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Hydrodynamics of Micropipette Aspiration

Jeanie L. Drury and Micah Dembo
Department of Biomedical Engineering, Boston University, Boston, MA 02215 USA

ABSTRACT The dynamics of human neutrophils during micropipette aspiration are frequently analyzed by approximating
these cells as simple slippery droplets of viscous fluid. Here, we present computations that reveal the detailed predictions of
the simplest and most idealized case of such a scheme; namely, the case where the fluid of the droplet is homogeneous and
Newtonian, and the surface tension of the droplet is constant. We have investigated the behavior of this model as a function
of surface tension, droplet radius, viscosity, aspiration pressure, and pipette radius. In addition, we have tabulated a
dimensionless factor, M, which can be utilized to calculate the apparent viscosity of the slippery droplet. Computations were
carried out using a low Reynolds number hydrodynamics transport code based on the finite-element method. Although
idealized and simplistic, we find that the slippery droplet model predicts many observed features of neutrophil aspiration.
However, there are certain features that are not observed in neutrophils. In particular, the model predicts dilation of the
membrane past the point of being continuous, as well as a reentrant jet at high aspiration pressures.

INTRODUCTION

The diameter of a neutrophil is on the order of twice thethe granulocyte is characterized by a surface shear and
diameter of a typical capillary vessel (@n versus 4.5um)  dilatation viscosity in addition to a constant cortical tension
(Ting-Beall et al., 1993). These cells are therefore forced tqEvans and Yeung, 1989; Yeung and Evans, 1989). Other
repeatedly undergo cycles of large deformation and recovgroups have presented calculations in which the interior of
ery as they pass through the systemic and pulmonary cithe leukocyte is modeled as a standard viscoelastic solid
culations. The rheological behavior of a cell as it undergoe¢Schmid-Schiobein et al., 1981) or as a Maxwell fluid
these deformations is passive (i.e., the necessary energyiisside a prestressed elastic cortical shell (Dong et al., 1988,
supplied by the transcapillary gradient of blood pressure1991; Dong and Skalak, 1992). More recently it has been
which in turn is generated by the action of the heart). Inpostulated that the neutrophil behaves as a pseudoplastic or
addition, there is considerable circumstantial evidence indipower law fluid (Tsai et al., 1993). In related developments
cating that the blockages caused by white cells stuck insidi has been suggested that the apparent surface tension of the
capillaries can contribute to pathology during acute ischwhite cell should not be treated as a constant, but instead
emic incidents (Sutton and Schmid-Sabein, 1992). Thus, should be regarded as a function of surface dilation (Need-
despite the low numbers of white blood cells, the incidencéham and Hochmuth, 1992). Finally, it has been put forth that
of heart attack is directly correlated with the white cell at very high rates of aspiration, friction in the lubrication
count (Friedman et al., 1974; Prentice et al., 1982; Schmidlayer between the cell and the capillary wall can have a
Schimbein and Engler, 1986). significant effect (Shao and Hochmuth, 1997).
Experimental studies of the physiological process by One may thus stipulate that all of the simple features of
which white cells pass into and out of small capillaries havethe slippery droplet model have been questioned at one time
frequently been based on cell behavior during micropipett®r another. Nevertheless, a decision as to whether one or
aspiration and on the subsequent recovery of the cells tanother of the suggested improvements to the slippery drop-
their resting spherical shape. The general and rather remarlet model is actually justified requires accurate numerical
able conclusion of such work is that circulating granulo-studies for each case and comparison of such studies with
cytes are rather like droplets of liquid mercury (i.e., they areexperiments. Before undertaking such testing, however, it
incompressible Newtonian fluids, they are very slippery,seems that one would be well advised to first understand the
and they have a considerable surface tension) (Evans ampiuses and minuses of the simplest interesting case in some
Kukan, 1984). detail. Therefore our objective in the current paper is mainly
Although few dispute the fact that this simple model isto present some results that will serve to indicate exactly
remarkably close to the truth, there remains plenty of roomwhat does and does not happen when a slippery droplet of
in which to quibble about details. For example, Evans andNewtonian fluid is aspirated into a tube.
Yeung have presented a model in which the surface layer of
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caliber of the pipette biR,. The two-dimensional manifolds regions of bathing fluid inside and outside the lumen of the
{r>R, z=0}and {r = R;; z> 0} are then called the pipette are effectively disconnected.
exterior and interior surfaces of the pipette, respectively (see The requirements of incompressibility and momentum
Fig. 1). The portion of a pipette boundary that cannot bebalance within the droplet lead to the Stokes equations:
clearly classified as interior or exterior is called the “noz-
zle.” For purposes of our current discussion, the nozzle then Vev=0 (1a)
consists only of the circular locus {= R;; z = 0}. One
should bear in mind that our simplified model for a pipette
neglects the fact that real pipettes have a finite “lip” char- V- (w(Vv + (VV)) — pl) =0, (1b)
acterized by a small but nonzero radius of curvature. L ,

The particular abstractions considered by us to be reprev—\{here.p andv are the_ pressure and velocity fields, is
sentative of neutrophils will be simple droplets of an in- Viscosity, and is a unit tensor.
compressible and slippery Newtonian fluid. Therefore to
avoid confusion, we shall hencefort'h use the word “drOplet”Boundary conditions
when we mean to refer to such a simplified model of a cell.
We will generally assume that at an arbitrary instant of timeBecause the pipette is solid and immovable, portions of the
such a droplet can be said to occupy some simply connectedroplet’s boundary that contact its interior or exterior sur-
region, )(t), that this region has radial symmetry, and thatfaces are constrained and prevented from further motion in
its boundary is piecewise smooth. At 0, we take() to be the direction of the outward normal. On the other hand,
a sphere of radiuR,. We also assume that this sphere because the droplet is assumed to be perfectly slippery,
touches the pipette along the ring formed by the shargontact of the droplet with the pipette does not imply
corner of the nozzle and that at all subsequent times theomplete cessation of fluid motion (i.e., the fluid can still
gasket formed by the contact of the droplet and the nozz/0W in the tangent direction).

remains leakproof. This last assumption ensures that the N @ny event, the interaction of the droplet with the pipette
means that when enforcing boundary conditions, it is gen-

erally necessary to consider the surface of a droplet as

comprising the union of several submanifolfg,, I,
interior surface L, I'cere @andl'q,,. These are the free-interior, constrained-inte-
rior, constrained-exterior, and free-exterior surfaces of the

and

W'm i droplet, res.pec.tively (see Fig. 1). All of thes.e manifqlds can
-i'l?ﬁiif i‘ﬁ% grow or shnnk in ex_tent and shape as functions of time, and
;i;iiii;i;:igiiiiﬁ; r in some configurations certain manifolds (€.B..,) may
giigigiig”iii;i}iig e not exist at all. There is a fifth boundarly, ,,, which exists
i;iiiiiigf i fssiiiiigf at the axis of rotation. This is a purely logical boundary that is
T, ;i;i;i;ii; i ;ﬁ;i;i;i; nozzle z important numerically but which has no physical significance.
g}i}i’iﬁg gigigi‘gi{g T Generally we will letn andt denote unit normal and
3 5‘5"’1’:”!"‘% i iii\.\\\:\\:\‘iwm tangent vectors on the surface of the droptedvill point in
s_:ﬂ;’ﬂﬁ;;:g“\i\:-}‘i’éﬁ&’;tg‘ the outward direction andl in the direction of increasing
G "_‘:T-_"-:‘-__.’a';; latitude). We also lek be the mean curvature of the free
exterior =_=,‘55 surface of the droplety be the droplet surface tensioR,,
surface y be the hydrostatic pressure acting on the free surfaces of the
[ droplet inside the lumen of the pipette, aid, be the
pressure acting on the free surfaces of the droplet outside

: the pipette. We may then state the boundary conditions on
& the four segments of the droplet periphery as follows:

(Vv + (VV)) —pl)-n = —(2ky + Py)n  onTy,
Do (2a)

FIGURE 1 Geometry of the “pipette” and “droplet” for the conditions of (Vv + (VW)T) —pl)-n= =2y + Pegn  0NTe,,

the standard aspiration calculation. The “exterior,” “interior,” and “nozzle”

of the pipette are indicated. The geometry of the droplet is described by an

axisymmetrical domai that is initially taken to be a sphere of radigs £ * (u(VV + (VW)T) —pl) - v-n=0 onlyp,

We denote the interior caliber of the pipette Ry The various submani- (ZC)
folds that comprise the boundary of the pipette are indicated, whgge

Lo Tiin: Teire @ndT ., refer to the free-exterior boundary, the constrained- and

exterior boundary, the free-interior boundary, the constrained-interior

boundary, and the logical boundary (associated with the axis of rotation)f * (M(VV + (VV)T) - pl) . v-n=0 onl,
respectively. (2d)
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Measures of aspiration function of L,_ g

Several quantities provide observable scalar measures of the
extent and progress of aspiration. The most frequently re-

ported is the axial distance separating the nozzle and the
most aspirated pole of the cell,(t). Another useful mea- = 1R, if Ly ga> Ry
sure of aspiration is the volume of cytoplasm contained with

the lumen of the pipetteV,qf). It should be remembered 1 similar considerations also suffice to determine

that because of the curvature of the cell surface, the starting]e static curvature. To start with, we can writg as
. . . _ _ . ’ X—stat
\6%%13 is already positive, with valué,(0) = R, the inverse of the radius of a spherical cap having lfase

— R; . By a standard formula of analytic geometry, the and volume (4/3)RS — V. The solution to this ge-
starting value of the aspirated volume V§.{0) = (w/ asp-stat.
6)L,(0) (SR,ZJ L Lf,(O)). The rate of droplet szmspiration is ometry problem can be written in the form
expressed in terms of the time derivativgs= dL(t)/dtand
Q = dVaSF(t)/ dt. Kfex—stat

The shape of the external surface of the droplet is char- — _ 13 )13 <

acterized in terms of the maximum over the droplet surface _ gggg n g%L_p_gﬁpS:%?am :I ::Z::I> E’: (3c)
of the radial coordinate (denotdl,.(t)). Also useful is the
minimum value of the axial coordinateZ{,(t)). In the
starting conditiorR,,,(0) = R. andZ,,(0) = 2R, — L,(0).

2Lp—stat

st =g B Ly g <
Kfin —stat RS + LS—stat p—stat Rp (Sb)

wheref is a shape factor bounded in the rang&J2]. In
actuality, this shape factor depends weaklylgn ., in a
complicated way that cannot be written in closed form.
Nevertheless, for practical purposes it is sufficient to regard
B as a constant with value fixed by the first term of a
For given independent parameters and initial conditions, th&aylor's expansion about the initial statg:~ (4 + (4 +
ultimate fate of the droplet is determined by whether the2(R/R)*)V1 — (R/R)?)™2.
aspiration pressure is sufficient to overcome the effects of Combining Egs. 3b and 3c, we find that the difference
surface tension. If this is not the case, then the dropleke, . — Kiex—star dePends orl, g, R, andR; only.
asymptotically approaches a condition of static mechanicaturthermore, ifR, andR, are fixed, this function attains a
equilibrium in which there is only partial aspiration. To maximum for some value df, < R,. The precise value
investigate the criteria for such an outcome, we first notepf L, st that yields this maximum is denotéd, ., and
that when the velocity field vanishes, Egs. 1a and 1b arghe value ofAP that causes aspiration to exactly this point
satisfied if and only if the pressure field inside the droplet isis denoted byAP.,,. If we start from the standard initial
a constant (henCEforth denotpga). It then follows from conditions and app|y a pressure de > Apcm, then Eqs
the boundary conditions that the curvatures of the two fregs 3 b, and ¢ cannot be simultaneously satisfied by any
surfaces of a static droplet are also constants. Accordinglyhoice ofL, s Thus a static equilibrium cannot exist, and
on I'gp, the droplet will be completely aspirated. Conversely, if
(Past— P AP < AP, then equilibrium will be possible for some
K = CONSt.= Kin—stat = M, value Oﬂ-pfstatS Lpfcrit < Rp
2y It can be seen by direct differentiation of Eq. 3a, that in
general the value of,_; is very close toR,. Then for a

Static equilibrium

r
and onl,, narrow pipetteR, << R;, we can make some simplifications:
. t= N (pstat_ Pex)
K = CONSL.= Kfey—stat = T AP<:rit = 27(Kﬁn—sta{|—p—crit) - Kfex—stat(l-pfcrit))
Subtracting one of these equations from the other leads to a ~ 2y(Kin-sial Ro) — Kiex-ual Ro))
form of the law of Laplace: =2y(1R, — 1/R). (3d)

R (3a) This formula is the basis for a simple experimental protocol
Several additional remarks about this equation are worthfor estimating the surface tension of a cell (Evans and
while. First, because spheres are the only kinds of surfaceéeung, 1989; Zhelev et al., 1994). Using a pipette of small
with constant positive curvature, boll,, andI's,, must be  caliber compared to the droplet, the valueAd? is slowly
spherical caps at static equilibrium. Second, curvature of increased in small steps to the point where a further pressure
spherical cap is the inverse of the radius, and the largesttep will cause continuous flow (this yieldd® ;). Finally,
spherical cap that will fit inside a pipette without touching the surface tension is obtained according to the fornyuta
the walls has radiuR, Hence, after some analytic geom- 0.8AP;/(1/R, — 1/R.). In general this approach is accurate
etry we can express the static curvaturé’gf as an analytic  to within a few percent, even R, is as large as OR.
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Dimensional analysis is the rate of irreversible conversion of kinetic energy to

. . . . heat, and
Suppose that we introduce nondimensional varialiies:

tAP/w, 3 = ZR, r = 1R, p = (p — PJ/AP, v =

(LW)I(RAP). After the usual algebra, it is apparent that the A= J oxv-ndl (5€)
dimensionless version of Egs. 1a, 1b, 2a, 2b, 2c, and 2d

involves only two groups. These are the nondimensional :

pipette radius, is the rate of change of the droplet surface area.

The interpretation of the terms in Eq. 5b is straightfor-
R, = & (4a) Wward; the product oAP and Q on the left gives the total
Re power being supplied by the suction pressure. The product
of y andA is the amount of this supply expended to create
new surface area. Finally, the volume integral gives the
AP amount of power being dissipated irreversibly as heat be-
(4b)  cause of the fluid viscosity. Notice that the power used to
produce changes in the kinetic energy of the droplet is
éleglected because of the assumption of creeping flow.

and a form of the “capillary” number,

Qa N AI:)crit .
Other nondimensional quantities referred to in the text ar
as follows: £, = LJ/R., £, = (LL)/(RAP), Rpax =
Rm_a)chv CVasp = as;!Rgv 9 = (/.LQ)/(REAP), and s
(LA)/(REAP). Approximate rheometric theories
Under physiological conditiondi, usually has a value of
~0.5, and in general 6< i, < 1. Taking standard esti-
mates,y ~ 3 X 10 ? dynes/cmR, ~ 3 X 10 % cm; and APC .
AP ~ 2 x 10"* dynes/cm, we find the capillary number o= M‘ (6)
for a neutrophil being sucked through a human capillary to Jo® d
be on the order of 100.

After some rearrangement, Eq. 5b can be recast in the form

It will be noticed that three factors in the equatid®, Q,

and A, are directly observable (at least in principle). A
fourth factor (the surface tensiof can be derived from Eq.

3d as described previously. The remaining barrier to a
If we take the dot product of the velocity field and Eq. 1b, practical experimental method for deriving the viscosity of
integrate the result over the regiéh and apply the diver- a very small liquid droplet consists of the unknown dissi-
gence theorem, we obtain pation integral in the denominator on the right of Eq. 6. To
overcome this obstacle, it is first convenient to express the
dissipation integral in nondimensional terms:

Energy conservation

0= J 0.5w(Vv + (VW) : (Vv + (VV)T) — pl)dQ
QO

M(t, €, Ny = Q‘Zlﬁf d dQ. @)
- f Ve (Vv + (VW)) — pl) -n dl. (5a) ¢
r Because the aspirated volume is a monotonic function of
Substituting the incompressibility condition and the bound-tl-me’ we may with full generallty also regatd as being
" . . . given in terms ofV 5, €, and,,.
ary conditions, this result can be rewritten in the form For practical viscosity determinations it is necessary to
tabulate numerical values of the dissipation fadtior to
N ; estimate such values by some analytic theory. The simplest
APQ= f b d A (5b) existing scheme of the latter type, introduced by Needham
o and Hochmuth (1990), assumes that dissipation occurs only
in the unaspirated portion of the droplet in the region
bounded by two hemispheres. The inner hemisphere is
assumed to have a radius equal to the pipette rdgjjuand
Q EJ v-ndl = _[ v-ndl  (5c) an outer hemisphere is assigned a radius, (this last is
used simply as a convenient measure of size of the unaspi-
rated portion of the droplet). For valuesoi the interval
is the volume flux into the pipette, [Ry, Rnad: Needham and Hochmuth assume the velocity
field to be strictly radialy, = —Q/(2mr?). Applying Eq. 5d,
® = 0.5Vv + (VW)): (Vv + (V)7 (5d)  this means tha®(r) = 3Q%(#*r®). Finally, the dissipation

where

FinUlcin [texUT cex
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integral in Eq. 6 becomes Many of its important features are not needed to analyze the
. . simple computation of slippery droplet aspiration that is of

3Q% (Rl 2Q% 1 1 immediate concern, although these additional features

$dQ~ 7 I 2mredr = W(@ N %) (8)  would be needed to treat the more complex situations men-
Q tioned in the Introduction. Descriptions of the features of

Comparison with Eq. 7 then shows that in the case of théhis code and specifics relating to its application in the
' present computations are given in Appendix A.
Needham-Hochmuth model,

2(, R

M = (l - Rim) (9) RESULTS

T

S . As discussed previously, the dynamics of aspiration of a
Because much of the dissipation is ignored in the approxigjippery and incompressible Newtonian droplet with con-
mations leading to Eq. 9, the final result should be regardediant surface tension can be fully characterized by only two
as a lower bound on the ag:tual vaIud\AszevertheI_ess, Ed- nhondimensional groups. These are the capillary nuntber,
9 suggesits that the functidl should be largely indepen-  ang the dimensionless radiu¥,, (see Egs. 4a and 4b). In
dent of the capillary number and of time (except to theyhe cyrrent study our basic strategy for analysis of the model
extent that these p_arameter; mflueﬂ@Rﬁm). Further- s 1o takedt, € {0.3, 0.5, 0.7} andC,, € {0.5, 0.9, 1.25, 2,
more, when the ratiG/Ry,, is much less than 1, Eq. 9 g, 10,0} and to exhaustively examine the complete dynam-

suggests that even this minor complexity is irrelevant (€.9.ics of the aspiration for all 21 combinations 6k, ©,).
during the initial phases of aspiration for narrow pipettes).

Thus the Needham-Hochmuth model implies that for prac-

tical purposes of_ measuring viscosities, one may redrd Spatial dynamics of aspiration

as a constant with value on the order ofr2k¥eung and _ _ _
Evans (1989) used a more sophisticated model (but stilFigs. 2 and 3 illustrate the geometrical effects of decreasing
W|th a number of approximations)_ The final resu|ts a|sosurface tenSion Wh”e h0|d|ng a” Other faCtorS constant
suggested tha¥l should be a constant (but with a value of (after scaling, decreasing surface tension corresponds to
~2 instead of 27(1-) We W|” Subsequent|y present actual increasing Capillary number). FiI’St and foremost, one Sh0u|d

numerical computations of the factit. note that when the capillary number is small (Figg)2the
If M(V4sp € ) has been tabulated, then combining droplet merely progresses thrqugh a series of. quasigta’gic
Egs. 6 and 7, forms as the proportions of aspirated and unaspirated liquid
slowly change in time. At any given instant the shape is
(AP — yA/Q)Rg close to the shape of minimum surface area. Thus, for

= m (10a)  example, the extgrior free gurfacEf@ can be approx.i-

asp Far P mated by a spherical cap with a base equal to the pipette
Equation 10a is exact but somewhat cumbersome, if expefadius. A similar cap exists in the interior of the pipette
imental data are reported in termslof In these cases itis (I'nn), and, depending on the amount of aspirated fluid, there
helpful to make further approximationQ ~ |'_p and can be a cylindrical segment that is in firm contact with the

AQ ~ 2(1R, — 1/R,,). The end result (valid it,, > R,) interior surface of the pipettel'(;,). At a low capillary

is as follows: number, surface tension is sufficient to balance the suction
pressure, and the droplet does not make contact with the
AP — yAIQ exterior surface of the pipette (i.6 o, iS €mpty).
=~ R (10b) At infinite capillary number (Fig. ) surface tension is
ML/R; negligible, and the droplet geometry is not influenced by a
APR, — 2y(1 — R/Rya) tendency toward minimal surface area. In addition, the
~ - . (10c) viscous and pressure stresses acting on the exterior of the
7ML, pipette are the only factors available to balance the suction

pressure. Hence there is a pronounced “flattening” of the
droplet against the outer wall of the pipette (il.,, is no
longer empty), and the curvatures of the free surfafeg (
The computations underlying this study were carried outandI'y,) are the result of the flow kinematics only. Thus
using a low Reynolds number hydrodynamics transporthese curvatures are generally much smaller than would
code based on the Galerkin finite-element method (Hughegertain at low capillary number.

1987; Fletcher, 1984). This program was developed in re- An interesting feature of aspiration at low surface tension
cent years specifically for investigating the solutions of fieldis the development of a slight cervix just interior to the
theoretic formulations of the cytoskeletal mechanics andgipette opening (semset of Fig. 2 b). This leaves a gap
chemistry of biological cells, with particular emphasis onbetween the droplet surface and the interior wall of the
amoeboid cells (Dembo, 1994a,b; He and Dembo, 1997 pipette. The manifold';, then consists of two disconnected

Numerical methodology
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YA

a)

3x magnification

FIGURE 2 Overlay plot illustrating changes in the shape of a Newtonian droplet during aspiration as a function of capillary ayber 2, (b) €, =

«. Fora, b, and the inset, the degree of aspirationlisq%, (2) 15%, @) 30%, @) 45%, and §) 60% forf, = 0.5. (@) At low capillary number, aspiration

of the droplet proceeds through a series of quasistatic states. The unaspirated portion of the droplet maintains the geometry of a spherieakdap, wher
aspirated portion has the geometry of a cylinder with a hemispherical cap of Rgli(t§ At high capillary number, there is a pronounced “flattening”

of the exterior portion of the droplet against the outer surfaces of the pipette. Also predicted is a decrease in the curvature of thg, sArfacther
prediction is the existence of a small stable gap between the droplet surface and the interior wall of the pipette. This gap, as well as the' ‘fttening,
be further observed in the inset.

parts (the surface of the cervix and the rounded surface ahen becomes perfectly aligned with the axis. Particles mov-
the apex of the droplet). Intuitively one might expect aing along this streamline have logvvelocity at the pipette
propensity of this cervix to deepen and pinch off in aentrance and then monotonically accelerate toward a max-
fashion similar to what happens in a dripping faucet. Reimum value asz increases. At intermediate valuesrathe
markably, however, we find that the saddle-like free surfacestreamlines bend at the pipette opening. The angle of turn-
of the cervix is stable regardless of pipette radius andng is such that they actually overshoot a perfect axial
regardless of capillary number. This stability is mediated byorientation by a small angle (hence th&elocity becomes
a precarious balance between the viscous stresses, the Ipgsitive forz > 0). Ther-velocity continues to increase and
drodynamic pressure, and the negative suction pressureaches a maximum a short distance inside the pipette. The
prevailing in the pipette lumen. The uncertain nature of ther-velocity then decreases asymptotically toward zero for
droplet stability at high capillary number would lead one tovery large values of. Within the quasihemispherical apex
predict rupture (or at least tethering) for even a very slightof the droplet there are some additional flow disturbances
leakage of the exterior ambient fluid in the lubrication spacedue to the slow microscopic changes in the shape of the free
between the droplet and the pipette. It is also possible thaturface as the distance from the pipette opening changes.
the cervix would not develop at all if the external fluid were At high capillary number (Fig. 3) the flow follows a
assigned a nonzero viscosity. Numerical calculations to tesieneral pattern similar to the one described above, but there
these possibilities will be the subject of a future study.  are two exceptional features. First, not all fluid particles on
At low capillary number (Fig. &), all regions of fluid on  the exterior of the pipette fall on streamlines that eventually
the exterior of the pipette move along streamlines thamove into the nozzle (this is due to the “flattening” of the
converge toward the pipette nozzle (fpx O ther-velocity  droplet). Second, the streamline passing closest to the inte-
is negative and thg-velocity is positive and increasing; see rior wall of the pipette does not have perfect axial orienta-
Fig. 3, c and e, respectively). At the axisr(= 0) the tion after the pipette entrance. Rather, theelocity along
streamline has perfect axial orientation and does not changeis streamline is negative up to the deepest point of the
direction. Thesz-velocity on this streamline goes through a cervix (see Fig. 2l). It then becomes positive (similar to the
maximum just inside the pipette entrance and then decreasesttern of streamlines at intermediate values of the radius).
to an asymptotic value (far = 0, the apicalz-velocity is The main features of the pressure field for an aspirating
~10% smaller than the value at the pipette opening). Thé\ewtonian fluid are demonstrated by the contours of Fig. 3
streamline passing along the wall of the pipette<( i)  aandb. These features include a ring of high pressure just
bends through a very sharp angle at the pipette opening arekterior to the nozzle as well as a ring of very low pressure
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FIGURE 3 Stream functions, pressure contours, and velocity contoufS,fer 2 (a, ¢, ande) and€, = = (b, d, andf) at )i, = 0.5 and¥£,, = 1.12.
(a) Pressure contours and stream functions@gr= 2. (b) Pressure contours and stream functions@gr= . (c) r-velocity contours fof&, = 2. (d)
r-velocity contours fokf, = . (e) 3-velocity contours foff, = 2. (f) 3-velocity contours fofS, = <. It should be noted that in a two-dimensional view,
streamlines are closer together where the highest fluid velocity occurs. In this calculation, the region of greatest volume flux is along tlo¢adigis. of r
However, as plotted, the streamlines are further apart along the axis of rotation. This distortion in the plot occurs because of radial cocaci®tisebe

calculation is axisymmetrical and not two-dimensional.
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just interior to the nozzle of the pipette (this is the locationacterized by an invagination df, at the axis (called a
of the cervix in the case of high capillary numbers). Thereentrant jet). This happens because there is no penalty for
pressure gradient near the leading edge of the droplet aphe generation of surface area and because the droplet is
proaches zero (as expected for simple plug flow). Thevery flattened so that a bigger pressure gradient impels the
pressure extremes near the nozzle and the associated radiabtion of fluid at the trailing pole verses the wings (some-
meandering of the streamlines are both kinematically necthing very similar happens during the final stages of the
essary for creation of the new surface area (see Appendix Qraining of a bathtub).
for further discussion of surface kinematics during droplet Fig. 4 b displays some stages in the formation of the
aspiration). reentrant jet under the conditiobif, €,;) = (0.5,). In this

The final stages of droplet aspiration are not particularlyfigure, several of the previously discussed geometrical con-
remarkable when the capillary number is small (Figp)4 sequences of a low surface tension are evident (e.g., the
The shape of the droplet is still very close to the shape oflevelopment of .., and the cervix). An interesting obser-
minimum area, but the resistance to aspiration approachestion is thatl'., continues to increase as aspiration pro-
zero because there is less and less need to deform the fluiéeds until the beginning of the formation of the reentrant
or to produce new surface area. This leads to a singularity ifet. Once the jet appeark,, decreases, but at a slow rate.
the velocity of aspiration. In contrast, when the capillary A ring-like body of fluid thus becomes trapped by the
number is very large, the final stage of aspiration is char-exterior of the pipette as the main body of the droplet moves
inward. A thin collar of fluid is all that is connecting this
exterior ring with the main body of the droplet. Moreover,
as the bulk of the droplet moves into the pipette, this collar
becomes increasingly thinner. On this basis we feel confi-
dent in concluding that for the conditions of Figb4lroplet
rupture will ultimately occur. We observed similar dynam-
ics under the condition of)f,, €,) = (0.3,«). However,
these were the only cases for which we observed rupture.

B
-
3
/‘\ For N, € = (0.7,=) a reentrant jet formed, but we saw
/2\ no evidence that growth of this jet would be sufficient to
) cause rupture. During all other computations (in which the
/\ capillary number was finite), no reentrant jet formed and
there was no evidence of droplet rupture through this

mechanism.

I

Temporal dynamics of aspiration

5

Very commonly, the dynamics of aspiration are analyzed by
plotting the length of the projection of the droplet into the
pipette (£,) versus time{) (Fig. 5). In the current formu-
lation, when the capillary number is less than 1, the pressure
is not sufficient to overcome the surface tension. THils
increases rapidly at first but then slows down until a stable
equilibrium is reached. In accord with the law of Laplace,
the asymptotic value off /)i, is less than 1 ifS, is less
than 1. At capillary numbers greater than 1 the droplet
moves progressively into the pipette for as long as we can
follow. Thus no stable equilibrium exists. Initially the
curves of, versust are concave downward. Then when

_ _ _ _ £/N, becomes greater than 1, the curves are approximately
FIGURE 4 Overlay plot illustrating progressive changes in the shape ofjnagr. Finally, they go through a point of inflection and

a Newtonian droplet as a function of time during the final phase ofb m neavi ward. Th | f the curves then
aspiration. § €, = 2, (b) €, = « under the condition o, = 0.5. For ecome concave upward. € slope o

a andhb, the volume aspirated for each outline is as follovi3:§0%, Q) accelerates steadily.

70%, @) 75%, and 4) 80%. For curvea5, the aspirated volume is 90%, The kinematics of aspiration are further exemplified by
whereas the aspirated volume fisis 82% because of the formation of the examining a p|0t of the time derivative &p (see Fig. 6).
reentrant jet. Im, the final stages of aspiration, at low capillary number, Note that the rate of aspiration approaches a vertical asymp-
progress through quasistatic equilibrium points, as was observed during tr}e t the ti h I t th int of
earlier stages. I, however, the computation predicts the existence of a ote as the Ime gpproac €s zero, aS. W.e as a . e pOI.n 0
reentrant jet that grows explosively and would eventually lead to lysis incCOMplete aspiration. Between these limits there is a unique

small pipettes. stage at which the rate of aspiration reaches its minimum
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FIGURE 6 Plot of ¥, versust for ), = 0.5, €, = 10. The rate of
aspiration approaches a vertical asymptote as the time approaches zero and
as the point of complete aspiration is approached. Between these limits the
rate of change off,, is approximately constant.

for the fluid in a microscopic droplet (this will be elaborated
upon in subsequent publications).
To understand the reasons for the rapid changes in aspi-
ration velocity during the initial stages, one must realize that
; P the rim of the pipette is exerting a reaction force on the
tAP/p surfacel .., SO as to exactly counterbalance the integrated
suction force exerted over the manifalg,,. The area of
4, ) I' ., initially consists only of a single mesh node, and as a
result the reaction force approaches that of a concentrated
ring of point forces. The theoretical entry velocity for con-
centrated forces of this nature is infinite (sort of like entry
velocity for an infinitely sharp cooky cutter pushed with a
finite force). Because of the finite resolution of the compu-
tational mesh, the initial pattern of reaction forces exerted
by the pipette is slightly smeared out, and thus the initial
entry velocity (see Fig. 7) as computed numerically is a very
slight underestimate.
For)i, equal to 0.3 and 0.5 (Fig. &,andb, respectively),
0 5 10 15 20 25 the greater the capillary number, the greater the rate of
tAP/p aspiration. Intuitively this means that increasing the surface
tension of the droplet always slows down droplet entry (all
FIGURE 5 Three plots off, versust for (a) i, = 0.3, @) %, = 0.5, other factors being equal). Surprisingly, however, we find
and €) %, = 0.7.Ina, b, andc, each curve represents a specific capillary that this simple rule is not always true. In particular, it is
number as follows, = 0.5 @), €, = 0.9 (), C.=125®),C. =2 yiglated whenik, is equal to 0.7 (compare the curves for
(©), €a = 5 (), €a = 10 (2), €4 = = (). As can be observed @ b, ¢, = 5 (filled tria’;wgles and 10 6pen triangleyin Fig. 5¢)
andc, for €, < 1, the aspiration pressure is not great enough to overcome-a . T : )
the surface tension, and thus aspiration stops and a stable equilibrium i5hiS counterintuitive result comes about because surface
reached. Furthermore, in all cases, the rate of aspiration varies witiension has two rather different effects on the progress of
capillary number, and for the casesanandb, the higher the capillary  droplet aspiration. First, surface tension causes a resistance

number, the greater the rate of aspiration.dnfor certain capillary to dilation of the surface on the interior of the pipette thus
numbers, the surface tension actually assists the droplet in entering the ’

pipette by preventing excessive flattening, and thus the direct relationshi[!;etardlng entry. . .
of aspiration rate with pressure is not observed. The secondary effect of surface tension is more subtle

and is only apparent late in the aspiration process. Here, as

the exterior volume becomes smaller, the surface tension
value. This minimum and the conditions associated withsqueezes the exterior boundary, preventing distortion and
this minimum are important experimental observable quanflattening and providing an additional impetus for droplet
tities that can be used as the basis for experimental tests entry. Simultaneously there is a decrease in viscous dissi-
distinguish between Newtonian and non-Newtonian modelpation because the fluid in a compact rounded droplet has to

L —1
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09, a) the aspiration pressure is within a specific range, then these
secondary kinematic benefits outweigh the primary penalty.

Calculation of viscosity

The Needham-Hochmuth (N-H) and Yeung-Evans (Y-E)
models are approximate treatments of pipette hydrodynam-
ics that have been extensively used for estimating cell
viscosities from aspiration data (see Approximate Rheomet-
ric Theories; Needham and Hochmuth, 1990; Yeung and
Evans, 1989). Both of these models assume that the exterior
of the droplet is a spherical cap that changes only via
self-similar shrinkage as its volume is aspirated. They also
neglect dissipation inside the pipette and near the pipette
nozzle. Using these kinematic assumptions, the models go
on to derive functional relationships connecting the quantity
& = (AP — yA/Q)/(uL/R)) and the quantityR /R ., For
example, in the N-H approach the result of the analysis
takes the form

(AP, v, A, O, Ly R) = 2(1 - R;"f). a1

The expression on the right of this equation is slightly
different in the case of the Y-E analysis, but in either case
a viscosity calculation becomes feasible because all invoked
0.0 r y ) quantities excepp. are experimentally observable.
AP/ Fig. 8 shows the results of a direct test for the existence
18 . .
of some simple formula of the sort given by Eq. 11. The
open symbols give computed valuesspfor three different
pipette radii at€, = 2 (each data point corresponds to a
0.9 ¢) different stage of aspiration). Similar results for aspiration at
¢, = 10 are shown by closed symbols. The solid and dashed
curves show the relevant theoretical predictions of the N-H
0.6 and Y-E models, respectively.
We conclude that under many conditions there is in fact
% a strong semiquantitative correlation between the values of
& and values oR /R, It is also evident, however, that
this relationship is not strictly functional (i.%, depends on
hidden factors and can undergo very significant changes
without any corresponding changeRyR,,,). The hidden
0.0 T x v . factors influencingy are most pronounced at high capillary
0 1 2 3 4 . h
numbers and at small degrees of aspiration (i.e., when the
tAP/p exterior shape of the droplet is nonspherical or when it is
deflating in volume, primarily via processes of flattening
(Ft:)G;'RE leniti%l z)ntg;y phagt; fO/_i\fp_VGFFSUStSCUFVGE for &) N, = 0-3't and indentation). Even under circumstances where the ex-
Ny = 0. , an Ny, = 0.7, S In FIg. 5, eacnh curve represents a H H fani H
e cpiy s s on, 05 0105 0 017 (=11 QoG of e topel defises i s sl fashin
125@),6,=2©),¢,=5(A),E,=10 (), €, = = (+). Fora, b, and . -
¢, the initial entry phase slope is not as steep as experiments show it to b80N), both the Y-E and the N-H formulas systematically
Rather than initially being infinite, this velocity is finite and decreasing to underestimate the numerically computed valueg oT his,
a constant value. The initial entry value only depends on geometry ( we believe, is because the underlying models do not com-
#5(0)) and is constant regardless of capillary number. pletely account for dissipation inside the pipette and near
the pipette nozzle.
To determine the viscosity of a small droplet of Newto-
be transported over shorter distances and acceleratedan fluid with improved accuracy it is desirable to use a
through smaller angles as it is aspirated. Our calculationsnethodology that avoids restrictive kinematic assumptions
demonstrate that on net balance, if the pipette is wide and #&nd is grounded in the concept of heat dissipation as exactly

0.3




120 Biophysical Journal Volume 76 January 1999

(AP - yA/Q) / (uLp/Ryp)

0 1 I T 1 I T i
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Rp/Rmax

FIGURE 8 Test of the rheometric models of Needham-Hochmuth and Yeung-Evans. In this plot, the solid line represents the dissipation predicted by
the Needham-Hochmuth approximation (see Eq. 11), and the dashed line represents the Yeung-Evans approximatienQ@ith Data points show

our computed values of the nondimensional facipr: (AP — y'A/Q)/(MI'_p/Rp), at various stages of aspiration. Open symbols indiégte: 2, and closed

symbols indicatdS, = 10. The shape of the symbol designates pipette radius (squar, fer0.3, circles for)t, = 0.5, and triangles fodi, = 0.7).

The initial vertical rise for each combination Gf, and), occurs becausi#,,., remains essentially constant while the droplet is being indented by the
pipette.

as possible. Ideally, this means use of Eq. 10a in conjuncelude that the assumptidhlQ = AP,,/y can result in large
tion with tables giving the dissipation factbf for relevant  errors for all experimental conditions and should be avoided
values of the independent variablé#g,, i, andC, For  for purposes of viscosity determinations. On the other hand,
convenience, reference tables of the necessary sort are prior small pipette radii and at low capillary numbets,(=
vided in Appendix B of this paper, and a step-by-step5), the formuIaA/Q = 2IR, — 2/R,, gives very good
account of a typical viscosity calculation is given in Appen- estimates ofs#/2, at least during the middle stages of
dix C. aspiration (see Fig. 9 andb). This covers most of the
The ratioA/Q is a measure of the production of droplet situations of interest, but one must still be careful, however,
surface area per unit change in aspirated volume. This ratinot to blithely push this approximation too far. In particular,
appears in Egs. 10a, 10b, and 11; and in principle, it is at is not valid if L, = R,
function of droplet geometry and motion that should be
directly observed when utilizing these equations to compute
viscosities. It is particularly important to derive accurate
values ofA/Q if the capillary number is low, because this is
when the corrections for surface tension are most signifiAs with any computational study, one is concerned about
cant. Nevertheless, because direct observatior¥@fare  the amount of error associated with the various necessary
experimentally difficult, it is tempting to replace this quan- numerical approximations. The accuracy of the current
tity with something that is more easily determined. In thecomputations has been checked by repetition at different
simplest such procedure (Evans and Yeung, 1989) the ratievels of mesh refinement. Comparing plots¥yf versust,
AQ is assigned a constant value based on the criticalve are able to detect visible differences (order of 10%)
condition (i.e., AQ = AP /y ~ 2R, — 2/R;)). A more  between calculations done using meshes with 272 elements
sophisticated approach is to expre®€ as a function of versus those with 800 elements. We found virtually no
Rax (i-€., AQ = 2R, — 2IR5- difference between the results of calculations done with
Fig. 9 shows a direct comparison of these formulasmeshes of 800 elements versus 3200 elements (i.e., differ-
against our numerically computed valuess6é®. We con-  ences of less than 1%). We did observe that there was

Mesh refinement
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a shape changes. The latter are difficult to compute because
) they are superimposed on the dominant quasiequilibrium
pertaining between the surface forces and the pressure field.

DISCUSSION

Although idealized and simplistic, the slippery Newtonian
droplet model captures many of the features of the passive
neutrophil as it is being aspirated into a micropipette. At the
0 1 9 3 4 present time the following observations may be counted in
Vasp / RS favor of the model.
3, b) 1. Under normal conditions, complete aspiration of a
droplet is predicted. Thus the model is consistent with the
fact that leukocytes can be aspirated at very rapid rates and
at very high pressures without damage.
o 2. During the aspiration of passive leukocytes, there is
3 1 little evidence of friction between cells and the wall of the
o pipette. Any sticking that does occur from time to time is
probably indicative of activation. This supports the bound-
3 & ary conditions of the droplet model.
3. For small aspiration pressures, neutrophils behave in
-1 accordance with the law of Laplace. This means that for a
given pipette radius neutrophils are characterized by a well-
©) defined critical pressure. If the suction pressure is below this
value, the cells flow inward until a static equilibrium is
reached. Above the critical pressure no equilibrium exists
= and the cells flow completely into the pipette. Except for
o : .
.2 very narrow pipettes (less than 10% of cell radius; see
4

below) the critical pressure depends on the cell radius and

3 the pipette radius exactly as predicted by the law of Laplace.
® e The static shapes of the cells after equilibration at subcriti-
cal aspiration pressures are also as predicted (i.e., curvatures
00 1 5 3 2 of the free surfaces are constants and Eq. 3d is obeyed).
Vasp / Rg 4. If the suction pressure is suddenly reduced during the

_ middle stages of aspiration, then cells show very little
FIGURE 9 Plot ofsd/2. versusV g, for both numerically calculated®)  tendency to recoil toward their initial rounded shape. In-
and kinematically estimated values ofs/2 for (a) ¢, = 2, 0) €,= 10,  stead, as long as the suction pressure is still above the

and €) G, = = Also drawn on these plots is the line of constafft),  cyitical pressure, the cells continue to move inward (al-
which is often assumed. la it is evident that the kinematic model .
though the rate may be different).

estimates the actual value of/2 quite accurately, except at the very . . . .
beginning of the aspiration proced6.,< ¥ hemispherk AlS0 evident is the 5. The geometrical shapes of neutrophils during aspira-
fact that s4/2 is not a constant value. Ib neither the assumption of tion are consistent with the predictions of the droplet model.
constant4/9. nor the kinematic model is an accurate estimate for the actualn particular, if the pressure is only slightly greater than the
value of 91/2. Both methods resul_t ina gross overestimate of the .actualcritica| pressure, thed,, is closely approximated by a
value of /9. In ¢, however, the kinematic model and the assumption of . - . . .
constants¢/2 are approximately the same and actually result in a slightSI:_)h(_:‘Hcal,Cap Wl_th a b_ase Equal t.O t,he pipette radius. Like-
underestimate of the actual value of/9, until the formation of the  WIiS€, s, IS hemispherical. There is little detectable contact
reentrant jet, where the numerical valuest®. asymptotically approaches With the pipette exterior. At high pressures neutrophils
infinity. This result is due to the fact that the rate of volume aspiration is flatten against the exterior of the pipette, and the curvature
approaching zero. of the interior free surface is markedly reduced (Needham
and Hochmuth, 1990).

6. If the suction pressure is steady, the kinetics of neu-
generally a greater amount of error associated with veryrophil aspiration are qualitatively consistent with the pre-
narrow pipettes because the deformation of the droplet is sdictions of the droplet model. Thus the initial rate of entry
extreme and the mesh became greatly distorted. We ald@as measured in terms bg) is virtually infinite. The rate of
found that error tended to increase &g — 1.0. This is  aspiration slows down very quickly and becomes approxi-
because the flow near the critical condition is driven onmately constant. The phase of constant aspiration rate is
minute pressure gradients and is influenced by very smalprolonged and continues until the radius of the unaspirated
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material approaches the pipette radius. During the final 14,
stages of aspiratiol, increases and again approaches infinity.

7. According to some experiments, the valueLgfob-
served during the middle range of the aspiration process is 101
approximately linear in the suction pressure (Evans and
Yeung, 1989; Needham and Hochmuth, 1990).

8. If cells are completely aspirated into a pipette, held for
~5 sin the final “cigar-like” shape, and then expelled, they
will spontaneously regain their original spherical shape.
Analysis of the rate of recovery of the original round shape
is quantitatively consistent with a model in which the sole
driving force comes from surface energy (Tran-Son-Tay et
al., 1991). Notably the recovery kinetics are not consistent
with models involving significant contributions of elastic
energy. The values of surface tension and viscosity deter-
mined from aspiration experiments are portable and can
quantitatively predict the kinetics of freely recovering neu-
trophils in these experiments. 24 .

We will now list several instances in which existing
experimental observations do not favor the droplet model:

1. During the initial stages of pipette aspiration, neutro- 1
phils flow rapidly, and only after some time does the stage
of slow steady aspiration begin. This is qualitatively con-
sistent with the kinetics predicted by the droplet model, but
the quantitativg data are impossible to rgconcile. In pa'rFic- 00.0 02 04 0% 08 To
ular, the experimentally observed amplitude of the initial t(s)
rapid entry phase at high suction pressures (several pipette
diameters) is much larger than anything predicted by OUEIGURE 10 Plot ofL/R, versust, comparing model predictions and
calculations (see Fig. 10 for comparison of the model withdata (from figure 8 of Tsai et al., 1993) fom)( complete course of
experimental data). aspiration andh initial entry phase. The viscosity was adjusted to obtain

2. There has been evidence presented indicatingl'_g'lat the b_est fi.t with e)_(p_eriment,_wh_ereas other parameters were fixed as
is highly nonlinear in the aspiration pressure (Tsai et al.,glescr'beoI in the original publicationsP = 4900 dynes/crh) u = 925

’ . . . ynes- s/cnf, y = 0.035 dynes/cmR, = 4 um, andR, = 2 um. It is
1993; Waugh and Tsai, 1994). In this case it was beefyigent that the initial phase of neutrophil aspiration is faster and has a
suggested that the cytoplasm of the neutrophil should beirger amplitude than one would expect for a slippery droplet.
represented as a power law fluid (also sometimes called a
shear thinning fluid or a pseudoplastic fluid).

3. If the neutrophil is aspirated very quickly and then .
immediately expelled from the pipette, the recovery proces§iochmuth, 1994). These are similar to the changes one
begins with brief initial “jump” or recoil toward the spher- would expect for an elastic object, and they cannot be
ical shape. If the cell is held inside the pipette for a few@ccounted for by the droplet model. One may speculate that
seconds before being expelled, then this initial transient i$279€ changes in the material properties of the neutrophil
not observed (see item 8 above). This suggests that tHed" be induced by stretch activation of receptors on the
neutrophil has a fading elastic memory with a time constanPlasma membrane.
on the order b1 s (Tran-Son-Tay et al., 1991). 6. Zhelev and co-workers (1994) have shown that in very

4. When the neutrophil is aspirated into a very smalismall pipettes the static equilibrium of the neutrophil is not
pipette (less than 30% of cell radius), aspiration continue§Xactly described by the law of Laplace. The discrepancies
until all of the wrinkles and folds of the lipid membrane are can be accounted for by including a finite thickness of the
pulled smooth. Shortly past this point lysis occurs if anycortical layer responsible for generating the apparent sur-
further aspiration is attempted (Evans and Yeung, 1989). Iface tension. Some bending rigidity of the cell surface may
the droplet model, this hard limit on the total surface dila-also be indicated.
tion does not occur (see further analysis in Appendix D). 7. For very narrow pipettes (0,4m) and for very high

5. If a neutrophil is partially aspirated into a narrow suction pressures a necking instability is induced during
pipette, then the cell may appear to reach a new equilibriunaspiration experiments (Zhelev and Hochmuth, 1995). We
state even while there is still excess surface area availabléave shown that this kind of instability is not consistent with
If the suction pressure is then rapidly stepped to a very higlthe droplet model. It may be possible, however, to repro-
level before being returned to the equilibrium level, oneduce the observed behavior by allowing for flow in the
observes in-phase increases and decreasdgg@helevand  small gap separating the cell and the pipette.
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Clearly the droplet model has to be improved, but even in a)
its simplest form it does provide a reliable account of the
main mechanical features of the neutrophil. The two funda-
mental parameters of the model (i.e., the cell viscosity and
the cell surface tension) are therefore of extreme interest,
and many ongoing studies are aimed at elucidating the
molecular basis of these coefficients.

Unfortunately, an analysis of the current literature indi-
cates that in the case of the cytoplasmic viscosity all values
now available have been derived using ad hoc and highly
inaccurate procedures and assumptions. If applied to an
ideal Newtonian droplet, the viscosity values obtained using
these approaches would yield correct order-of-magnitude
estimates, but they would be subject to systematic errors.
For example, large changes in apparent viscosity could be
completely caused by differences in pipette diameter, in
aspiration pressure, or in surface tension. To reliably correct
for such factors we would suggest use of a rheometric
procedure based on Egs. 10a, 10b, or 10c in conjunction
with our numerically computed values of the dissipation b)
factor (see Appendices B and C). This is the most utilitarian
outcome of our present calculations.

Our calculations have also revealed two qualitative fea-
tures of the droplet model that could serve as the basis for
further experimental tests of its validity. In particular, we
find that at very high suction pressures a reentrant jet should
develop during the final stages of aspiration. We also find
that at high capillary numbers a small stable cervix should
develop just inside the pipette opening.
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Fig. 11 shows a typical finite-element mesh defining the regioboth in
the initial condition (Fig. 11a) and after some degree of aspiration (Fig.
11b). Notice that the mesh interior consists of the union of nonoverlapping
quadrilateralsi, = 1, ..., ng, and that the mesh boundary comprises
straight line segments or edggs= 1, ...,n.. The vertices nodes that
define the corners of the quadrilaterals and/or the end points of the edges
areiy = 1, ...,ny. Each of the quadrilaterals is specified by pointers
Ing = (inw Inzs Inas 1n4) that give the indices of the four vertex nodes of FIGURE 11 Typical mesh of quadrilateral elements used in these com-
the quadrilateral. In a similar fashion, each of the line segments or edges @futations. 4) Initial round mesh withiy = 897,i, = 192, andi, = 800.
the boundary is specified by pointdkg. = (ina, inz) that give the indices () Same mesh as after partial aspiration. The mesh adapts from the round
of the two vertex nodes of the edge. configuration to the aspirated shape strictly by changes in the placement of
The ordering of the nodes i, is assumed to be such that an observer y,q yertex nodes. No changes in the connectivity on the mesh nodes are
standing in the interior of the mesh will see the line segment fforto i, necessary. In controls to test numerical convergence (see Results) we have
as a step in a counterclockwise traversal of the mesh boundary. Thgccasionally used a simpler mesh (272 elements) and a more complex
ordering of the nodes ifyq is assumed to be such that an observer standingyegh (3200 elements). Note that the computation is axisymmetrical, so that
in the interior of the quadrilateral will see the four line segmeégis—>ixnz,  in reality the mesh encompasses only the right side of this figure. For
ing = Iz s = g Ina — g @S cONsecutive steps in a counterclockwise moses of graphical display the computational domain is redrawn in

traversal of the quadrilateral boundary. . _mirror reflection so as to give the final impression of what one would see
To host the dynamical equations, each of the vertex nodes is associatgg 5 sagittal section.

with a vector of quantities that defines the position of the node and, by the
values of the velocity, the pressure and such other dynamical fields as ma;
be of interest. Thus for the present computation the node vector for th
node with indexy, has the structurd; = (r, v, \, p, . . .). Each of the
line segments or edges of the boundary is also characterized by a vector
dynamical variabled); = (p, .. .). Each line segment of the mesh bound-
ary is further characterized by a pointer that indicates the type of the aC“VComputational cycle

boundary condition on this segment. Thus in the present application this

boundary condition pointer could be directed toward any one of the fourThe magnitude of the time step to be attempted at any point in a compu-
physical boundary type$.,, e Ifin, O I'gi,. Because we assume tation is determined by making conservative a priori estimates of the rates

otational symmetry, the boundary condition pointer could also be directed
at a special “logical” boundary conditioh, ., corresponding to the axis of
8¥Iindrical coordinates.
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at which dynamical variables are changing. In the current case the limitingorocedure. Note that the diffusion-reaction operator is not used for the

factor on the time step comes from the Courant condition. (In the presentomputation of droplet aspiration; nevertheless it is essential in most other

study we take tlequal to the time required for the fluid to cause a computations and is therefore included here for completeness.

displacement equal to 1% of an element diameter.) The advance of the

dynamical fields over such a small time step of this magnitude is divided

into individual operations, which are ultimately superimposed or assemAdvection of mass

bled to obtain a final result (essentially this results in a forward Euler

integration). The advection operator does two things. First, it decides the final mesh

The splitting of operations that we employ matches most of the ele-geometry, choosing the position of each node so as to optimally follow the

mentary steps with basic physical processes: chemical reaction, convectiwyolving shape of the droplet. The operator next takes a fully Lagrangian time

mass transport, diffusive mass transport, momentum transport, and boungtep of the linear convection equation, dilating and translating the mesh

ary kinematics. There is also an operation that has no physical significancéggether with all associated physical quantities. The result is stored in tempo-

namely mesh rezoning. rary arrays. Last, quantities are interpolated from the temporary mesh onto the
final mesh coordinates. This general approach is sometimes called the arbitrary
Lagrange-Euler (ALE) procedure. In the current computation the mesh nodes

Interior rezoning onl., U Iy, (inclusive of the north and south poles) are moved according to
the local fluid velocity, and mesh nodes i, U Iy, are moved only

The paramount aim of the mesh rezone operation is to adjust the placemegicording to the tangential fluid velocity. The node at the nozzle is held fixed

of the vertex nodes so as to ensure that all elements of the mesh are convgie., fully Eulerian). Nodes in the interior and on theaxis are also fully

In performing this function, physically essential attributes of the mesh musi_agrangian. Volumetric fields and surface fields (when present) are interpo-

remain inviolate. This means that rezoning amounts to a constraineghted from the temporary mesh onto this final mesh, using a mass- and

optimization of nodal positions in which some nodes are Completelyshape-preserving upwind scheme (Rash and Williamson, 1990).
constrained (“fixed” nodes), other nodes are constrained to slide along the

surfacel” (“boundary” nodes), and still other nodes are completely free.

In the current application, nodes that fall on the interface betweercontact dynamics
different boundary segments are fixed as far as interior rezoning is con-
cerned. Thus, for example, if the droplet touches the inside of the pipetteThe “contact” operator is concerned with the kinematics of changing
then the boundary;, is not empty and there will be at least one boundary boundary conditions as the droplet interacts with the pipette. This operator
node that lies at the junction of segmehtg and[l';,. Such a node would  computes the position of the midpoint of all boundary elements. When an
be held stationary during interior rezoning. As another example, the nod@nconstrained surface element comes into contact with the wall of the
at the nozzle of the pipette is always fixed, because by definition it lies afpipette, the boundary condition pointer of this surface element is changed
the junction ofl s, U T, andlye, U I'ce, The nodes at the north and south  to reflect the appropriate constraint on the normal velocity.
poles of the cell are also examples of fixed nodes.

Nodes that lie on the mesh boundary but are otherwise undistinguished are
examples of sliding nodes. The interior rezone operation repositions suckgg|ution of the Stokes equations
nodes by sliding them back and forth so as to maintain an equal spacing. Nodes
that are strictly in the interior of the mesh are examples of free nodes. Th&he essential idea of our strategy is to consider the following the perturbed
interior rezoner adjusts the placement of such nodes so as to optimize ersion of the Stokes equations:
measure of the convexity of the mesh quadrilaterals (the Winslow functional).
The general theory of mesh generation and the details of the Winslow func- V-(v—€Vp) =0 (A1)
tional are reviewed in a recent textbook (Knupp and Steinberg, 1994).

and

Boundary rezoning V- (Vv + (Vv)T) — pl) = 0. (A2)

Once during each computational cycle the boundary rezoner determines the Notice that as the parameter— 0, these modified equation will come
total length of the segmenty, I'cese I'in, Lein @NdI,,,, and computes the  arbitrarily close to the true Stokes equation. This proposed perturbation,
number of line elements comprising each of these segments. If a chedrowever, is of the “singular” type, because the small parameter multiplies
reveals that the average length of edges in a particular segment is too largeterm that involves the highest order derivatives of the pressure. As a
or too small, then the boundary rezoner takes further steps. First twaesult of this singular nature we are free to specify a “numerical” boundary
elements of the segment with the greatest density are fused together. Th¢ondition on the pressure. This we do in the natural way,

creates a “ghost” element (i.e., an element with zero arc length). The ghost

in the element topology is then progressively shifted clockwise or coun- Vp-n=0. (A3)
terclockwise until it finds the largest segment on the boundary segment

with the least resolution. This target segment is divided, with half of its arcAll of the other boundary conditions on the stresses and velocities in our
length and the associated surface fields donated to revitalize the ghost. TiRErturbed version of the Stokes equations will be enforced just as in the

boundary condition pointer for the ghost element is set to the same valu@figinal problem, Egs. 2a, 2b, 2c, and 2d.
as that of the target segment. The optimal choice foe will occur when the error in the velocity due

to choice of nonzera (i.e., the perturbation caused by adding terms of

O(€|Vpl)) is on the same order as the mesh interpolation error of the
Diffusion and chemical reaction velocity field. Clearly once this degree of accuracy has been achieved,

further attempts to enforce incompressibility in a numerical calculation will
The diffusion-reaction operator changes the node vectors according to whae both wasteful and futile, because it is impossible to compute with
occurs if all processes except chemical reaction and diffusion are ignorethe requisite accuracy. Starting from this argument, some simple error
during a small time interval. A diffusion constant is specified for each estimates then suffice to demonstrate that for bilinear quadrilateral finite
component of the node vector, as is a time derivative resulting fromelements with characteristic radihsan optimal approximation occurs if
processes of chemical reaction. If these are zero at all nodes, the operatiare takee ~ h?u. In actual practice we have found that solutions to the
is terminated. The chemistry time step is taken using a first-order Rungemodified Stokes equations depend very weakly eoriThus essentially
Kutta scheme, and a diffusion time step is taken using a Crank-Nicolsondentical results are obtained feras low as 0.4%u or as high as #/u.
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Note also that if there are substantial variations in the mesh resolution, theAPPENDIX B: TABLES OF THE
€ can be regarded as a function of position. DISSIPATION FACTOR
The great advantage of introducing Egs. Al and A2 lies the fact that
these can be discretized via the standard Galerkin procedure, using simplealues of the nondimensional dissipation factor (see Eq. 7) for various
continuous-pressure, continuous-velocity bilinear quadrilateral elements (i.eghoices of the independent parametéfs(, 9, andC€,) appear in Tables
four pressure nodes and four velocity nodes per element). This can be dom1-B3. Quantities in parentheses are coefficients of variation (standard
despite the fact that such elements would violate the Babuska-Brezzi conditiogrror expressed as percentage of estimated value). The dominant error in
if applied to the exact Stokes equations. Thus, no special reduced integratioagtermining theM factor comes from the difficulty of taking numerical
or nonconforming shape functions or penalty methods are necessary. derivatives in time. Thus the errors reported for computations tabulated in
A final advantage is that the large linear system that results from thethis appendix are generally on the order of a few percent but are larger at
direct discretization of Eqs. ALl and A2 can be efficiently solved on thethe very start and end of aspiration because the time derivatives are
basis of a simple iterative method that has proved to be completely reliablehanging rapidly. See Appendix C for a sample calculation in which these
(see, for example, Dembo, 1994a,b). This iteration is an adaptation of theables are used to obtain the viscosity of a neutrophil.
Uzawa method (Temam, 1979).
If the pair (p, v) is an existing approximation of the solution of the
modified Stokes equations, then we obtain an improved approximationAPPENDIX C: EXAMPLE CALCULATION

denoted fp, V), in three steps. Step one consists of regarding the pressure as
known and obtaining the new estimate of the velocity field by solving  Step 1: Parameters obtained directly from

0=V-(u(VV+ (V) —1p), inQ (A4) experimental measurements

In this example, the following values were obtained from the literature

with standard boundary conditions, Egs. 2a, 2b, 2c, and 2d. éFigure 3a of Needham and Hochmuth, 1990):

Step two consists of regarding the velocity as known and then obtainin
an improved estimate of the pressure as the solution of a elliptic boundary AP = 10.175 dynes/c?n
value problem, !

1 . R AP = 175 dynes/crh
—(pP—p =VeVp—V-v. (A5)
® Vo = 2.77X 109 cn?

Remember that = h%/y is the perturbation parameter discussed previ-

ously and that the new pressure is required to satisfy the boundary condi- Rp =2x10*cm
tion given in Eq. A3.

The final step of the iterative cycle is the check for convergence. In the L = 5% 10 %cm/s
current calculations we have utilized the criterion P

ma N — L,=1.13X 10_3 cm
= Ap=rb _ 56 (A6) ’
(max(p) + min(p))

Tests indicate this degree of convergence to be effective yet fairlyStep 2: Calculation of other relevant data from

B

inexpensive. information already obtained

3V 1/3

R = ( °e”) = 4.04% 10*cm
TABLE B1 9, = 0.3 4m
OVaSp 63 =1.25 G’a =2 Q’:a =5 @a =10 63 = ®© AP " 1 1
cr

0.010  0.00 0.00 0.00 0.00 0.00 Y= (Rp - Rc) = 0.035 dynes/cm
0.029  1.64(4) 1.43 (6) 1.32(6) 1.33(8) 1.34(9)
0.057  1.72(7) 1.62 (7) 154(6) 154(5) 1.54(5)
0.116  1.70(7) 1.68 (5) 1.72(5) 1.70(5) 1.70 (4) Vaep= REL, — ERS = 1.34% 10 ©cnf
0270 1.61(2) 1.73 (1) 1.73(1) 172(1) 1.72(1) asp P 3 '
0.720  1.55(2) 1.68 (1) 168(1) 1.70(1) 1.72(1)
1.000 1.51(2) 1.63 (1) 1.63(1) 1.65(1) 1.69(1) 3(Veen — Vasp |
1.200 1.50(3) 1.57 (3) 1.59(1) 1.62(1) 1.66(1) ax =~ (4> =3.24X 10 %cm
1.400  1.47(3) 1.54 (4) 157(1) 159(1)  1.63(1) ™

1.600  1.38 (4) 1.52 (4) 155(1) 157(1) 1.61()

1.800  1.41(1) 1.53 (3) 1.55(1) 1.55(1)  1.60(1)

2.000 1.40(2) 1.44 (3) 1.54(1) 156(1) 1.59(2) Step 3: Computation of nondimensional

2200  1.39(3) 1.44(2) 156(1)  157(1) 150(9) parameters and variables from slippery droplet
2.400  1.39(3) 1.44 (2) 155(1)  158(1)  137(16) model

2.600  1.38(2) 1.44 (3) 1.59(1) 159(1) 1.22(27)

2.800 1.41(3) 1.46 (3) 1.63(1) 1.64(1) N/A R =05
3.000 1.37(3) 1.46 (3) 1.70(1)  1.68(1) N/A vP '
3200 1.32(2) 1.40 (4) 1.65(1)  1.68(1) N/A 6. =59
3400 1.18(2) 1.29 (4) 1.60(2) 1.65(1) N/A ~a =
3.600  0.97 (5) 1.08 (6) 155(7) 1.63(1) N/A

3.800 0.57(39) 057(17) 1.28(7) 1.44(2) N/A Vasp

4.000 N/A N/A N/A 1.07 (4) N/A Vasp= R 2.03
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TABLE B2 3, =05 APPENDIX D: SURFACE KINEMATICS
Va 6a=125 Gi=2 6,=5 G=10 Gi=>  qpegpy
0.054 0.00 0.00 0.00 0.00 0.00

0.135 1.33 (4) 1.20 (6) 1.14 (6) 1.17 (8) 1.18 (8) It i; evidept that'during qspiration, the Wrinkled.plasma memprane of a
0.270 1.34(9) 1.41 (8) 1.46 (6) 1.45 (5) 1.46 (5) white cell is _reqwred to sI|Fie bagk and_ fort_h relative to the interior and_ to
0.540 1.29 (11) 1.35 (5) 1.60 () 1.60 (5) 1.59 (4) undergo various changes in folding. Little is k_nown about_ the mechanlc.al.
0.720 1.17 (3) 1.33(2) 1.55 (1) 156 (1) 157 (1) conseggences or importance of these complicated gyratlons, but at m!n|-
1.000 1.13 (4) 1.29 (2) 155 (1) 158 (1) 1.58 (1) mum it is necessary to suppose that the membrane will never, at any point,
1.200 1.10 (4) 1.27 3) 1.54 (1) 157 (1) 158 (1) bg stre_tched past the point of rupture. Furthermore, using very narrow
1.400 1.07 (3) 1.23(3) 153 (1) 157 (1) 1.58 (1) micropipettes, Evans_ and Yeung (1.98_9) have detgrmmed that this point
1.600 1.05 (3) 121(2) 151 (1) 155 (1) 157 (1) occurs When_the fractional surface dilation of the white cell reaches a value
1.800 1.02 (3) 117 3) 1.50 (1) 154 (1) 155 (1) of_ 2.1 (area just before_ membrane rupture versus area of a smqoth sphere
2.000 0.98 (3) 1.14 (3) 1.47 (1) 153 (1) 1.52 (1) with gqual. volu.me). ThIS rather harsh'constralnt on the mechanlcg of real
2200 0.94 (3) 1.10 (3) 1.44 (1) 151 (1) 1.48 (2) cells is quite bllthely ignored ‘by the slippery droplet model. In particular,
2400 0.89 (3) 1.05 (4) 1.42 (1) 1.49 (1) 1.43(3) the c_iroplet surface |s_theoret|ca||y allowed to _undergo any am_our_]t of area
2.600 0.85 (3) 0.99 (4) 1.39 (1) 1.46 (1) 1.33(6) dilation or compressmr} Furthermore, despite suc_:h Ioca! dilations and
2.800 0.79 (4) 0.97 (3) 1.34(2) 1.43 (1) 1.19 (10) compressions, th_e_t_en5|on of the Qrop_lt_et sgrfacg v_\nII remain constan_t. To
3.000 0.72 (5) 0.87 (5) 1.33 (1) 1.40 (1) 1.06 (15) check t_he plausibility of these S|mp||f|c_at|0ns it is of interest, during
3.200 0.63 (7) 0.76 (6) 1.27 (3) 1.34 (1) 0.60 (14) calculations, to keep track of the dynamics of the droplet surface.

3.400 0.50 (12) 0.63 (7) 1.17 (4) 1.27 (1) N/A The weakest possible form of a surf_ace constr_aint in cell mechanics
3.600 0.31 (18) 0.42 (8) 0.92 (11) 115 (3) N/A conS|sts_ of a global or overall constr_amt. Dynam|c_a||_y such_a “weak”

3.800 N/A N/A 0.34 (6) 0.90 (7) N/A constraint corresponds to the assumpugn of a free-slip interaction b'et'ween
4.000 N/A N/A N/A 0.56 (12) N/A the plasma membrane and the cell interior. Because of the easy sliding of

the membrane relative to the interior, any small local gradients in the
amount of surface wrinkling can instantly be compensated by lateral
sliding and redistribution of the membrane folds. Thus, to a good approx-

M can then be read from Appendix B, Table B2 (rdif,= 2.00, column: imation,_ the_ wrinkles remain uniformly distributed over the cell surface,
€, = *): and a violation of the area constraint can occur only if and when the total
surface area of the droplet exceeds 2.1 times the initial area. Such viola-
M=152 tions are trivial to check by direct inspection.

The “strong” or local form of the area constraint on cell mechanics
postulates a no-slip interaction between the plasma membrane and the

Step 4: Computation of viscosity using Eq. 10c interior. Operationally this means that the fractional area dilation during
aspiration must be less than 2.1 at every point on the surface. To check the
101752 X 104 — 2% 0.035 consistency of the slippery droplet model versus this extreme requirement,
* [1 — 2X10°%3.24% 10—4] it is necessary to introduce a special surface figlo= cn? of actual
W= 7 membrane bilayer per ¢hof “projected” surface area. Values pfmuch
m#*1.52%5X 10 greater than 1 imply a highly wrinkled or ruffled membranpegexactly
. equal to 1 implies a completely smooth membrane. Because lipid bilayers
= 841 poise= 84.1 Pas must maintain an approximately constant ratio of surface area to mass,
values ofp less than 1 can occur only after failure or rupture of the plasma

This value of the viscosity is-40% lower than the viscosity reported by membrane

Needham and Hochmuth for this particular cell. The discrepancy comes The measurements of Evans and Yeung (discussed above) imply that

about mainly because of differences in the value of the dissipation func-p = 2.1 in the starting condition when the cell has its spherical shape.

tional. Assuming a no-slip constraint between the membrane and the interior, the
subsequent time evolution ofis governed by a continuity equation,
TABLE B3 %, = 0.7 Dp = —pVs- vV, (D1)

Vasp Ca=125 C,=2 ¢€,=5 ¢,=10 C,=

whereD, is the substantial derivative for a Lagrangian observer moving
0.232  0.00 0.00 0.00 0.00 0.00 with a point on the droplet surface, alid- v is the rate of surface dilation.
0363 0.86(4)  078(7) 080(7) 087(7)  0.93(8)

0728 0.75(6)  0.85(2) 116(4) 119(2)  1.23(2)

1.049 0.73(11) 083(2) 117(2) 1.30(4)  1.34(1)

1200 069(6)  080(2) 117(2) 1.32(1) 1.36(2) Results

1400 065(6)  077(2) 116(2) 1.33(1)  1.38(1)
1600 062(3) 075(2) 113(3) 1.33(1)  1.38(1)
1800 058(2) 070(2) 107(3) 1.33(1) 1.37(1)
2000 053(2)  066(3  100(4) 130(1)  1.35(1)
2200 050(2)  0.64(3)  092(4) 127(1)  1.33(1)
2400 0.45(2) 056(4)  0.86(4) 124(1)  1.33(6)
2.600 039(5)  049(5) 079(4) 120(1)  1.24(3)
2.800 0.33(5) 041(5) 070(6) 115(1)  1.16(2)

As the calculation progresses, the excess area density becomes redistrib-
uted along the exterior of the cell, as seen in Fig. 12. In this case, segments
with p > 1 (thick solid histogram bounda)ystill have some excess
membrane stored in the form of wrinkles. Segments of the boundary with

p < 1 (open histogram boundayygorrespond to portions where the bilayer
has been dilated past the point of rupture. It is clear from these results that
the slippery droplet model is not consistent with the strong or local form of
the surface area constraint. In fact (with the exception of some cases at low

3.000 N/A 0.32 (10) 0.51 (8) 1.05 (5) 1.08 (3) . . . . . .
3200 NA O NA L NA 0008 0980) LB oty of our calculaton 1n i
3400 N/A N/A NIA 0.43 (10) 0.85 (4) gases Whergl sigs is redigted the initial ru Jtur(glwas located just int.eriorto
3.600 N/A N/A N/A N/A 0.67 (6) Yy p ’ p J

the nozzle. This means that new droplet surface area is being created just
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1) a) b) : CO d) O
2) a) b) : O d)

FIGURE 12 Surface density distribution. Segments with 1 (thick solid histogram bounda)still have some excess membrane stored in the form of
wrinkles. Segments of the boundary wigth< 1 (open histogram boundayycorrespond to portions where the bilayer has been dilated past the point of
rupture. { a-d Surface density predictions ft, = 0.7,$, = 2, as aspiration progresses. Note that rupture of the droplet does not occur under these
conditions. 2 a—d Surface density distributions féR, = 0.7, €, = 10, as aspiration progresses. The portions of the boundary delimited with open
histograms indicate where membrane integrity has been lost (i.e., surface dilation relative to the starting condition is greater than a fpdtobofi2.1

1 and2, the extent of aspiration is as follows)(%£,, = 0.29 (initial condition), b) £, = 0.73, €) &£, = 1.21, @) &, = 2.20.
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