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Buffers and Oscillations in Intracellular Ca21 Dynamics

Martin Falcke
Hahn Meitner Institute, Glienicker Str. 100, 14109 Berlin, Germany

ABSTRACT I model the behavior of intracellular Ca21 release with high buffer concentrations. The model uses a spatially
discrete array of channel clusters. The channel subunit dynamics is a stochastic representation of the DeYoung-Keizer model.
The calculations show that the concentration profile of fast buffer around an open channel is more localized than that of slow
buffers. Slow buffers allow for release of larger amounts of Ca21 from the endoplasmic reticulum and hence bind more Ca21

than fast buffers with the same dissociation constant and concentration. I find oscillation-like behavior for high slow buffer
concentration and low Ca21 content of the endoplasmic reticulum. High concentration of slow buffer leads to oscillation-like
behavior by repetitive wave nucleation for high Ca21 content of the endoplasmic reticulum. Localization of Ca21 release by slow
buffer, as used in experiments, can be reproduced by the modeling approach.

INTRODUCTION

Ca21 is used as a second messenger in cell signaling (Tsien

and Tsien, 1990; Berridge et al., 1998). Many cells respond

with oscillations of the cytosolic Ca21 concentration to

a variety of stimuli (Toescu, 1995; Kummer et al., 2000;

Schuster et al., 2001). The rise of the cytosolic Ca21

concentration is accomplished by influx through the plasma

membrane and release of Ca21 from intracellular stores like

the endoplasmic reticulum (ER) into the cytosol. Opening

and closing of Ca21 channels on the ER membrane controls

the release. Ca21 is pumped back from the cytosol into the

ER by SERCATPases.

The state of channels changes stochastically. The

transition probabilities between the states depend on binding

of ligands to the channel. The ligands are Ca21 and IP3 in the

case of the IP3 receptor channel IP3R (Taylor, 1998; Patel

et al., 1999). That stochastic behavior manifests itself as

spontaneous release events called puffs and the termination

of wave propagation by fluctuations (abortive waves) (Sun

et al., 1998; Callamaras and Parker, 2000; Marchant and

Parker, 2001; Thomas et al., 1999; Bootman et al. 1997).

Channels are spatially grouped in clusters (Parker and

Yao, 1991; Sun et al., 1998; Thomas et al., 1998; Mak et al.,

2000; Mak and Foskett, 1998). The clusters are arranged ir-

regularly on the ER membrane with a typical spacing of 2–6

mm. As a superstructure on that irregular cluster array, focal

sites exist, which are membrane areas with an increased

density of clusters (Lechleiter et al., 1991; Callamaras and

Parker, 2000; Marchant and Parker, 2001).

Another important element in Ca21 handling are buffers.

Buffers are proteins binding most of the Ca21 in a cell (up to

99%). They are present in the cytosol as well as the ER.

Depending on their diffusion characteristics, buffers are

considered as mobile or immobile. The rate constants of

Ca21 binding and dissociation cover a wide range from slow

buffers ðk�’1 s�1Þ to fast buffers ðk�’100 s�1Þ:
Modeling of intracellular Ca21 dynamics focused in the

beginning on models for the channel dynamics (Berridge,

1989; Goldbeter et al., 1990; DeYoung and Keizer, 1992;

Tang and Othmer, 1996) and represented cells as a contin-

uous medium. With the focus of experimental research

shifting to localized, stochastic events in recent years,

modeling work of single cluster profiles and discrete cluster

arrays appeared (Smith et al., 1998; Smith et al., 2001;

Mitkov et al., 1998; Pearson and Ponce-Dawson, 1998). The

stochastic behavior seen in spark and puff formation

motivated the introduction of stochastic models (Swillens

et al., 1998; Keizer and Smith, 1998; Swillens et al., 1999;

Falcke et al., 2000; Bär et al., 2000; Falcke, 2002; Shuai and

Jung, 2002) focusing mostly on single clusters (Swillens

et al., 1998; Swillens et al., 1999; Shuai and Jung, 2002)

or cluster arrays (Keizer and Smith, 1998; Bär et al.,

2000; Falcke et al., 2000; Falcke 2003).

Stochastic models are of course needed to describe

stochastic events like puffs. However, recent studies showed

that there may be further consequences of stochastic channel

behavior. Random fluctuations may cause oscillation-like

behavior on a wide range of experimentally observed periods

although the deterministic dynamic regime is nonoscillatory

(Falcke, 2003). Single clusters can show a preferred

frequency in their spontaneous behavior in an excitable

regime too (Shuai and Jung, 2002). These findings underline

the importance of stochastic modeling beyond the obvious

experimental manifestations like spontaneous puffs.

All models so far used the approximation of fast buffers

and could therefore not consider the impact of slow buffers.

However, slow buffers are used as an experimental tool e.g.,

to isolate single release events (Roberts, 1994; Callamaras

and Parker, 2000). Moreover, buffers can control intracel-

lular Ca21 dynamics by tuning spatial coupling of chan-

nel clusters. That determines the average period of

oscillations due to wave nucleation (Falcke, 2003; Lukya-

nenko and Györke, 1999). Wave nucleation is a stochastic

process. Hence, it is worthwhile to investigate intracellular
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Ca21 dynamics with a stochastic model and high buffer

concentrations.

Recently, we introduced a model concept for intracellular

Ca21 handling taking into account the spatially discrete

arrangement of channel clusters as well as the stochastic

behavior of single channels (Falcke et al., 2000; Falcke,

2003). Based on the time scale separation between the

dynamics of the Ca21 concentration profile and the channels,

we used an adiabatic approximation (quasisteady-state

approximation) for the diffusion processes. That approach

could consider fast buffers only. Here, I supplement that

approximation by a two time scale analysis allowing for

modeling a system including slow buffers.

I will describe the model and the results of the time scale

analysis in the following section. The mathematical details

are given in the ‘‘Two time scale analysis’’ section. The

simulations show that slow buffers can lead to oscillation-

like behavior in different ways. If the buffer binding and

unbinding rates are very slow and the cytosolic buffer

concentration is high enough to bind most of the Ca21 in the

cell, oscillations occur. The oscillations could be described

as a periodic exchange of Ca21 between the buffers and the

ER mediated by IP3R’s and the SERCA’s. Fast buffers

suppress the cooperativity between the release channels

needed for that effect. I have shown (Falcke, 2003) that fast

buffers can lead to oscillation-like behavior by reducing

spatial coupling between clusters. That can be achieved by

high concentrations of slow buffers too as shown in this

report. Furthermore, I find that localization of release by

slow buffers as used in experiments can be modeled with

the approach presented here.

MATERIALS AND METHODS

The reaction diffusion equations

The channel clusters on the ER membrane do not form a regular grid.

However, I would like to focus on the stochastic behavior of the channels.

Hence, I exclude that frozen irregularity and choose a regular grid with

spacing d as the basic cluster arrangement. I put more randomly uniformly

distributed clusters in the center of the area to mimic a focal site (Fig. 1). The

interior of the cell is modeled as a spatially two dimensional area. The

reaction diffusion equations for the Ca21 concentrations and the buffers with

Ca21 bound are given in the ‘‘Two time scale analysis’’ section. In principle,

the approach is the same as for the case with fast variables only (Falcke,

2003) except that the amplitude A (see below) becomes space dependent

now. That space dependence is caused by slow buffers. I will focus on

describing this expansion of the model here.

I denote the vector formed by the numbers of open channels of all clusters

No(t) where the ith component is the number of open channels of the ith

cluster. That vector is obtained from the stochastic simulation of the channel

dynamics. The simulation of the channel dynamics is identical to that used in

Falcke (2003).

The buffers with Ca21 bound in the cytosol are denoted bi, those in the

ER bE,j. I do not consider slow buffers for the time being but will deal with

them further below. Immobile buffers are modeled by setting their diffusion

coefficient equal to zero. The variables E and c are the concentration of free

Ca21 in the ER and cytosol.

The total Ca21 concentration is defined as:

CT ¼ cþ+
i

bi þ
1

g

�
E þ+

j

bE;j

�
: (1)

That total concentration obeys:

@CT

@t
¼ r2

x

�
Dcþ +

i¼1

Db;ibi þ
1

g

�
DEE þ +

j¼1

DE;jbE;j

��
: (2)

Here I define the variable A as:

A ¼ Dcþ +
i¼1

Db;ibi þ
1

g

�
DEE þ +

j¼1

DE;jbE;j

�
(3)

obtaining finally:
@CT

@t
¼ r2

xA: (4)

I assume that the dynamics of the different concentrations are sufficiently

fast to reach the stationary solution belonging to a certain No(t) before No(t)

changes. That assumption is very well fulfilled at the location of an opening

channel. It is an approximation for length scales of cluster spacings because

it takes ;100–200 ms for free Ca21 to diffuse that distance. The

consequences are discussed in Falcke (2003). The stationary solution of

Eq. 4 with zero flux or periodic boundary conditions is a constant A ¼ A0:

I use that constant to express the lumenal concentration E by the other

concentrations:

E ¼ g

DE

�
A0 �

�
Dcþ +

i¼1

Db;ibi þ
1

g
+
j¼1

DE;jbE;j

��
: (5)

Finally, I use the concentration profiles to determine the value of A0

according to the total Ca21 content of the cell expressed as a spatially

averaged concentration C0:

C0 ¼
1

V

ð
V

CTðNoðtÞ;A0; rÞ: (6)

So far I derived the equations for fast variables only. Additional time and

length scales appear, if a slow buffer bslow is used. The binding and

FIGURE 1 Example of cluster array used in some simulations.
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dissociation rate constants of slow buffers are much smaller than the con-

stants of fast buffers. That is indicated by writing them as ek1slow and ek�slow :

@bslow

@t
¼ Dslowr2

xbslow þ e

�
k1slowðBslow � bslowÞc� k�slowbslow

�
:

(7)

I assume that the slow local dynamics do not generate steep gradients.

That leads to a
ffiffi
e

p
length scale for the slow buffers ðx ¼ j=

ffiffi
e

p
Þ and

a diffusion term of order e. Introducing the time scale t as t ¼ et I reach:

@bslow

@t
¼ Dslowr2

j
bslow þ k1slowðBslow � bslowÞc� k�slowbslow:

(8)

The slow dynamics cause a dependence of A0 on t and j. As a result of

a two time scale analysis, shown in detail in the last section of this article, I

obtain:

@ðC0
T � b0

slowÞ
@A0

@A0

@t
¼ r2

j
A0 þ Dslowr2

j
b0

slow � @b0
slow

@t
: (9)

Note that the solution of Eq. 9 is determined up to an arbitrary constant

only which is fixed by Eq. 6 with the slow buffer now contributing to the

total Ca21 concentration.

Single cluster profiles

The total number of open channels No for two simulations is shown in Fig. 2.

[IP3 ] was kept at 0.06 mM until t ¼ 10 s and then set to 0.24 mM. A peak in

the number of open channels follows the step increase in [IP3] in the case

with high slow buffer concentration (Fig. 2, top). That is different from the

simulation with high fast buffer concentration where single channel

openings do not lead to higher activity for a long time. Finally, the system

switches to a state with a maintained activity of ;10 open channels. We will

encounter that typical behavior again when we look at the results in detail.

The simulations shown in Fig. 2 were done by solving Eqs. 25 and 26,

and Eqs. 8, 9, 25, and 26 in the case of Fig. 2, top. The solution of Eq. 25

after each change of No(t) is computationally expensive. A single run of

100 s real time takes several hundred hours of cpu time. That is one of the

motivations to approximate the complete solution of concentration fields by

the superposition of single cluster profiles. Besides that, the single cluster

profiles are a convenient tool to understand what happens during the

dynamics.

As can be seen in the plots of single cluster concentration profiles shown

in Figs. 3 and 4, the Ca21 concentration around a single cluster with open

channels is strongly localized. I take advantage of that to simplify the

solution for a large array of clusters by representing the full solution as

a superposition of single cluster profiles. I denote the solution vector

fc0;E0; b0
s ; b

0
ex; b

0
m; b

0
Es; b

0
Emg with Uðr;A0ðNoðtÞ; r; tÞÞ: The single cluster

profile Usðr � ri;A0ðNoðtÞ; ri; tÞ;N i
OÞ is defined as the stationary solution of

Eq. 25 for a single cluster at the position ri in the center of a large area with

no flux boundary conditions and N i
O open channels.

I split the solution into the base level of concentrations U0, calculated

with the current A0 and No [ 0, and the contributions of open channels Uc

(Uc
i for the ith cluster). Uc

i decays to 0 for large distances to the open cluster.

It reads for the ith cluster:

Uc
i ðr;A0ðNoðtÞ; ri; tÞ;N i

OÞ ¼ Usðr � ri;A
0ðNsðtÞ; ri; tÞ;N i

OÞ
� Usð‘;A0ðNoðtÞ; ri; tÞ;N i

OÞ
(10)

A0 enters the differential equations with the very small prefactor of the leak

flux Pl only outside a cluster. The contribution of the leak flux to the profile

around open channels is negligible. Hence, the spatial variation of A0 there

will have almost no impact on Uc. Consequently, I neglect the dependence of

A0 on r outside the cluster and calculate Uc
i with the value of A0 at the

position of the cluster taken as a constant for all r. The variation in the

cytosolic concentration resulting from the leak term can be of the order of the

base level and hence is not neglected in the calculation of U0. However,

diffusion terms resulting from an inhomogeneous base level are negligible

compared to the diffusion of A0 and the diffusion resulting from the

contribution of open channels. Consequently, the base level U0 is calculated

for a given A0ðNoðtÞ; r; tÞ as the solution of Eq. 25 with all channels closed

and all diffusion coefficients set to zero.

Finally, the superposition of single cluster profiles is formed by adding to

the base level the contributions from the open channels:

Uðr;A0ðNoðtÞ; r; tÞÞ ¼U0ðr;A0ðNoðtÞ; r; tÞÞ

þ+
i

�
Usðr � ri;A

0ðNoðtÞ; ri; tÞ;N i
OÞ

� Usð‘;A0ðNoðtÞ; ri; tÞ;N i
OÞ
�
:

(11)

Examples for single cluster profiles are shown in Figs. 3 and 4. They were

calculated for a large circular area with a single cluster in the center and no

flux boundary conditions. The concentration profiles of single channels or

clusters have been investigated in detail in recent years (Stern, 1992; Smith

et al., 2001; Smith, 1996; Smith et al., 1996; Bertram et al., 1999; Pape et al.,

1995; Naraghi and Neher, 1997; Neher, 1998; Rios et al., 1999; Gonzalez

et al., 2000). Hence, I will discuss aspects of importance in the context of

this study only.

Fig. 3 illustrates the dependence on buffer parameters of the fast mobile

buffer bex. The amplitude of free Ca21 increases with the dissociation

constant of the buffer Kex (Fig. 3 A) because less Ca21 is bound when Kex

increases. High mobility of buffers leads to low peak values of free cytosolic

Ca21 (Fig. 3 B). Buffer molecules with Ca21 bound can rapidly diffuse

away and a large diffusion flux of unoccupied buffer molecules toward the

cluster enhances buffering (facilitated diffusion (Keener and Sneyd, 1998)).

In Fig. 3 C, we changed the rates k1ex and k�ex while keepingKex constant. The

FIGURE 2 Global number of open channels No in a simulation of the

complete fully coupled model Eqs. 25, 26, 29, and 30 without the single

cluster profile approximation. (Top panel) Bex ¼ 40mM; Bslow ¼ 410mM:

(Bottom panel) Bex ¼ 450mM; Bslow ¼ 20mM: For both panels:

Bs ¼ 200mM; Bm ¼ 0; BEs ¼ 200mM; KEs ¼ 5mM; BEm ¼ 0; Co ¼
72mM; ½IP3� ¼ 0:24mM; Pc ¼ 800 s�1, Pl ¼ 0:001 s�1; Pp ¼ 50mMs�1;

d ¼ 3:84mm; Rs ¼ 84 nm: The integration area is 30.72 3 30.72 mm2 and

contains 8 3 8 clusters.
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faster the buffer, the lower the peaks of free Ca21. The fast buffer is not in

equilibrium (i.e., the stationary state of binding and unbinding) around

a channel mouth. There is an excess of Ca21-free buffer because of the

directions of the diffusion flux for bound and Ca21-free buffer. Bound buffer

diffuses away from the cluster and Ca21-free buffer toward the cluster. The

excess vanishes for infinitely fast buffers, or in other words, more Ca21 is

buffered at the channel mouth for faster binding rates. As the last buffer

parameter, I vary the total concentration Bex. Increasing the value of Bex

decreases the peak of free Ca21. Furthermore, localization becomes stronger

with increasing buffer concentration beyond the decrease in amplitude. That

can be explained by the sink effect of gradients in buffered systems

described in (Wagner et al., 1998).

The dependence of the single cluster profiles on some cluster character-

istics is shown in Fig. 4. The peak concentration at the center of the cluster

depends linearly on Pc for the range shown. The amplitude saturates for very

large values of Pc (data not shown). Fig. 4 C deals with the dependence on

the total amount of Ca21 in the cell. In systems with slow buffers, the role of

that total amount is taken over by the total amount of Ca21 not bound to slow

buffer. Hence, the change in single cluster profiles we see in Fig. 4 C with

decreasing C0 corresponds to the change with increasing binding of Ca21 to

slow buffers. Finally, I change the pump strength by a factor of 5 in Fig. 4 D.

The impact on the peak values is negligible. Pumping is more important for

the profile values at large distances.

I show the single cluster profile of mobile high affinity buffers in Fig. 5 A.

These are the profiles of bex belonging to the Ca21 profiles in Fig. 3 C. The

profiles are not localized on the length scale of cluster distances and hence

the superposition would not be a good approximation. I will explain in the

next section, how to circumvent that problem. Localization is determined by

the diffusion coefficient of the buffer, the KD, and the values of the binding

and unbinding rates. The slower the buffer, the less localized is the profile.

To compare that feature for different time scales, I rescaled the profile of the

simulation with the fastest and the slowest buffer both with their peak values

(Fig. 5 B). That clearly shows that slow buffers have less localized profiles

than fast ones even for the stationary solution. The slow buffer diffuses

farther than the fast one before losing its Ca21 taken up at the cluster. I

included the profile of the fast mobile buffer with a higher KD and a smaller

diffusion coefficient into Fig. 5 B too. That profile is sufficiently localized on

the length scale of cluster spacing d (5.76 mm). As can be seen in Fig. 5 A

too, a fast buffer has a well localized profile, if its KD is comparable to the

concentration of free Ca21 close to the cluster. The buffer profile becomes

less localized with decreasing KD.

Before I present the results of our simulations, I would like to summarize

the procedure of one iteration step. Starting from a given configuration of

open clusters No(t), I calculate the complete concentration field by

superposition of the single cluster profiles ensuring conservation of the

total Ca21. That concentration field serves for integration of the partial

differential equations (PDE) for A0, bslow and for determination of the

probabilities for the random transition to the next state of No(t). That state is

determined by one step of a stochastic simulation for all channel subunits.

FIGURE 3 Single cluster profiles of cytosolic Ca21 for different

parameters of the exogenous buffer. Parameters not mentioned are like

in Table 1. (A) Lines from bottom to top Kex ¼ 0:25; 1:25; 6:25;

31:25; 156:25mM; kþex was kept constant; (B) Lines from bottom to top

Dex ¼ 320; 160; 80; 40; 20; 10; 0mm2 s�1; (C) Lines from bottom to top

kþex ¼ 312:5; 62:5; 12:5; 2:5; 0:5 ðmMsÞ�1: Kex is kept constant; (D) Lines

from bottom to top Bex ¼ 320; 160; 80; 40; 20mM:

FIGURE 4 Single cluster profiles of cytosolic Ca21 for different cluster

parameters. Parameters not mentioned are like in Table 1. (A) Lines from

bottom to top Pc ¼ 160; 260; 360; 460; 560; s�1; (B) Lines from bottom to

top Rs ¼ 20; 40; 60; 80; 100; 120 nm; (C) Lines from bottom to top C0 ¼ 52;

62; 72; 82; 92mM; (D) Lines from bottom to top Pmax ¼ 125; 25mM s�1:

FIGURE 5 Profiles of fast buffers. (A) Profiles of bex corresponding to

the profiles of free cytosolic Ca21 in Fig. 3 C. Lines from top to bottom

kþex ¼ 312:5; 62:5; 12:5; 2:5; 0:5 ðmM sÞ�1: Kex is kept constant. (B) Lines

from high to low values: kþex ¼ 0:5 ðmM sÞ�1; Dex ¼ 32mm2s�1; kþex ¼
312:5 ðmM sÞ�1; Dex ¼ 32mm2s�1; kþm ¼ 500 ðmM sÞ�1; Dm ¼ 11mm2s�1;

profiles were rescaled by their peak values.
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RESULTS

I focus on the action of high concentrations of fast and slow

buffers. I start with low Ca21 content of the ER. I have

chosen a volume fraction g�1 ¼ 0:185 of the ER volume and

a total concentration of 288 mM Ca21 in the ER (;200 mM

bound to saturated buffers). The volume ratio may seem

rather high and the total Ca21 concentration rather low.

However, stationary buffers essentially provide an increase

of the effective volume ð1 þ BEs=ðKEs þ EÞÞV : The total

Ca21 content of the ER is approximately Eð1þ
BEs=ðKEs þ EÞÞVg�1 (V cytosol volume). Hence, the system

should behave the same for comparable values of

Eð1 þ BEs=ðKEs þ EÞÞVg�1 that include smaller values of

g�1 and larger values of BEs. I will consider high and very

high ER content further below in this section.

I will use the behavior of the system with low slow buffer

concentration as a reference for the simulations with high

buffer concentrations. The behavior of that system for

different values of [IP3 ] is illustrated in Fig. 6. It shows the

number of open channels in the focal site in dependence on

time. The initial condition of the simulation was chosen

according to the stationary distribution. In addition, the

concentration of IP3 was set to 0.05 mM for the first 10 s of

the simulation and then to different higher values thus

mimicking a quick rise of IP3 like liberation of caged IP3 by

UV flashes in experiments. I followed that protocol in all

simulations. At very low [IP3], only single, rare opening

events are observed (Fig. 6 A). Increasing [IP3 ] leads to brief

events involving up to 60 open channels separated by

quiescent phases (Fig. 6 B). I call those events spikes. Spikes

at the focal site set off a wave spreading through the whole

system. Upon a further rise of [IP3], spikes entail extended

phases of activity terminating randomly. At high IP3

concentrations, a high activity is maintained permanently.

Now I add 400 mM of slow buffer to the system

ðk�slow ¼ 0:3 s�1; k1slow ¼ 2ðmMsÞ�1Þ: Here and in all simu-

lations when buffer concentration was increased, I increased

C0 too until the cytosolic base level of free calcium is the

same as before buffer addition. I choose the case with

maintained activity (½IP3� ¼ 0:12mM; Fig. 6 D) to demon-

strate the action of high slow buffer concentration. The

permanent activity turns into repetitive spikes separated by

quiescent phases because of the buffer addition (Fig. 7). The

explanation for that behavior is found by looking at the

amount of buffer bound Ca21. The slow buffer takes up

a large fraction of the total Ca21 in the cell during an opening

spike because of the high concentration of free Ca21 (Fig. 7,

bottom). It keeps Ca21 bound for several seconds. That

amount is not at the disposal of calcium induced calcium

release anymore. Consequently, even if spontaneous open-

ings occur while a large fraction of Ca21 is bound to the slow

buffer, the amplitude of the Ca21 profile is too small to

initiate a spike. Furthermore, the large amount of Ca21

bound to buffer causes a decrease of the base level of free

Ca21 rendering openings less likely.

The characteristics of repetitive spiking with high slow

buffer concentration depend on [IP3]. As can be seen in

Fig. 8, spikes are rare at low [IP3]. The interspike interval is

determined by the probability for an event able to ignite

a spike. Because I kept the Ca21 base level constant and the

amplitude necessary for a supercritical event in the focal site

is small, that probability is essentially the same as with little

slow buffer and the same IP3 concentration. Spike amplitude

grows and the interspike interval and its variance decrease

with increasing [IP3]. However, even at high [IP3], when

many channels in the focal site are involved, spikes do not

occur completely regularly.

FIGURE 6 Number of open channels at the focal site dependent on time

with increasing [IP3]. Bex ¼ 0; Bslow ¼ 25mM; (A) ½IP3� ¼ 0:05mM; (B)

½IP3� ¼ 0:06mM; (C) ½IP3� ¼ 0:09mM; (D) ½IP3� ¼ 0:12mM:

FIGURE 7 (Top panel) Number of open channels at the focal site

dependent on time. (Bottom panel) Spatially average concentration of

Ca21 bound to slow buffer bslow. Both: Bex ¼ 0; Bslow ¼ 400mM; ½IP3� ¼
0:12mM:
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The degree of buffering depends on the buffer binding and

dissociation rates. I show in Fig. 9 how the behavior changes

with the transition from slow to fast buffers at high [IP3].

Repetitive spikes are observed with slow buffers

ðk�slow ¼ 0:3 s�1;Kslow ¼ 0:15mMÞ: The amplitude of the

spikes is reduced quickly with increasing buffer rates. At

k�slow ¼ 2:4 s�1 already, fast buffer behavior (as described

above) is reached and does not qualitatively change by

speeding up buffers even to k�slow ¼ 75:0 s�1: Fast buffer

behavior is long phases of ‘‘low level’’ activity as opposed

to spiking with slow buffers. Note that the ‘‘low level’’
activity is small compared to the peak values of spikes but

larger than base level activity.

The temporal relation between the number of open

channels, the concentration of free Ca21, and the concen-

tration of buffer bound Ca21 explains the differential

behavior with fast and slow buffering. The maximal values

of free Ca21 reached are much larger with slow buffer than

with the fast one (Fig. 10). The Ca21 amplitude of a single

opening event decreases with increasing binding rates as we

have seen with the single cluster profiles. Hence, the

cooperative effect of facilitating the opening of further

channels by the first channel open is diminished with fast

buffers. However, that very cooperativity is what boosts the

amplitude of spikes with slow buffers. That can be seen in

Fig. 11. The number of open channels increases slowly with

fast buffer whereas the fast buffer bound Ca21 reaches high

concentrations essentially immediately upon opening of the

first channel. The slow buffer with Ca21 bound reaches its

maximum after the peak number of open channels. Slow

buffers reduce the amplitude of free Ca21 close to the cluster

only when they have bound a large fraction of the total Ca21

in the cell. That takes a few seconds. The peak free Ca21

values of openings at that late time are comparable to those

of the fast buffer case (Fig. 10).

Slow buffers take up more Ca21 than fast buffers with the

same dissociation constant (Fig. 12). One reason is that they

form a larger ‘‘cloud’’ of buffer bound Ca21 around a cluster

with open channels (see Fig. 5 C ). Additionally, because of

the larger initial amplitudes of free Ca21, more channels

open and more Ca21 is released which then binds to the

cytosolic buffer. The large amount of Ca21 bound to slow

buffer cannot be used for Ca21 induced Ca21 release

anymore, which finally leads to termination of release

activity like described for the repetitive spikes above.

FIGURE 8 The number of open channels at the focal site dependent on

time for different values of [IP3 ] with high concentration of slow buffer. (A)

½IP3� ¼ 0:09mM; (B ) ½IP3� ¼ 0:105mM; (C ) ½IP3� ¼ 0:12mM; (D )

½IP3� ¼ 0:18mM; (E) ½IP3� ¼ 0:24mM; (F) ½IP3� ¼ 0:30mM: (All panels)

Bex ¼ 0; Bslow ¼ 400mM:

FIGURE 9 The number of open channels No dependent on time for

different buffer binding and dissociation rates. (All panels) Bslow ¼ 400mM;

Kslow ¼ 0:15mM; ½IP3� ¼ 0:24mM: ðAÞ k�slow ¼ 0:3 s�1; ðBÞ k�slow ¼
0:6 s�1; ðCÞk�slow ¼ 1:2 s�1; ðDÞ k�slow ¼ 2:4 s�1; ðEÞk�slow ¼ 75:0 s�1:

FIGURE 10 Comparison of the time courses of the peak free [Ca21] for

fast (solid line) and slow buffer (dashed line). The right panel is a blowup of

small [Ca21] of the left one. (Both panels) Bslow ¼ 400mM; ½IP3� ¼
0:24mM; Bex ¼ 0mM; slow Kslow ¼ 0:15mM; k�slow ¼ 0:3 s�1; fast

Kslow ¼ 0:25mM; k�slow ¼ 75 s�1:
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The time scale separation between the fast variables of

the model and a buffer with k�slow ¼ 2:4 s�1 and Kslow ¼
0:15mM is still one order of magnitude. Hence, the two time

scale analysis is still valid for that case and the slow buffer

equation can be used to integrate buffers with these

characteristics. If the slow buffer becomes even faster,

another feature of that equation comes into play. The

stationary solution of Eqs. 8, 9, and 25 is equal to the exact

stationary solution. With fast buffer rates in Eq. 8, that

stationary solution is reached within milliseconds. Hence, I

can use that equation for the fast buffers too. That was

actually done during the transition from slow to fast buffers

described above. I circumvent that problem of insufficient

localization of fast, high affinity buffers too in that way. That

approach is supported by the fact that simulations of the

completely coupled system (Fig. 2)—without the single

cluster profile superposition—show the same fast buffer

behavior as in Fig. 9.

The number of open channels during the maintained

release activity with fast buffers depends on the buffer

capacity. I show simulations for different values of the

dissociation constant in Fig. 13. The high buffer capacity

with Kslow ¼ 0:15mM suppresses all cooperative effects and

only openings of single channels occur. That changes toward

larger numbers with increasing Kslow. That finding can be

understood immediately because larger Kslow allows for

larger cytosolic Ca21 concentration and hence larger open

probability.

All simulations shown until now used a rather low Ca21

content of the endoplasmic reticulum. Slow buffers in high

concentrations change the behavior of a system with large

Ca21 concentration as well. The total Ca21 content of the ER

in the simulations shown in Figs. 14 and 15 is ’53 mM

ðg�1 ¼ 0:1Þ: These values were chosen to ensure that there

are not any effects of ER depletion. Furthermore, we use

slow buffer characteristics similar to that of EGTA

(Kslow ¼ 0:15mM; k�slow ¼ 3 s�1 and k1slow ¼ 20ðmMsÞ�1
)

from now on.

Simulations with these parameters are shown in Figs. 14

and 15. The concentration of slow buffer increases from the

top panel to the bottom panel in Figs. 14 and 15. The

behavior without slow buffer is very similar for both systems

and it is that of Fig. 14 A. Increasing concentration of buffer

turns small period oscillations into spikes with long

interspike intervals and puff activity only is left at very high

values. The mechanism is here a decrease of spatial coupling

because of localization of the coupling functions by the slow

buffer. The time scale of the intervals between spikes is set

by the probability of nucleating a wave and not by any time

FIGURE 12 Buffer bound Ca2+ bslow with slow (dashed line,

k�slow ¼ 0:3 s�1) and fast (solid line, k�slow ¼ 75 s�1) buffers. (Top) Peak

values. (Bottom) Spatial average. Both ½IP3� ¼ 0:24mM; Bex ¼ 0mM;

Bslow ¼ 400mM; Kslow ¼ 0:15mM:

FIGURE 13 Number of open channels No at the focal site dependent on

time for different dissociation constants of fast exogenous buffer Bslow ¼
800mM; k�slow ¼ 75 s�1; from top to bottom Kslow ¼ 0:15mM; Kslow ¼
0:25mM; Kslow ¼ 0:5mM:

FIGURE 11 Comparison of the time courses of the number of open

channels No (solid line) and buffer bound Ca2+ bslow (dashed line) for slow

buffer (top panel, k�slow ¼ 0:3 s�1) and fast buffer (bottom panel,

k�slow ¼ 75 s�1). No and bslow are given in arbitrary units rescaled for the

purpose of comparison. Both ½IP3� ¼ 0:24mM; Bex ¼ 0mM; Bslow ¼
400mM; Kslow ¼ 0:15mM:
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scale of the channel or buffer dynamics. The nucleation

mechanism was investigated in greater detail in Falcke

(2003). I find the same pattern as in Falcke (2003) with fast

buffer, i.e., the interspike interval increases with decreasing

spatial coupling. That mechanism of setting the time scale of

the interspike interval is different from the oscillations with

low Ca21 content of the ER and high slow buffer

concentration where the dissociation of Ca21 from the

buffer ðk�slowÞ sets the time scale of the oscillations.

Finally, I would like to show that isolation of focal sites by

high buffer concentration can be obtained with realistic

values of the Ca21 content of the ER ð’8 mM; g�1 ¼ 0:1Þ:
Marchant et al. (1999) used 300 mM EGTA plus additional

150 mM Ca21 to prevent spreading of release from

focal sites. I use the buffer constants Bslow ¼ 400mM;
Kslow ¼ 0:15mM approximately corresponding to the value

of KD ¼ 0:2mM given in Tsien (1980) and k1slow ¼
20 ðmMsÞ�1

from Marchant et al. (1999). Simulation results

are shown in Fig. 16. I added different amounts of Ca21 to

the total Ca21 in the cell. One part of that Ca21 compensates

for the cytosolic Ca21 buffered by the additional buffer and

the other part is taken up by the ER. Localization is

essentially complete for the least amount of added Ca21 (Fig.

16, top panel) but the number of opening channels is

strongly diminished too. The effect of additional buffer is

compensated for by large amounts of additional Ca21 in the

simulation shown in the bottom panel as can be deduced

from the large global number of open channels. A

comparison of the simulations in the middle and bottom

panel shows that with intermediate amounts of additional

Ca21 localization of activity to the focal site and a few

neighboring clusters can be achieved without any essential

decrease of the peak values of the number of open channels.

DISCUSSION

I investigated the impact of high slow buffer concentration

on Ca21 release activity. To that end, I extended a previously

presented stochastic model for fast concentration dynamics

by a two time scale analysis. The previous model (Falcke,

FIGURE 14 Number of open channels No dependent on time for different

concentrations Bslow. (A) Bslow ¼ 0mM; (B) Bslow ¼ 1200mM; (C)

Bslow ¼ 1400mM; (D) Bslow ¼ 1600mM: (All panels) d ¼ 3:968mm;

Nmax
K ¼ 15; ½IP3� ¼ 0:36mM; BEm ¼ 5 mM; BEs ¼ 100 mM; KEm ¼

5mM; KEs ¼ 200mM; Kslow ¼ 0:15mM; k�slow ¼ 3 s�1; C0 ¼ 5:385 mM;

g ¼ 0:1:

FIGURE 15 Number of open channels No dependent on time for different

concentrations Bslow. (A) Bslow ¼ 400mM; (B) Bslow ¼ 600mM; (C)

Bslow ¼ 1200mM; (D) Bslow ¼ 1600mM: (All panels) d ¼ 3:443mm;

Nmax
K ¼ 15; ½IP3� ¼ 0:24mM; BEm ¼ 5 mM; BEs ¼ 100 mM; KEm ¼

5mM; KEs ¼ 200mM; Kslow ¼ 0:15mM; k�slow ¼ 3 s�1; C0 ¼ 5:385 mM;

g ¼ 0:1:

FIGURE 16 Localization of release activity by slow buffer. Simulations

with Bslow ¼ 400mM; kþslow ¼ 20 ðmMsÞ�1
and Kslow ¼ 0:15mM and

different amounts of added Ca2+: (top) 37 mM; (middle) 110 mM; and

(bottom) 160 mM. The thick line shows the number of open channels at the

focal site and the thin line the global number of open channels. All panels:

d ¼ 3:443mm; Nmax
K ¼ 15; ½IP3� ¼ 0:24mM; BEm ¼ 5 mM; BEs ¼

100 mM; KEm ¼ 5mM; KEs ¼ 200mM; Kslow ¼ 0:15mM; k�slow ¼ 3 s�1;

g ¼ 0:1; without added Ca2+: C0 ¼ 751 mM:
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2003) represented all concentrations by single cluster

profiles. Hence, in the case of large concentrations of fast,

weakly localized buffers it could not be applied. The

extension presented here not only allows for the inclusion

of slow buffers but large concentrations of fast buffers with

weakly localized concentration profiles too. It completes the

superposition approach presented in Falcke et al. (2000) and

Falcke (2003) in the sense that all buffer types can now be

modeled in that frame work.

I presented a mechanism to generate oscillation-like

behavior occurring under the conditions of low Ca21 content

of the ER, high cytosolic slow buffer concentration and high

[IP3]. One cycle consists of strong release of Ca21 from the

ER, binding of Ca21 to slow buffers, termination of Ca21

release due to (partial) ER depletion, dissociation of Ca21

from the slow buffer, and uptake by the ER. That mechanism

needs slow buffer dynamics to allow for self amplification of

Ca21 release and slow dissociation of Ca21 from the buffer.

It needs high IP3 concentration to provide sufficient release

from the ER. And finally, the amount of free buffer sites on

slow buffers in the cytosol must be in the same range as the

Ca21 content of the ER or larger to be able to buffer the

released Ca21. These conditions can be perceived as

a realization of the ideas underlying the two pool model

(Goldbeter et al., 1990; Berridge, 1989) with the ER being

one pool and the slow cytosolic buffer the other.

In principle, partial depletion of the ER and slow reuptake

are needed for this type of oscillations. Slow reuptake is

achieved in the model presented here by slow dissociation of

Ca21 from cytosolic buffers. It could be achieved by using

slow reuptake of the ER only in the model too. That would

imply that the cytosol experiences a high free Ca21

concentration for most of the period which could be

poisonous for the cell. However, combining slow reuptake

and slow buffers should lead to similar results and prevent

high cytosolic free Ca21. The combination of high fast buffer

concentration and slow uptake would suppress the Ca21-

mediated cooperativity and hence would not allow for

sufficient release to drive the oscillations.

The second way slow buffers can induce oscillations is by

reducing spatial coupling between clusters leading from

a high activity state or short period oscillations to repetitive

wave nucleation (Figs. 14 and 15). Wave nucleation is the

cooperative action of several channel clusters to set off

a wave traveling through the cell. That mechanism was

investigated in detail (Falcke, 2003) but for fast buffers only.

I showed with this study that slow buffers can turn short

period oscillations into long period wave nucleation too.

Higher concentrations of slow buffer were necessary in the

simulations here than of fast buffer in the simulations in

Falcke (2003) for comparable effects. We have chosen a quite

small cluster spacing here (3.44 mm and 3.98 mm) and very

high Ca21 content of the ER to show that the mechanism

works even with these unfavorable parameters. Larger

cluster spacing and smaller lumenal total Ca21 would

decrease the buffer concentration necessary for repetitive

nucleation.

The characteristic feature of repetitive nucleation is that it

cannot be explained with time scales of the channel dynamics

or buffer. It depends strongly on the spatial coupling

characteristics because several clusters are involved in the

formation of a supercritical nucleus. The dependence on

spatial coupling leads to a decrease of the average nucleation

frequency with increasing buffer concentration as shown in

Figs. 14 and 15 for slow buffer and in Falcke (2003) for fast

buffer. That theoretical result is supported by experimental

findings. The decrease of wave frequency with increasing

buffer concentration was observed in rat ventricular cardiac

myocytes with EGTA as buffer (Lukyanenko and Györke,

1999), which is a slow buffer like I used in the simulation.

My findings bear some similarities and some differences

to previous results concerning the effect of buffers on

intracellular Ca21 dynamics in deterministic, spatially

homogeneous models reported in Wagner and Keizer

(1994) and Sneyd et al. (1998). It was found that increasing

buffer capacity slows down the time scale of the dynamics of

free Ca21, reduces spatial coupling by reducing the effective

diffusion coefficient, can abolish wave propagation, and

decreases oscillation amplitudes of free Ca21. That agrees in

general with my results. However, in our spatially discrete

and stochastic model it was found that the period of

oscillations increases with increasing buffer concentration

starting from a short period state (Figs. 14 and 15).

Coordinated global activity disappears for very high buffer

concentration and only localized events remain (Figs. 14 and

15, C and D for both). Increasing buffer concentration from

a comparable state in the buffered deterministic DeYoung-

Keizer model leads to termination of oscillations (the right-

hand side Hopf bifurcation shifts to lower IP3 values

((Wagner and Keizer, 1994), Fig. 6). These differences arise

from the fact that the deterministic spatially homogeneous

models can of course not reproduce nucleation events and

fluctuation effects.

I demonstrated that release at focal sites can be isolated by

slow buffers in the model, i.e., its coupling to neighboring

sites can be suppressed. I used buffer concentrations and

rate constants comparable to experimental values for that

simulation. The amount of buffer needed to isolate the

release at a focal site depends of course on the cluster

density and the IP3 concentration. The IP3 concentration

used in Fig. 16 was not maximal (the fraction of channels

with IP3 bound at at least three subunits is ;0.5), but

simulations like those of Fig. 14 D, and Fig. 15, C and D,

show that isolation can be achieved for high IP3 with higher

buffer concentration too in the model.

Two time scale analysis

The terms of the local dynamics of slow buffers are assumed

to be small compared to other reaction terms of the system. I

36 Falcke

Biophysical Journal 84(1) 28–41



assume that the slow dynamics cannot create steep gradients

because they are smoothed out by diffusion. That leads to

a
ffiffi
e

p
length scale for the slow buffers and a diffusion term of

order e. The complete system of PDEs for all variables reads:

@c

@t
¼ Dr2cþ ðPl þ PcÞðE � cÞ � Pp

c2

K2
d þ c2

� k1s ðBs � bsÞcþ k�s bs � k1mðBm � bmÞc
þ k�mbm � k1exðBex � bexÞcþ k�exbex

� e

�
k1slowðBslow � bslowÞc� k�slowbslow

�

@E

@t
¼ DEr2E � g

�
ðPl þ PcÞðE � cÞ � Pp

c2

K2
d þ c2

�

� k1EsðBEs � bEsÞE þ k�EsbEs � k1EmðBEm � bEmÞE
þ k�EmbEm

@bs

@t
¼ k1s ðBs � bsÞc� k�s bs

@bm

@t
¼ Dmr2bm þ k1mðBm � bmÞc� k�mbm

@bex

@t
¼ Dexr2bex þ k1exðBex � bexÞc� k�exbex

@bslow

@t
¼ Dslowr2bslow

þ e

�
k1slowðBslow � bslowÞc� k�slowbslow

�

@bEs

@t
¼ k1EsðBEs � bEsÞE � k�EsbEs

@bEm

@t
¼ DEmr2bEm þ k1EmðBEm � bEmÞE � k�EmbEm: (12)

The buffers included in the model are (in the Ca21-bound

form): bs cytosolic endogenous stationary buffer, bm

cytosolic endogenous mobile buffer, bex cytosolic exoge-

nous mobile buffer, bEm lumenal endogenous mobile buffer,

bEs lumenal endogenous stationary buffer. Here I define

A ¼ Dcþ Dexbex þ Dmbm þ 1

g
ðDEE þ DEmbEmÞ (13)

and the total Ca21 concentration CT:

CT ¼ cþ bs þ bm þ bex þ bslow þ 1

g
ðE þ bEs þ bEmÞ (14)

@CT

@t
¼ r2

�
Dcþ Dexbex þ Dmbm þ 1

g
ðDEE þ DEmbEmÞ

�

þ Dslowr2bslow (15)

@CT

@t
¼ r2Aþ Dslowr2bslow (16)

I define the long space scale and slow time scale

@

@t
! @

@t
þ e

@

@t
; t ¼ et: (17)

r2
x ! r2

x þ 2
ffiffi
e

p
rxrj þ er2

j
; x ¼

ffiffi
e

p
j (18)

c ! c0 þ ec1; etc: (19)

Introducing these variables in the PDEs leads to:

@c0

@t
þ e

�
@c0

@t
þ @c1

@t

�
¼ Dr2

xc
0 þ ðPl þ PcÞðE0 � c0Þ � Pp

ðc0Þ2

K2
d þ ðc0Þ2 � k1s ðBs � b0

s Þc0 þ k�s b
0
s � k1mðBm � b0

mÞc0 þ k�mb
0
m

� k1exðBex � b0
exÞc0 þ k�exb

0
ex � e

�
Dr2

xc
1 þ ðPl þ PcÞðE1 � c1Þ � 2Pp

K2
dc

0

ðK2
d þ ðc0Þ2Þ2 c

1 þ Dr2
j
c0

� k1mðBm � b0
mÞc1 þ ðk1mc0 þ k�mÞb1

m � k1exðBex � b0
exÞc1

þ ðk1exc
0 þ k�exÞb1

ex � k1s ðBm � b0
s Þc1 þ ðk1s c0 þ k�s Þb1

s

�

� e k1slowðBslow � b0
slowÞc0 � k�slowb

0
slow

� �
@E0

@t
þ e

�
@E0

@t
þ @E1

@t

�
¼ DEr2

xE
0 � g ðPl þ PcÞðE0 � c0Þ � Pp

ðc0Þ2

K2
d þ ðc0Þ2

� �
� k1EsðBEs � b0

EsÞE0

þ k�Esb
0
Es � k1EmðBEm � b0

EmÞE0 þ k�Emb
0
Em þ e DEr2

xE
1 � g ðPl þ PcÞðE1 � c1Þ � 2PpK2

dc
0c1

ðK2
d þ ðc0Þ2Þ2

� ��

þr2
j
E0 � k1EmðBEm � b0

EmÞE1 þ ðk1EmE
0 þ k�EmÞb1

Em � k1EsðBEs � b0
EsÞE1 þ ðk1EsE

0 þ k�EsÞb1
Es

�

@b0
s
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þ e

�
@b0

s

@t
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s

@t

�
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s Þc0 � k�s b
0
s þ e k1s ðBs � b0
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@C0
T

@t
þ e

�
@C1

T

@t
þ @C0

T

@t

�
¼ r2

xA
0 þ e

�
r2

j
A0 þr2

xA
1

þ Dslowr2b0
slow

�
: (21)

B 0th order

I assume that the concentration dynamics is faster than the

channel dynamics i.e., that on the fast time scale the

stationary solution is reached before the state of the cluster

changes. The state of the clusters is given by No(t). In

a large system, changes of No(t) would occur very rapidly

because the time scale would be tsingle/N(tsingle being the

time scale for the dynamics of a single cluster). However,

because the concentration profiles are localized, I need to be

concerned only with the number of clusters within the

decay radius.

I solve for the dynamics on the fast time scale starting at

Eq. 21:

@C0
T

@t
¼ r2

xA
0 (22)

A0 ¼ Dc0 þ Dexb
0
ex þ Dmb

0
m þ 1

g
ðDEE

0 þ DEmb
0
EmÞ: (23)

Solving for the stationary solution of C0
T uncouples that

PDE from the others and leads to:

r2
xA

0 ¼ 0:

The general solution of that equation in two spatial

dimensions is constant1 1 constant2 ln r (with r being the

spatial coordinate). Because ln r does not match the

boundary conditions (zero flux or periodic) I reach:

A0 ¼ A0ðj; tÞ:

I use A0 to replace E0

E0 ¼ g

DE

�
A0 � Dc0 � Dexb

0
ex � Dmb

0
m � DEmb0

Em

g

�
(24)

and solve for the stationary solution of the concentrations

obeying:

0 ¼ Dmr2
xb

0
m þ Dexr2

xb
0
ex þ Dr2

xc
0

þ ðPl þ PcÞðE0 � c0Þ � Pp

ðc0Þ2

K2
d þ ðc0Þ2

0 ¼ Dmr2
xb

0
m þ k1mðBm � b0

mÞc0 � k�exb
0
m

0 ¼ DEmr2
xb

0
Em þ k1EmðBEm � b0

EmÞE0 � k�Emb
0
Em

b0
Es ¼

Bsc0

Ks þ c0

b0
Es ¼

BEsE0

KEs þ E0
: (25)

The value of A0 is determined byð
V

dVCTðA0Þ¼
ð
V

dVc0ðA0; xÞ þ b0
s ðA0; xÞþb0

mðA0; xÞ

þ b0
exðA0; xÞ þ b0

slowðj; t; xÞ

þ 1

g

�
E0ðA0; xÞþb0

EsðA0; xÞþb0
EmðA0; xÞÞ

�
¼C0:

(26)

The solution of that integral equation depends on the

configuration of open channels No(t).

C 1st order

The terms of Eq. 21 depending on 0th order variables only

can be used to obtain a PDE for the dependence of A0 on t

and j:
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þ e
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EsðBEs � b0
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0
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Es
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e
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¼ e
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@C0
T

@t
¼ r2

j
A0 þ Dslowr2

j
b0

slow: (27)

@C0
T=@t can be rewritten like

@C0
T

@t
¼ @C0

T � b0
slow þ b0

slow

@t
: (28)

That separates the part of CT depending on A0 from b0
slow

leading to:

@ðC0
T � b0

slowÞ
@A0

@A0

@t
¼ r2

j
A0 þ Dslowr2

j
b0

slow � @b0
slow

@t
: (29)

Note that @ðC0
T � b0

slowÞ=@A0 is positive definite for the

buffer parameters I used, so that singularities do not occur.

That equation must be solved along with the PDE for b0
slow

to determine the dependence on t and j:

@b0
slow

@t
¼ Dslowr2

j
b0

slow þ k1slowðBslow � b0
slowÞc0 � k�slowb

0
slow:

(30)

We can easily verify that the stationary solution A0
stat of

Eq. 2 agrees with the exact stationary solution of Eq. 16, 30:

A0
stat ¼ const � Dslowb0

slow:
A0 depends on No(t). Furthermore, we can split A0 into

a spatially constant part and a part depending on j by

A0
cðNoðtÞ; tÞ ¼

1

V

ð
V

dVA0ðNoðtÞ; j; tÞ

A0
j
ðNoðtÞ; j; tÞ ¼ A0ðNoðtÞ; j; tÞ � A0

cðNoðtÞ; tÞ
(31)

and obtain ð
V

dVA0
j
ðNoðtÞ; j; tÞ ¼ 0: (32)

The slow dynamics of A0
cðNoðtÞ; tÞ is:

@A0
c

@t
¼ � 1

V

ð
V

dV
�k1slowðBslow � b0

slowÞc0 þ k�slowb
0
slow

@ðC0
T � b0

slowÞ
@A0

(33)

i.e., represents essentially the total binding and release of

Ca21 by the slow buffers. The fast dynamics is given by

changes of No(t).
Wagner and Keizer (1994) develop the rapid buffer

approximation (RBA) which assumes that the buffer

diffusion of mobile buffers is negligible and the stationary

buffer concentration of fast buffer is given by Bcðr; tÞ=
ðK þ cðr; tÞÞ: That assumption leads to a discontinuity in the

first order corrections to the concentrations if discrete source

terms are used. If the RBA is applied, the system of diffusion

equation for the concentrations is reduced to a single one for

free Ca21 with a nonlinear diffusion term. Because the

source term of that equation has a discontinuity, so does the

second spatial derivative. That discontinuity is transferred to

the first order corrections in a multiple time scale analysis

when the RBA is used. Hence, I did not neglect diffusion of

fast buffers here.

I solved all partial differential equations by a multigrid

method based on Press et al. (1992). I derived an integration

scheme for the stochastic partial differential Eq. 30 according

to Honerkamp (1990). I used a spatial discretization of 4 nm to

compute single cluster profiles. The time step size in

stochastic simulations was chosen so that the probability for

a transition in a cluster was ;1% and hence for all clusters

within an interaction radius ;7%. Because only about one

quarter of the transitions changes the open state of channels,

that yields ;2% probability for a transition changing rates of

other transitions per time step within the interaction radius.

Test runs with one half of that time step and one quarter

confirmed the choice. I used random number generators taken

from Press et al. (1992). If the integration of Eq. 30 required

TABLE 1 Parameters of the model Eq. 12

Parameter Value Unit

Leak flux coefficient Pl 0.0002 s�1

Channel flux coefficient Pc 650 s�1

Max. number of channels per cluster Nmax
K 25

Number of additional clusters in focal site NF 25

Cluster spacing outside focal sites d 5.74 mm

Single channel radius Rs 0.092 mm

Pump flux coefficient Pp 45 mM s�1

Pump dissociation coefficient Kd 0.2 mM

Volume ratio g ¼ Vcyt=VER 5.4

Diffusion coefficient D, DE of free Ca21 223 mm2 s�1

Diffusion coefficient Dm of cytosolic

endogenous mobile buffer

11.26 mm2 s�1

Diffusion coefficient Dex of cytosolic

exogenous buffer

32.0 mm2 s�1

Diffusion coefficient Dex of cytosolic

slow buffer

30.0 mm2 s�1

Diffusion coefficient DEm for lumenal

mobile buffer

10 mm2 s�1

On-rates of fast buffers: k1s ; k1m ; k1ex; k
1
Es; k

1
Em 500 (mM s)�1

On-rate of slow buffer: k1slow 2 (mM s)�1

Dissociation constants of buffers k�i =k1i :

Ks 2 mM

Km 2 mM

Kex 0.247 mM

KEs 5 mM

KEm 5 mM

Kslow 0.15 mM

Total concentrations of buffers:

Bs 150 mM

Bm 50 mM

Bex 40 mM

BEs 200 mM

BEm 40 mM

Bslow 25 mM

Total concentration of Ca21 C0 55 mM

Channel subunit parameters

(see kinetic scheme)

a5 2.22 (mM s)�1

b5 1.6 s�1

a6 0.2 (mM s)�1

b6 0.066 s�1

IP3 dissociation constant in subunit state X11 0.9434 mM
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smaller time steps than the stochastic simulation, the smaller

step was used. That may occur if it is used to model fast,

weakly localized buffers.
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