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ABSTRACT We present an analysis of physical chemical constraints on the accuracy of DNA micro-arrays under equilibrium
and nonequilibrium conditions. At the beginning of the article we describe an algorithm for choosing a probe set with high
specificity for targeted genes under equilibrium conditions. The algorithm as well as existing methods is used to select probes
from the full Saccharomyces cerevisiae genome, and these probe sets, along with a randomly selected set, are used to simulate
array experiments and identify sources of error. Inasmuch as specificity and sensitivity are maximum at thermodynamic
equilibrium, we are particularly interested in the factors that affect the approach to equilibrium. These are analyzed later in the
article, where we develop and apply a rapidly executable method to simulate the kinetics of hybridization on a solid phase
support. Although the difference between solution phase and solid phase hybridization is of little consequence for specificity and
sensitivity when equilibrium is achieved, the kinetics of hybridization has a pronounced effect on both. We first use the model to
estimate the effects of diffusion, crosshybridization, relaxation time, and target concentration on the hybridization kinetics, and
then investigate the effects of the most important kinetic parameters on specificity. We find even when using probe sets that
have high specificity at equilibrium that substantial crosshybridization is present under nonequilibrium conditions. Although
those complexes that differ from perfect complementarity by more than a single base do not contribute to sources of error at
equilibrium, they slow the approach to equilibrium dramatically and confound interpretation of the data when they dissociate on
a time scale comparable to the time of the experiment. For the best probe set, our simulation shows that steady-state behavior
is obtained in a relaxation time of ;12–15 h for experimental target concentrations ;(10�13 � 10�14)M, but the time is greater
for lower target concentrations in the range (10�15–10�16)M. The result points to an asymmetry in the accuracy with which up-
and downregulated genes are identified.

INTRODUCTION

Single assay characterization of the response of thousands of

genes to environmental perturbations is altering the research

paradigm in biomolecular science. Applications are increas-

ing explosively in areas as wide ranging as gene expres-

sion and regulation (Lashkari et al., 1997), genotyping and

resequencing, and drug discovery and disease stratification

(Eisen et al., 1998). The potential impact of micro-arrays on

basic and applied biology is so important that an entire in-

dustry has been spawned, using any of dozens of variants

of two generic methods to fabricate arrays—either direct

deposition of probes (Schena et al., 1998; DeRisi et al., 1996;

Duggan et al., 1999) or covalent attachment by in situ

synthesis (Hughes et al., 2001; LeProust et al., 2000;

Lipshutz et al., 1999; Singh-Gasson et al., 1999). The former

method allows a wide range of substances such as pre-

synthesized oligomers, proteins, cloned DNA, etc., to be

used as probes. The latter is generally restricted to oligonu-

cleotides but offers higher specificity.

The central theme of this article is the physical chemical

limits of specificity; i.e., conditions that allow the best

specificity we consider mainly, though not exclusively,

arrays of 20–30 nucleotides long probes, manufactured by

in situ synthesis. These conditions minimize false hybrid-

izations resulting from the slow equilibration that is char-

acteristic of long probes, and avoid competition between

surface-bound and solubilized probes.

Typically an array of tens to hundreds of thousands of

different pixels, each consisting of a homogeneous set of

1–10 million oligonucleotide probes, is used to determine

the expression levels of genes of known sequence. The

molecules to be assayed, e.g., cDNA, are hybridized, dur-

ing a 12–15 h incubation, with probes chosen to be their re-

verse complements The most common detection method

relies on fluorescence. Usually molecules from the target

and reference cells are labeled with red and green dyes

respectively; pixels are then scanned at the two distinct

wavelengths to determine expression changes. Genes that are

up- or downregulated in response to drugs, hormones, or

other environmental influences are thus quickly identified.

Although micro-array assays are high throughput in the

sense that in excess of 10,000 genes at a time are probed, the

number of false-positives is high, even for arrays prepared by

in situ synthesis. Increased specificity is typically achieved

by sacrificing sensitivity: only genes with a pronounced

change in expression level, typically in the fifth percentile,

are scored as having changed. The screened set, or a select
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group of the screened set, is then investigated further using

traditional methods such as Northern blotting.

Increased throughput is generally achieved by increased

array density. However, as the above remarks imply, a

substantial increase in throughput can be achieved by a well

validated, high-specificity system. To increase specificity

by rational design procedures, it is helpful to have a clear

understanding of the physical limitations of the assay. This

includes understanding the conditions that will provide the

best specificity, the robustness to deviations from optimal

conditions, the relation of optimal conditions to those

prevalent in the most common experimental procedures,

and strategies for optimization.

This article is divided into two broad components:

equilibrium and kinetic. In the first section, we outline the

thermodynamics of hybridization. Specificity and sensitivity

are maximum when equilibrium has been achieved, but even

under this ideal condition the method used to select probes

affects the formation of crosshybrids, and thus it affects

specificity. Probe selection is a large optimization problem.

We discuss this below, and present a new probe selection

method. Further below, we use this method to select probes

for the full set of yeast genes and compare the specificities

obtained at equilibrium where both specificity and sensitivity

are maximum. This has particular implications for long

probes inasmuch as length substantially reduces the rate at

which equilibrium is approached, and consequently in-

creases false-positives if equilibrium is not achieved.

Thermodynamics of hybridization

Melting profiles

As temperature is increased, an initially fully intact hybrid

will gradually destabilize, and at high enough temperature,

the strands will separate. Approximately 90% of the tran-

sition occurs over a temperature range of ;10–15 degrees

for 25-mers, with the range narrowing as length increases.

The so-called melting curve, determined under equilibrium

conditions, is cooperative and has an inflection point which

is referred to as the melting temperature, Tm.

The melting temperature is defined as the temperature at

which half the total number of strands are free (i.e., not

hybridized). In general the population of hybridized strands

will have a distribution of intact basepairs, and the

arrangement of a given number of pairs will also be

distributed. The common practice of neglecting partially

hybridized states reduces a very complex multistage model

to a two state model, eliminates the physical basis for

cooperativity, and broadens the melting profile. For short

chains, however, it has little affect on the midpoint of the

transition, introducing an error that is within the error caused

by experimental uncertainty in the stacking free energy.

For this two-state model in which partially hybridized

states are neglected, a sequence-dependent expression for the

melting temperature is easily obtained. Define b as the

equilibrium constant for bimolecular nucleation (formation

of the first bond) in units of inverse concentration, and let K
be the (dimensionless) equilibrium constant for the forma-

tion of the remainder of the helix. For a helix with n bases,

there will be n-1 stacking interactions. We write the sum of

the standard Gibbs free energies for the n-1 stacks as

DH�TDS, so that the corresponding intramolecular equi-

librium constant is K ¼ e½�ðDH�TDSÞ=RT, where DH and DS
are the sums of the standard enthalpies and entropies for base

stacking, in accordance with the base sequence.

The free energy of the nucleation event also, to some

extent, depends on the basepairs that nucleate dimerization.

If A be the free strand concentration and B the concentration

of hybrids, and we assume the molecules are either fully

hybridized or completely separated, then,

B ¼ bA2K: (1)

If cT is the total strand concentration, then by conservation

cT ¼ 2Bþ A: In addition, at the melting temperature Tm

we have by definition 2B ¼ A. Substituting these relations

in the equation for B, and utilizing the definition of K, we

have that,

Tm ¼ DH

½RlogðbcTÞ þ DS� : (2)

The presence of a surface

The formation of a DNA hybrid consists of a bimolecular

nucleation event followed by formation of a double helix.

The main effect of the surface is to freeze the rigid body

translational energy and entropy of half the free strands, and

to restrict the approach between opposing strands to a half

space. The result is to multiply all equilibrium constants by

the same constant factor, which is entirely independent of

oligonucleotide sequence. This will shift the temperatures at

which helices destabilize by some sequence-independent

factor. To first order, therefore, the presence of the surface

does not affect conclusions about specificity. As we will

show via simulation, the effect of the surface on kinetics is

crucial, and has a pronounced influence on specificity if

equilibrium is not reached.

Probe selection

To be specific, we consider arrayed probes to be 25

nucleotides (nt) long that hybridize to complementary

targets from genes in the cells of interest. We will consider

one target region per gene, although that restriction is easily

relaxed.

For a gene N long and a target L long, there are N� Lþ 1

potential targets, each potential target being the exact reverse

complement of a probe that recognizes it. To understand how

choice of target affects accuracy, consider the extreme case
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in which targets are selected at random. Hybrids would then

cover a wide range of melting temperatures. The experi-

mental temperature (at which hybridization is carried out)

must be chosen low enough to assure stability of all hybrids.

But with that requirement met, the wide range of melting

temperatures would result in many hybrids having melting

temperatures well above the experimental temperature, and

more importantly sequences that are similar to the targets

(differing by one base, say), would also be stable at the

experimental temperature, as would complexes between

target regions and certain incorrect probes. The problem is

exacerbated when the expression levels of the spurious

targets are higher than the correct targets, and made even

worse when equilibrium is not achieved.

At the chosen experimental temperature, therefore, we not

only want to choose the target regions so that the reverse

complements (i.e., the probes) have a small enough binding

free energy to assure stable hybridization, but we also want

the free energy of potentially incorrect hybrids to be high

enough to assure that they do not form at the experimentally

chosen temperature. It is evident from the previous para-

graph that we can screen out large numbers of false hy-

brids and choose targets by minimizing the dispersion in

correct probe–target melting temperatures, subject to the

constraint that the free energies of correct hybrids render

them stable at the experimental temperature, whereas the free

energy of incorrect hybrids renders them unstable. The two

constraints place upper and lower bounds on the free

energies (Li and Stormo, 2001).

Screening the pool of potential probes

A genome with M bases and N genes will provide a pool of

M � N(L � 1)segments of length L, from which N probes

are to be selected, one per gene. For the yeast genome we use

a number of screening procedures to focus on high-quality

probe sets. Initial pruning is achieved by a suitable choice of

melting temperature.

It is important to take care in setting the hybridization

temperature. Choosing an experimental temperature low

enough to assure stability of correct hybrids is important

for good sensitivity, whereas choosing a temperature high

enough to eliminate spurious hybrids is required for speci-

ficity. To find a suitable experimental temperature, we first

obtain the distribution of melting temperatures of the entire

potential pool of M� N(L � 1) correct hybrids (Fig. 1). For

the yeast system (http://genome-www.stanford.edu/Saccha-
romyces), N ¼ 6280 and M ¼ 12,057,500, so that the

required calculations can be easily done on a PC.

Calling the mean of this distribution Tmm, we restrict

probes to a relatively narrow band of melting temper-

atures; specifically, we take only those probes having

Tm 2 ½Tmm � 4; Tmm þ 4�: This constraint has two effects.

First, it speeds probe selection by reducing the search space.

Second, it guides the selection of the experimental temper-

ature, which we take to be a few degrees below the lowest

acceptable value of Tm.

Using this restricted pool of probes, and with melting

temperature set, we generate probe sets to simulate hybrid-

ization experiments, to compare specificities, and especially

to understand the implications of failing to achieve equilib-

rium.

Probe sets

We used both randomly generated and optimized probe sets.

The algorithm to generate an optimized probe set (OPS) is

divided into two stages. In the first stage, probes are screened

on the basis of binding free energies and other properties that

depend only on their sequence, and not the global character-

istics of the set. This stage is similar to existing methods.

In the second stage, the remaining probe candidates are

screened further, using a target function designed to min-

imize cross-reactivity and maximize specificity between the

probe and its complement.

Typical Stage I strategies to reduce crosshybridization are

based on tuple frequency (personal communication, Olym-

pus, http://www.olympus.co.jp) and the BLAST sequence

search algorithm (C. Sugnet, E. Rice, and T. Clark, 1999,

personal communication, http://arrayit.com/Services/Array-

Design/arraydesign. html, http://www.basic.nwu.edu/bio-

tools/Primer3.html). We use these strategies to make a first

cut at the number of probe candidates. Specifically, in our

Stage I screening, we eliminate sequences based on the

following considerations.

Self-complementarity

It is particularly important to eliminate self-complementarity

when insufficient time is allowed to reach equilibrium (as is

FIGURE 1 Distribution of Tm of 25-nt DNA duplexes, pooled from the

entire yeast gene set. At 0.3 M salt concentration, Tmm is ;323 K. We

choose probes whose Tm is in the range [319 K–327 K]. Experimental

temperature is set to 315 K, so as to guarantee the sensitivity of the probes

with the lowest Tm.
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almost always the case). At equilibrium, and depending on

concentration, the ratio of bimolecular to intramolecular

complexes might be high, but intermolecular reactions will

always slow the kinetics of binding, thereby affecting

sensitivity and possibly specificity.

Base composition

We exclude probes that are particularly AT- or GC-rich, in

accordance with empirically based guidelines developed by

Affymetrix (Lockhart et al., 1996).

Stability

Probes are selected so that the hybridization free energy is

lower than some threshold. If experiments achieve thermo-

dynamic equilibrium, this threshold determines the sensitiv-

ity to expression level. If G* is the maximum allowed

standard free energy of the duplex, relative to the singly

nucleated dimer, the lowest detectable expression level will

vary as e�G*/RT, where T is the temperature at which hy-

bridization is performed.

39 bias

Dye is generally incorporated during reverse transcription

when cDNA is synthesized. Reverse transcription rarely

results in complete transcripts of the message; i.e., a sub-

stantial amount of 39 bias is typical. For sequences N long,

we eliminate from consideration as probe candidates, the N/3

bases closest to the 59 end of the chain. In the second stage,

we select probes to minimize crosshybridization. False-

positives due to crosshybridization are often minimized

empirically by adding pixels with probes that differ in

a single basepair from the perfect complement. Although this

procedure is helpful, there are problems with it of both

a fundamental and pragmatic nature. The latter include cost

and (for cells from most human tissue) insufficient quantities

of pure mRNA.

The most direct way to choose the best probe set is to

compute every crosshybrid free energy, and pick the probes

that crosshybridize the least. It is, however, unnecessary to

follow such a costly procedure. In particular we need only

evaluate free energies of crosshybrids whose stability

exceeds some reasonable threshold.

We generate a list of binding energies for all target–probe

hybrids that have not been eliminated by restricting the

melting-temperature range.

We let fDGik; i ¼ 1; 2; . . .g be the free energy of probe i
for target k, with DGkk the binding energy of the correct

target to the probe k. We discriminate against probes that are

more likely to crosshybridize by using the reciprocal of the

correct binding fraction at equilibrium, with all genes

referred to a common expression level. Thus, we define the

quantity C(k) as,

CðkÞ ¼ +
i
eð�DGki=RTÞ

eð�DGkk=RTÞ

� �
(3)

It is clear that C(k) is always positive. The larger the value of

C, the greater the crosshybridization. For each gene, we

choose the probe with lowest C value among all possible

probe candidates. If multiple probes are needed, we avoid

using overlapping probes because they would compete for

the same target and decrease the overall identification ef-

ficiency. The main problem with carrying out this proce-

dure is that the search space grows as a power of the number

of genes, ;ðM � NðL� 1ÞÞ2; before melting-temperature

pruning. This makes exhaustive computation of crosshybrid

free energies prohibitive.

We have mitigated this problem by the algorithm outlined

below, which uses a combination of lookup tables, and a very

fast dead-end elimination procedure to obtain free energies.

Our binding strand search consists of a fast heuristic step that

narrows the search space, followed by a slower evaluation

(dynamic programming) on high-ranking candidates. We

break the query sequence into overlapping k-mers, where k
is the minimum number of basepairs necessary to form stable

duplexes (typically 6–12). Candidates are quickly located

through k-mer indexes of the entire gene set and a synonym

table, both of which have to be prepared once before any

search is performed. An extension step is then performed to

get the entire duplex.

Step 1: Index the entire gene set; create a list of the

occurrence sites for each of the 4k unique k-mers. Step 2: For

each of the 4k unique k-mers, find a list of k-mers, called

synonyms, that have no more than M mismatches with the

given k-mer. We calculate the synonym score, i.e., the base-

stacking free energy for the k-duplex. We compute the base

stacking energy with a nearest-neighbors model (Fotin and

Mirzabekov, 1998), using SantaLucia’s parameters (Santa-

Lucia, 1998; Seneviratne et al., 1999). We only need to do

this once for a given k. Step 3: Decompose the query

sequence into overlapping k-mers. A query sequence of

length L has L � K þ 1 overlapping k-mers. Find all

synonyms for each k-mer in the synonym table prepared in

Step 2. For each synonym, every entry in the index table

represents a potential site that binds the query sequence with

high affinity. Step 4: Use dynamic programming to extended

a potential binding strand at both ends, coupled with cal-

culation of binding free energy, following Eq. (3).

We allow mismatches during this step, but stop when long

mismatched segments (e.g., three mismatches out of four

consecutive basepairs) are encountered, due to unavailability

of parameters to predict free energies of such long loops and

bulges. The hits are restored in a hash table, using the site of

the hit as the key. Whenever two alignments are obtained for

the same site, we keep the one with more favorable binding

free energy.

Our heuristic search algorithm focuses on short matched

segments, which actually forms the ‘‘core’’ of the final du-
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plex, inasmuch as the binding energy is more sensitive to the

number of contiguous matching pairs than to the total

number of matching pairs. This seamlessly combines a

BLAST-like DNA sequence search with a calculation of

binding free energies in such a way that the scores are no

longer sequence similarities and E-values, but the DG values

that are used to model the hybridization process. The spe-

cificity of the OPS compared to the random probe set

(RPS) is evident from Figs. 2 and 3, where we show a his-

togram of the number of probes binding to a given target.

Notice that for the RPS, there are many probes that can

bind to a given target. As we will see later, this leads to

crosshybridization levels that are very high, making it vir-

tually impossible to determine target concentrations from the

probe binding amounts. On the other hand, for the OPS, only

a few probes bind appreciably to any target. This almost

eliminates crosshybridization and makes it possible to infer

target concentrations quite well.

Kinetic simulations

Our in silico gene array consists of a two-dimensional square

of size ;2 cm 3 2 cm which is divided into 80 3 80 pixels

making up the x-y plane of the experiment. Each pixel has

107 probes tethered to it, which are assumed to be identical

and equivalent with respect to their binding properties to

presented targets.

For concreteness, we will assume a liquid film of thickness

1/4 mm divided into five equal layers. The bottom layer is

where the hybridization between targets and probes takes

place. In the remaining layers above the bottom layer, the

targets merely diffuse. Thus, our modeling space is made up

of a regular grid of boxes of size dx,y, dx,y, dz in the x, y, z

directions where dxy ¼ 2 cm/80 ¼ 0.025 cm and dz ¼ 0.025

cm/5 ¼ 0.005 cm.

We first experimented on the RPS to set limits on

experimental parameters. The probes were placed on the

two-dimensional grid at random locations. This is just

a convenient placement of probes—and not necessarily

optimal. The experiment consists of following the targets in

time, allowing them to diffuse and hybridize. We track the

number of targets of each type that are bound to each probe

as a function of time.

To avoid issues with target–target interactions, we chose

to model a middle range of target concentration of (10�15 �
10�13)M. The most favorable target–target binding energy is

�35 kJ, whereas the most favorable binding energy between

a probe and its appropriate target is �85 kJ. Hence, the ratio

of affinities at T ¼ 315K between probe–target and target–

target interactions is greater than 2 3 108. Moreover, the

target concentration in our modeling is less than or equal to

the probe concentration. From this one can conclude that the

total target–target binding rate is negligible compared to the

probe–target binding rate and we can neglect target–target

binding.

We can then consider each target as if it were diffusing on

its own. If NT(x, y, z, t) is the number of target molecules of

a specific type in a unit box centered at (x, y, z) at time t,
then, the continuum diffusion equation for NT can be written

as:

@NT

@t
¼ Dr2NT: (4)

Inasmuch as our targets are of size less than 100 nt we use

a diffusion coefficient D¼ 10�6cm2/s (Chan et al., 1995). As

we will show from our simulation, the precise value of D is

FIGURE 2 Histogram of number of probes binding to a target with

dissociation time greater than 1 s for the RPS. The median number of probes

per target is sixteen. This should be compared to the OPS data in Fig. 2,

where the median is between two and three.

FIGURE 3 Histogram of number of probes binding to a target with

dissociation time greater than 1 s for the OPS. The median number of probes

per target is between two and three. In addition, the binding energy gap

between the probe that binds best and the probe that binds next best is very

large in all cases.
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not important. We rewrite the continuum diffusion equation

as a difference equation. After some simple rearrangements,

one gets:

NTðx; y; z; t þ dtÞ ¼ NTðx; y; z; tÞ þ
Ddt

d
2

xy

f½NTðx þ dxy; y; z; tÞ

� NTðx; y; z; tÞ þ NTðx � dxy; y; z; tÞ
� NTðx; y; z; tÞ�gþ , y6 dxyþ , z6 dz:

(5)

Let us define the dimensionless probabilities Dxy in the x-y
plane and Dz in the z direction as:

Dxy ¼ D
dt

d
2

xy

; Dz ¼ D
dt

d
2

z

: (6)

The diffusion equation can be interpreted as a molecular

dynamics evolution for which we define an updating

procedure at each time step as follows: for each box centered

at (x, y, z), the average number of target molecules that

are entering the box from the þx direction is dNþ
T ¼

DxyNTðxþ dxy; y; z; tÞ and the number that are leaving the

box to enter the box in the þx direction is dN�
T ¼ Dxy 3

NTðx; y; z; tÞ: We generate Poisson variables Aþ and A� with

mean dNþ
T and dN�

T bounded from above by NT(x þ dxy, y,

z, t) and NT(x, y, z, t) respectively (inasmuch as we cannot

have more particles diffuse out than are present in the box).

Thus the net flow into the box at (x, y, z) from the þx
direction is D ¼ Aþ � A�. The quantity D is calculated for

each direction for each box and the value of NT is updated

using these when they have all been calculated. For the z
direction, the dimensionless coefficient Dz is used in place

of Dxy.

This procedure works if the dimensionless constants Dxy

and Dz are small enough so that they can be legitimately

interpreted as probabilities. In our modeling, we chose Dz to

be 0.2. This determines dt ¼ 5s as our time step and Dxy ¼
0.008. Note that the probability to diffuse in the x-y plane

is smaller by a factor of 25 compared to the probability to dif-

fuse in the z direction. Thus, we are led to the approximation

that once a target has diffused out of the bottom layer in

the z direction, we may assume that it mixes perfectly with

the layers above. This allows us to simulate a single layer in

the z direction. After each time step, we recalculate the num-

ber of targets in the layers above the bottom layer and assume

that they are distributed evenly in the layers above.

The diffusion step is followed by a binding step. Once

again, this happens only in the bottom layer. The equation

governing the binding step will now be considered. If [TP]

is the number of target–probe complexes per mol, [T] is

the number of free targets per mol and [P] is the number of

free probes per mol, then,

@½TP�
@t

¼ rf ½T�½P� � rr½TP� (7)

It is easy to show that this equation can be transformed

into an equation for the particle number. Thus if NT, NP, and

NTP are the number of particles of target, probe and target–

probe pairs in the interaction region, then,

@NTðIÞPðJÞ

@t
¼ RfNTðIÞNPðJÞ � RrNTðIÞPðJÞ (8)

@NTðIÞ

@t
¼ �+

J

@NTðIÞPðJÞ

@t
;

@NPðJÞ

@t
¼ �+

I

@NTðIÞPðJÞ

@t
(9)

where, Rf ¼ rf=ðVNAÞ; NA ¼ Avogadro’s number, V ¼
volume of liquid in which targets are placed ¼ 10�4 liters,

Rr ¼ rr, and I and J label the targets and probes, respectively.

The binding and unbinding process is now modeled by

interpreting the above equations as follows. Each xy pixel

corresponds to a single probe. For each probe, the average

number of new target–probe pairs formed in a time step dt
is dNTðIÞPðJÞ ¼ RfNTðIÞNPðJÞdt where NT(I) is the number of

available targets of type I in the box and NP(J) is the number

of unbound probes in the box. We assume that there are no

steric effects and all unbound probes have an equal chance to

bind to the available probes. The actual new target–probe

pairs formed in time dt is computed by generating a Poisson

variable with mean dNT(I)P(J). Similarly, one can compute the

number of target–probe pairs unbinding by generating

a Poisson variable with mean RrNT(I)P(J)dt.
Repeating this step over all the targets for all the boxes

in the bottom layer of the array completes the binding–

unbinding. A probe length of 25 nt gives an average melting

temperature of 334 K at 0.3 M salt. The experimental

temperature for our simulation, following the empirical rules

described previously, is therefore set to 315 K.

Effect of diffusion

We first modeled the kinetics of hybridization for t varying

from 0 to 150,000 s for the RPS. Fig. 4 shows the fraction of

targets correctly bound (bound to the probe for which they

have the lowest binding energy) as a function of time. We

have separated the targets into two sets—those that bind to

more than 15 probes and those that bind to less than 16

probes. These numbers were chosen to divide the target set

into two sets which bind an equal number of probes in total. It

is evident from Fig. 4 that even at t¼ 150,000 s, a significant

fraction of the targets are bound to the wrong probes. This

error is exacerbated in the targets that bind individually to

a larger number of probes. In a normal gene array experiment,

the hybridization is allowed to proceed for ;12–15 h

(40,000–50,000 s). Thus, for the RPS, our experiment shows

that the ‘‘usual’’ procedure would yield a significant error.

It is important to determine where the error in hybridiza-

tion is coming from. One possibility is that it is due to the

finiteness of the diffusion rate. To see if this is the case, we

made the diffusion coefficient ‘‘infinite’’ by immediately
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redistributing all the unbounded target molecules of each

type evenly among all the boxes after each binding step.

Fig. 5 shows the comparison between finite diffusion and

‘‘infinite’’ diffusion for two time instances, t ¼ 50,000 s and

t ¼ 150,000 s. It is evident from Fig. 5 that there is no

significant difference between infinite diffusion and finite

diffusion. However, it is clear that diffusion is important.

Indeed, if we turn off diffusion completely, then the only

binding will be for the small number of targets that are

initialized in each box which can hybridize to the probes in

that box. Fig. 5 shows that although diffusion is important, it

is not the cause of the hybridization errors of Fig. 4.

Inasmuch as infinite and finite diffusion give almost the

same result, and the infinite diffusion case is much faster to

model, we will henceforth use the infinite diffusion limit.

Note that this means that our modeling sets a lower bound on

problems such as crosshybridization and target concentration

measurements. Any real experiment, with a finite diffusion

coefficient, can expect to see more severe effects than we see

in our idealized experiment.

Effect of target concentration

Another parameter that might affect the hybridization rate is

the concentration of targets. We raised/lowered the target

concentration by a factor of 10 and reran the simulation. The

comparison of these with the original middle range con-

centration is shown in Fig. 6. It is clear from this that

target concentration does play an important role in

hybridization error. The higher the target concentration, the

better the hybridization.

Fig. 6 suggests that in a real gene array experiment, run

for a finite time, at least for the RPS, concentrations of

downregulated genes would be underestimated, whereas

those of upregulated genes would be overestimated.

The role of probe specificity

Crosshybridization is a serious problem in determining the

expression levels (concentrations) of targets from the hy-

bridization levels. Intuitively, it is clear that one will get

more crosshybridization if a given probe binds to many

targets. Fig. 7 shows the average fraction of properly bound

probes (those bound to the targets that bind to them with

lowest binding energy) for different target concentrations for

the RPS as a function of target concentration. We have

separated the probes into two sets of approximately the same

size—those that bind to fewer than 21 targets and those that

bind to more than 20. Fig. 7 shows clearly that at all target

concentrations, the probes that have the largest number of

targets binding to them show the biggest errors in

hybridization. For the high concentration experiment, the

FIGURE 4 Fraction of correctly bound probes as a function of time for

the RPS. Targets are separated by how many probes bind to them. The upper

and lower curve correspond to targets with less than sixteen and more than

fifteen probes respectively. The middle curve is the average over all targets.

Notice that it takes longer than half a day to reach equilibrium and that, even

at equilibrium, there is a significant fraction of targets that are incorrectly

bound. Also note that targets which bind to more probes converge slower to

a lower correctly equilibrated fraction. This means that, with this probe set,

any experiment run for a finite time will have a systematic bias toward

underestimating downregulated genes and overestimating upregulated

genes.

FIGURE 5 Cumulative fraction of properly bound targets as a function of

the probability that a probe is properly bound for the RPS. Thus the point

(0.8, 0.3) (marked with an X), represents the case when 30% of targets are

correctly bound to their appropriate probe in less than 80% of the possible

cases. Ideally, if everything was correctly bound, the curve would be zero for

all values, except at unity when it would be unity. The trend toward this can

be seen in the data. The dashed curves represent T ¼ 50,000 s and the full

curves represent T ¼ 150,000 s. One observes a slow improvement in

binding after T ¼ 50,000 s, but perfect binding is never achieved, even in

equilibrium. The thick lines, dashed and full, represent infinite diffusion as

defined in the text, whereas the thin lines represent finite diffusion. The

difference between these two is small.
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fraction of correctly bound probes for the two sets merged

into a single curve after ;50,000 s. However, at the other

two concentrations, the two sets do not come together even

after 150,000 s (42 h). This indicates the need to optimize

probe–target specificity, as was done in selecting the OPS.

We would expect, and we will show that this is indeed true,

that these types of errors will be much reduced with the OPS.

Simulations on the optimized probe set

Fig. 8 shows the results of simulations on the OPS for low,

high, and midtarget concentrations. At T ¼ 40,000 s, the

high concentration targets have an average error of less than

one-half percent. If one looks at the probe set carefully and

computes the targets that will bind best to each probe, one

finds that there is a unique probe–target match, except for

a single probe. In addition, if one uses the binding energies to

compute the asymptotic fraction of incorrectly bound targets

for each probe, one finds that this is less than 1% in all cases

(except for two probes for whom the fraction is between 5

and 7%). This means that for the optimized probe set, the

issue of asymptotic incorrect binding which plagued the RPS

is resolved. The only issue that remains is that the time

needed to reach equilibrium depends on target concentration.

For the cases we modeled, the low concentration simulation

had not reached a state of asymptote even after 50,000 s.

However, unlike the situation for the RPS, where waiting

longer would result in a large fraction of incorrectly bound

targets, for the OPS, we will get the correct asymptotic

distribution merely by waiting long enough.

Next we do a simple case study to determine if we can

identify up- and downregulated genes using the OPS. We

selected 2000 gene targets randomly. Of these, 1000 each

were up- and downregulated by a factor f which was chosen

to be 10, 5, and 2 for three separate experiments. We ran each

simulation for 50,000 s and looked at the measured values

of bound probe–target pairs in these three experiments

compared to a control experiment where the target concen-

trations were constant. If tI and cI are the signals from probe

I for the test (up-/downregulated) runs and control runs

respectively, then the simplest measure to identify the probes

(and from them the genes) whose concentration changed in

the test case is:

SðIÞ ¼ log10ðtI=cIÞ (10)

Fig. 9 shows a histogram of S for the three experiments. The

outermost peaks correspond to f¼ 10, followed by f¼ 5 and

f ¼ 2, which are closest to the center. The central peak has

probes that bind to targets with the same concentration as the

control. From this figure, the thresholds to use for different

levels of sensitivity in target concentration can be read off.

For instance, if one could measure S in the range jSj > 1.1

FIGURE 7 The fraction of correctly bound probes as a function of time

for the three concentrations, high, mid, and low with the RPS separated into

two subsets—those that bind less than 21 targets and those that bind more

than 20 targets. The worst case is low concentration, where the total fraction

correctly bound is small. There is also a very significant dependence on how

many targets bind to the probes. For the high concentration case, the de-

pendence on number of binding targets is not important after T ¼ 40,000 s.

We see that an important source of error in identifying targets from bound

probes is the concentration. Even after long times, a low enough

concentration will have a significant error. A second source of error is

crosshybridization error from large numbers of targets binding to a given

probe.

FIGURE 6 Fraction of correctly bound targets for the RPS as a function

of time for three different target concentrations, low, mid, and high, which

correspond to 1.6 3 10�15M, 1.6 3 10�14 M, 1.6 3 10�13 M re-

respectively. In none of the cases is equilibrium reached in the 12 h of hy-

bridization. The equilibration rate depends strongly on concentration. This

means that genes that are downregulated need longer times to be mea-

sured with the same accuracy compared to those that are upregulated. A

simultaneous measurement of up- and downregulation will have a system-

atic bias toward upregulated genes.
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then one would be able to measure upregulation by a factor

of 10 but not downregulation by the same factor. This shift is

due to the bias toward upregulation compared to down-

regulation mentioned previously. This bias, although much

decreased in the OPS, is not entirely eliminated.

The number and identity of the targets that were up-/

downregulated can be computed from Fig. 9 and compared

with their correct values to estimate the error. We find that

even with the OPS, with a precise knowledge of the target

concentrations in the control and up-/downregulation by

discrete factors, there is a small statistical error. We show in

Fig. 10 the total fraction of misidentified targets (number of

false-positives þ number of false-negatives) as a function of

threshold (S value). This is computed as follows. We know

which targets were up- and downregulated. For each value St

of the threshold in S, we count how many probes have value

S> St and how many have S<�St. Those in the first set we

identify as representing targets that are upregulated and those

in the second set as representing targets that are down-

regulated. Comparing these sets to the actual up- and

downregulated targets yields the total number identified in

error. Clearly, the error is 100% when St is big enough. As St

is lowered below the level where the signal for the up-/

downregulated targets begins, the error will decrease as more

and more targets are identified correctly. However, when St

is decreased below the point where all up-/downregulated

targets are identified, it will increase again because we will

start including targets as up-/downregulated because of

statistical fluctuation. Thus, the minima in the error for up-/

downregulation by factors of 10, 5, and 2 in Fig. 10 represent

the optimum thresholds for these regulation values. Note that

the minima for upregulation are deeper than those for

downregulation for each f. This means, as we have already

noted, that upregulation is more accurately measured than

downregulation for any fixed t.
Finally, we did a simulation where we up- and down-

regulated 1000 targets each but the amount of up-/down-

regulation was randomly set to an integer value between 2

and 10. We compared the up-/downregulated simulation to

a control simulation at t ¼ 50,000 s. We then binned the

binding level ratios at the values corresponding to the integer

regulation levels that we had chosen. Negative numbers

represent downregulated targets; positive represent upregu-

lated targets. The light bars in Fig. 11 show the error in

identifying the number of up- or downregulated genes. The

solid bars show the error in identifying whether an up- or

downregulated gene was identified as such. The light bars are

computed as the absolute value of the number of genes

identified as up-/downregulated vs. the number actually up-/

downregulated at any given level of regulation. The solid

bars are computed by going over the list of up-/down-

regulated genes and counting how many were not identified

as up-/downregulated. The figure clearly indicates that it is

relatively simple to measure how many targets are up- or

downregulated but significantly harder to find out precisely

which ones. This is because the first error has two parts (x1,

x2, say) which partially cancel. The two contributions to this

FIGURE 9 Histogram of number of probes as a function of S for OPS.

4213 probes were not regulated and have S values close to 0. In each

experiment 1000 probes were upregulated and 1000 probes were down-

regulated. Probes which were up-/downregulated by a factor of 10 have S

values of 6 1. Probes which were up-/downregulated by a factor of 5 have

S values of 6 log10(5) and so on. The correlation between the up-/

downregulation of the targets and the value of S is clear from the figure. This

excellent correlation comes from the probe selection algorithm, which select

probes for an optimal specificity. Note the bias toward upregulated genes. If

the experimental sensitivity is jSj > 1.1 then we will be able to measure

upregulation by a factor of 10 but not downregulation by the same factor.

This is a residue of the concentration-dependent bias discussed in the text,

which is reduced but not eliminated for the OPS.

FIGURE 8 Fraction of correctly bound targets as a function of time for

three different target concentrations, low, mid, and high, as in Fig. 5, but for

the optimized probe set. For high and mid concentration, equilibrium

reached in the time modeled and the fraction incorrectly bound is less than

one half percent. For low concentration, asymptotic convergence is

guaranteed by waiting longer (see text).
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error are: x1 ¼ those genes that were identified as regulated

but in fact were not and x2 ¼ those genes which were

regulated but not identified as such. The light bars plot the

quantity x3 ¼ abs(x1�x2). The solid bars on the other hand,

plot the error in identifying the genes that are regulated,

which is just x2 and which is always greater than x3.

As in the previous figure, the error in identifying how

many targets are up- or downregulated is small and depends

on how sensitive a criterion one wants to impose. The error

in computing the actual regulation level is greater (5–10%

for our choice of binning) and worse for downregulated

targets than for upregulated targets. This error can be

separated into an error resulting from stochastic noise, and

error occurring due to the low level of cross-binding still

present in our probe set and the fact that for finite time there

is a small bias toward measuring upregulation. To resolve

this error we ran the simulation five times, keeping the up-

and downregulations identical over the target set but

changing only the random number seed. The averaging over

these runs significantly reduced the error in computing the

regulation level but had no effect on the error in identifying

the number of up-/downregulated targets. We conclude that

the error in computing the number of up-/downregulated

targets is due to cross-binding although the error in com-

puting the amount of regulation is stochastic. To validate

this, we reran the simulation with no cross-binding, but with

the stochastic noise unchanged. As expected, in this

simulation there were no identification errors, but the level

of error in determining the exact amount of regulation was

still present.

DISCUSSION AND CONCLUSIONS

We have described a general method of computer simu-

lations to model the hybridization kinetics of gene arrays.

Such computer modeling allows one to quickly isolate the

experimental conditions that affect the accuracy of such gene

array experiments. In this article, we use the yeast genome

and two different probe sets. One of these sets (RPS) was

created by selecting a random 25-mer sequence from each

gene whereas the other (OPS) was created by choosing those

25-mers from each gene which would minimize cross-

FIGURE 11 Number of up-/downregulated targets as a function of S for

an experiment where 1000 targets each were up-/downregulated by known

integer amounts randomly in [2,10]. Positive integers refer to upregulation,

negative to downregulation. The light bars show the identification error,

which is the number of targets that are incorrectly identified as up- or

downregulated. This is computed as the absolute value of (the number

identified as up-/downregulated vs. the number actually up-/downregulated)

at any given level of regulation. The solid bars show the error in identifying

the precise regulation level (amount of regulation) of the targets that were

up-/downregulated. This is computed by going over the list of up-/

downregulated genes and counting how many were not identified as up-/

downregulated. The figure clearly indicates that it is relatively simple to

measure how many targets are up- or downregulated but significantly harder

to find out precisely which ones. This is because the first error has two parts

(x1, x2, say) which partially cancel. The two contributions to this error are:

x1 ¼ those genes that were identified as regulated but in fact were not, and x2

¼ those genes which were regulated but not identified as such. The error in

identifying how many genes were regulated is x3 ¼ abs(x1�x2). On the

other hand, the error in identifying the genes that are regulated is just x2

which is always greater than x3. Further, the figure also shows that this

problem is more severe for downregulated targets than for upregulated

targets.

FIGURE 10 Fraction of misidentified targets for different thresholds (St),

for the f ¼ 10, f ¼ 5 and f ¼ 2 simulations. If the targets were regulated

so that their jSj value was smaller than St, then they would be completely

misidentified. Thus for large St the fractional error is unity. As the threshold

St is lowered from large values, we measure various regulation levels from

large to small. This is indicated in the figure by the different error levels for

our experimental regulation levels dropping as their threshold is crossed.

Notice however, that if we use St as a measure of the actual regulation level,

then upregulation levels are measured more accurately (i.e., they are

measured almost at their correct value of St) than downregulation levels (the

St value for which would suggest a greater downregulation than is actually

present). Even when the threshold is lower than the up-/downregulation

level cutoffs (marked in the figure with vertical lines), there are still a small

fraction (0.1–1%) of misidentified targets from statistical fluctuations.
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binding to all other genes. We consider our method to select

such an optimized probe set, which minimizes crosshybrid-

ization while retaining gene specificity, as one of the major

results of this article.

Using the RPS and OPS, we studied the dynamics of the

hybridization process by computer simulation. We first

analyzed the RPS to study the effects of crosshybridization,

diffusion, and target concentration. We found that for the

RPS, the fact that many probes bind to a given target, results

in unacceptably high levels of crosshybridization (Fig. 4)

which prevent reaching an equilibrium distribution. Next

(Fig. 5), by comparing finite diffusion with instantaneous

diffusion, we showed that the diffusion coefficient is large

enough not to pose any essential problem. This is partly due

to the fact that our targets are small, For larger targets, we

expect diffusion to play a bigger role which may require

other protocols, such as stirring or thermal annealing during

hybridization, to reach an equilibrium distribution.

Finally (Figs. 6 and 7), by studying three different target

concentration levels, we showed that after 50,000 s, which is

the typical hybridization time in a gene-array experiment,

there is a significant effect of target concentration. Targets

that have a high concentration level are closer to equilibrium

(have a greater fraction bound to correct target) than targets

that have a low concentration level. This suggests a serious

systematic bias in real experimental situations. In any

experiment run for a finite time, downregulated gene levels

would be measured lower than their actual downregulation

and upregulated gene levels would be measured higher than

their actual upregulation levels.

For the OPS, where the crosshybridization is very low, the

problems from target concentration effects are less severe

(Fig. 8), although they are not completely eliminated. To

study these effects in more detail, we conducted a series of

computer experiments (Figs. 9–11) on the OPS. We up-/

downregulated targets by different amounts and attempted to

identify both the targets that were up-/downregulated as well

as their level of regulation. This was done by looking at their

hybridization level compared to the baseline (unregulated)

targets after 50,000 s of simulation.

These experiments confirmed our observation that down-

regulation is undermeasured and upregulation is overmea-

sured. Additionally, we found that it is very difficult to

measure small variations in target regulation. In other words,

for any set of experimental parameters (temperature, target

size, probe set choice, hybridization time), there is some

value of regulation below which it is impossible to measure

regulation because the error rate is too large. This error has

two components. One is the error in determining the number

of up- or downregulated genes. The other is the error in

identifying precisely which gene was up- or downregulated.

The first error is significantly smaller than the second (Fig.

11). Thus, one can measure the number of genes which are

up-/downregulated by a certain amount much more accu-

rately than one can identify which genes they are.

Gene arrays are being used for an extraordinary range of

applications that affect humans directly. These include

cancer identification and staging, identifying individuals at

risk for genetic disorders, drug regimens specific to the

genetic signature of patients, etc. They have also become

almost ubiquitous tools in pharmaceutical companies and

research labs. It is therefore important to be able to determine

the accuracy of the results of such gene array experiments.

We view our computer experiment as a first step in this

direction. It provides a relatively inexpensive and accurate

method for studying the kinetics of gene array experiments to

optimize parameter values and experimental protocols for

more accurate predictions. Our methods can clearly be gen-

eralized to other genomes and experimental situations, such

as more complex gene arrays, more sophisticated data collec-

tion methods, other parameter values, annealing, washing

and stirring protocols, and so on.

Gene array experiments are ever more widely used. It is

necessary that their results be validated by some process

which has a high degree of credibility. We believe that com-

puter simulations, if they were sufficiently detailed, could

play this role. It is our hope that such computer modeling

will become an integral part of the validation process of

gene array results. We have devised a simulation tool, which

may be used to plan experiments and validate their results.
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