algorithm for predicting protein interactions. Proteins. 2000 Jun 1;39(4):372–384. [PubMed] [Google Scholar]
  56. Park C. S., Miller C. Interaction of charybdotoxin with permeant ions inside the pore of a K+ channel. Neuron. 1992 Aug;9(2):307–313. doi: 10.1016/0896-6273(92)90169-e. [DOI] [PubMed] [Google Scholar]
  57. Pongs O. Receptor sites for open channel blockers of Shaker voltage-gated potassium channels--molecular approaches. J Recept Res. 1993;13(1-4):503–512. doi: 10.3109/10799899309073675. [DOI] [PubMed] [Google Scholar]
  58. Pongs O. Structural basis of potassium channel diversity in the nervous system. J Basic Clin Physiol Pharmacol. 1990 Jan-Dec;1(1-4):31–39. doi: 10.1515/jbcpp.1990.1.1-4.31. [DOI] [PubMed] [Google Scholar]
  59. Ranganathan R., Lewis J. H., MacKinnon R. Spatial localization of the K+ channel selectivity filter by mutant cycle-based structure analysis. Neuron. 1996 Jan;16(1):131–139. doi: 10.1016/s0896-6273(00)80030-6. [DOI] [PubMed] [Google Scholar]
  60. Rauer H., Lanigan M. D., Pennington M. W., Aiyar J., Ghanshani S., Cahalan M. D., Norton R. S., Chandy K. G. Structure-guided transformation of charybdotoxin yields an analog that selectively targets Ca(2+)-activated over voltage-gated K(+) channels. J Biol Chem. 2000 Jan 14;275(2):1201–1208. doi: 10.1074/jbc.275.2.1201. [DOI] [PubMed] [Google Scholar]
  61. Ritchie D. W., Kemp G. J. Protein docking using spherical polar Fourier correlations. Proteins. 2000 May 1;39(2):178–194. [PubMed] [Google Scholar]
  62. Sali A., Blundell T. L. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993 Dec 5;234(3):779–815. doi: 10.1006/jmbi.1993.1626. [DOI] [PubMed] [Google Scholar]
  63. Sali A., Potterton L., Yuan F., van Vlijmen H., Karplus M. Evaluation of comparative protein modeling by MODELLER. Proteins. 1995 Nov;23(3):318–326. doi: 10.1002/prot.340230306. [DOI] [PubMed] [Google Scholar]
  64. Schreiber G., Fersht A. R. Energetics of protein-protein interactions: analysis of the barnase-barstar interface by single mutations and double mutant cycles. J Mol Biol. 1995 Apr 28;248(2):478–486. doi: 10.1016/s0022-2836(95)80064-6. [DOI] [PubMed] [Google Scholar]
  65. Schrempf H., Schmidt O., Kümmerlen R., Hinnah S., Müller D., Betzler M., Steinkamp T., Wagner R. A prokaryotic potassium ion channel with two predicted transmembrane segments from Streptomyces lividans. EMBO J. 1995 Nov 1;14(21):5170–5178. doi: 10.1002/j.1460-2075.1995.tb00201.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Serrano L., Horovitz A., Avron B., Bycroft M., Fersht A. R. Estimating the contribution of engineered surface electrostatic interactions to protein stability by using double-mutant cycles. Biochemistry. 1990 Oct 9;29(40):9343–9352. doi: 10.1021/bi00492a006. [DOI] [PubMed] [Google Scholar]
  67. Sharp K. A. Calculation of HyHel10-lysozyme binding free energy changes: effect of ten point mutations. Proteins. 1998 Oct 1;33(1):39–48. [PubMed] [Google Scholar]
  68. Sokolova O., Kolmakova-Partensky L., Grigorieff N. Three-dimensional structure of a voltage-gated potassium channel at 2.5 nm resolution. Structure. 2001 Mar 7;9(3):215–220. doi: 10.1016/s0969-2126(01)00578-0. [DOI] [PubMed] [Google Scholar]
  69. Stocker M., Miller C. Electrostatic distance geometry in a K+ channel vestibule. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9509–9513. doi: 10.1073/pnas.91.20.9509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Stocker M., Pongs O., Hoth M., Heinemann S. H., Stühmer W., Schröter K. H., Ruppersberg J. P. Swapping of functional domains in voltage-gated K+ channels. Proc Biol Sci. 1991 Aug 22;245(1313):101–107. doi: 10.1098/rspb.1991.0094. [DOI] [PubMed] [Google Scholar]
  71. Tempel B. L., Papazian D. M., Schwarz T. L., Jan Y. N., Jan L. Y. Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila. Science. 1987 Aug 14;237(4816):770–775. doi: 10.1126/science.2441471. [DOI] [PubMed] [Google Scholar]
  72. Tiwari-Woodruff S. K., Lin M. A., Schulteis C. T., Papazian D. M. Voltage-dependent structural interactions in the Shaker K(+) channel. J Gen Physiol. 2000 Feb;115(2):123–138. doi: 10.1085/jgp.115.2.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Tudor J. E., Pallaghy P. K., Pennington M. W., Norton R. S. Solution structure of ShK toxin, a novel potassium channel inhibitor from a sea anemone. Nat Struct Biol. 1996 Apr;3(4):317–320. doi: 10.1038/nsb0496-317. [DOI] [PubMed] [Google Scholar]
  74. Tytgat J., Debont T., Carmeliet E., Daenens P. The alpha-dendrotoxin footprint on a mammalian potassium channel. J Biol Chem. 1995 Oct 20;270(42):24776–24781. doi: 10.1074/jbc.270.42.24776. [DOI] [PubMed] [Google Scholar]
  75. Zhou Y., Morais-Cabral J. H., Kaufman A., MacKinnon R. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution. Nature. 2001 Nov 1;414(6859):43–48. doi: 10.1038/35102009. [DOI] [PubMed] [Google Scholar]
  76. van Schaik R. C., Berendsen H. J., Torda A. E., van Gunsteren W. F. A structure refinement method based on molecular dynamics in four spatial dimensions. J Mol Biol. 1993 Dec 5;234(3):751–762. doi: 10.1006/jmbi.1993.1624. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES