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Limiting Frequency of the Cochlear Amplifier Based on Electromotility
of Outer Hair Cells
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Biophysics Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health,
Bethesda, Maryland 20892-8027

ABSTRACT Outer hair cells are the critical element for the sensitivity and sharpness of frequency selectivity of the ear. It is
believed that fast motility (electromotility) of these cells is essential for this function. Indeed, force produced by outer hair cells
follows their membrane potential very closely at least up to 60 kHz. However, it has been pointed out that the cell’s receptor
potential is attenuated by a low-pass RC circuit inherent to these cells, with the RC roll-off frequencies significantly lower than
their operating frequencies. This would render electromotility ineffective in producing force. To address this issue, we assume
that multiple degrees of freedom and vibrational modes due to the complex structure of the organ of Corti provide optimal
phases for outer hair cells’ force to cancel viscous drag. Our derived frequency limit depends on the drag-capacitance product,
not directly on the RC time constant. With a reasonable assumption for the viscous drag, the estimated limit is 10–13 kHz,
exceeding the RC corner frequency. Our analysis shows that a fast-activating potassium current can substantially extend the
frequency limit by counteracting the capacitive current.

INTRODUCTION

The outer hair cell (OHC) is the key element for the

sensitivity, dynamic range, and frequency selectivity of the

mammalian ear (Liberman and Dodds, 1984; de Boer, 1991;

Hubbard and Mountain, 1995). These characteristics of the

ear can be realized if the hair cell functions as a feedback

amplifier and produces force in such a way that amplifies

weak signals.

It was Gold (1948) who first pointed out the need for such

an amplifier. He considered that the viscous damping of

basilar membrane vibration was quite significant whereas the

ear’s performance appeared as if it was unaffected by such

damping. Based on this observation, he predicted that the ear

has a feedback amplifier canceling the effect of viscous drag.

Although it is now thought that the motion of the basilar

membrane is not as heavily damped as Gold expected

(Rhode, 1971; Patuzzi, 1996), the presence of a feedback

amplifier in the cochlea has been widely accepted (de Boer,

1991; Zweig, 1991; Patuzzi, 1996). In recent years it has

been hypothesized that the voltage-dependent motility of the

outer hair cell’s cylindrical cell body, which is referred to as

electromotility, make this mechanosensory cell function as

the feedback amplifier (Brownell et al., 1985). The amplitude

of this motility is ;5% of the cell length (Ashmore, 1987)

and force production by the cell is ;0.1 nN/mV (Hallworth,

1995; Iwasa and Adachi, 1997). The motile mechanism of

the outer hair cell is analogous to piezoelectricity in that it

is based on direct electromechanical coupling (Iwasa, 1993;

Dallos et al., 1993; Iwasa, 1994; Gale and Ashmore, 1994;

Kakehata and Santos-Sacchi, 1995; Iwasa, 2001), in which

charge is transferred across the membrane (Ashmore, 1990;

Santos-Sacchi, 1991; Iwasa, 1993). Such a motile mecha-

nism can be fast because its speed is not limited by diffusion.

Indeed, electromotility produces a phase-locked mechanical

force without attenuation at least up to 60 kHz (Frank et al.,

1999). Moreover, prestin, a protein that reproduces most of

the characteristics of the motor, has been identified (Zheng

et al., 2000).

These observations still do not definitively answer the

question as to whether voltage-dependent motility is indeed

responsible for the cell’s functioning as a feedback amplifier.

The main reason for this reservation is the so-called ‘‘RC time

constant’’ problem. Because the mammalian hearing fre-

quency range extends quite high (to 20 kHz for humans and

40 kHz for guinea pigs), at these higher frequencies the largest

part of the mechanotransducer current must be used for

charging and discharging the cell’s membrane capacitance. It

has been argued that the rate of charging and discharging is

limited by the resistance of the cell, producing the RC time

constant which determines the roll-off of the receptor

potential. These roll-off frequencies are significantly lower

than the cells’ operating frequencies (Housley and Ashmore,

1992). Inasmuch as the cell’s force production is voltage-

dependent, the attenuation of its receptor potential due to the

RC time constant problem will limit its force output.

An additional reservation on the role of electromotility of

the OHC is that it may not be the only motile mechanism

which can counteract viscous drag. Nonmammalian hair

cells, which do not possess somatic motility, produce active

force in their hair bundles (Martin and Hudspeth, 1999;

Ricci et al., 2000). Because this motile mechanism is directly

associated with the hair bundle’s mechanotransducer ma-

chinery, it does not depend on the cell’s receptor potential,

and thus experiences no RC time constant problem.
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Although such force generation has not yet been observed in

mammalian hair bundles, these observations provide reason

to question the role of electromotility in outer hair cells.

To address the RC time constant problem, here we

describe only a local model, a segment of the cochlea that

is resonating. Cochlear traveling waves are generated when

lateral coupling through fluid is introduced between local

segments. The significance of local resonance in the cochlea

has been well recognized (Huxley, 1969; Robles et al.,

1976), and local resonance can be considered as a limit

where the traveling wave’s group velocity substantially de-

creases while within a region of very light damping (Rhode,

1971; Zweig, 1976; Lighthill, 1981).

We will show that OHC electromotility can indeed

provide the amplifier function which accounts for the local

resonance or light damping region by addressing the fol-

lowing questions:

Is the outer hair cell’s RC time constant really the

limiting factor for the effectiveness of its voltage-

driven motility?

What is the frequency limit at which voltage-driven

motility of the hair cell can function as an amplifier?

Can ion channels improve the high-frequency perfor-

mance of OHC motility? If they do, what would be the

characteristics of such channels?

AN ‘‘OPTIMIZED PHASE’’ APPROXIMATION

We start by assuming that voltage-driven motility allows the

OHC to function as a feedback amplifier. The effectiveness

of outer hair cells in exerting force to modulate the vibration

of the basilar membrane is determined by their receptor

potential. The receptor potential is in turn determined by

the bending of their hair bundles, which depends on the

vibration of the cochlear partition. The effectiveness of the

force generated will depend on the mode of vibration.

To treat this rather complex system theoretically, various

simplifying assumptions have been introduced. Most of

those theories simplified the structure of the cochlear

partition and limited the degrees of freedom of its motion

to capture the dominant modes of vibration (see Patuzzi,

1996, for review).

Instead of simplifying the structure, we simplify our

treatment by assuming that this structure is optimally

designed to counteract viscous drag. Specifically, we assume

that the vibrational modes provide a feedback pathway with

the correct phase to optimally exploit the electromotility of

outer hair cells. With this approach, we can set an upper limit

for the effectiveness of an amplifier that is based on the

electromotility of outer hair cells.

We assume that viscous drag due to shear between the

tectorial membrane and the reticular lamina constitutes the

major part of the drag (Allen, 1980) and that it is

counteracted by the electromotility of outer hair cells (see

discussion). Viscous drag that acts on the basilar membrane

is thought to be less important because the boundary layer

is thin at higher auditory frequencies (Freeman and Weiss,

1988; Keller and Neu, 1985).

Assumptions

The major specific assumptions of our approximation are as

follows:

1. Bending amplitude of the hair bundles of outer hair cells

is proportional to the displacement of the basilar

membrane, and is of a similar magnitude.

2. Outer hair cells behave as piezoelectric elements. Their

force production is controlled by their membrane

potential. Currents elicited by mechanical force applied

on these cells are proportional in magnitude with basilar

membrane displacements but the phase may differ from

that of the basilar membrane.

3. The multiple degrees of freedom in the vibration of the

cochlear partition optimizes the phase of OHC feedback

force so as to counter viscous drag.

4. The dominant viscous drag in the OHC feedback loop

occurs between the tectorial membrane and the reticular

lamina (gap drag).

The justifications for and implications of these assump-

tions are discussed later in a section on cochlear mechanics.

The model

The assumptions that we made are now used to construct

a minimal set of equations that describes an outer hair cell

feedback loop in vivo.

Let us start with membrane currents. The outer hair cell

membrane is exposed to two media, endolymph and peri-

lymph, which differ in their electrolyte compositions as well

as in their electric potential (Fig. 1 A). The total mem-

brane current consists of a mechanotransducer current at

the apical membrane, which is exposed to potassium-rich

endolymph at the endocochlear potential eec, potassium cur-

rents at the basolateral membrane with the reversal potential

eK, and current due to transferring motor charge (Fig. 1 B).

The membrane potential Vm satisfies

Cm

dVm

dt
¼ðPhbghb þ a1Phb9 ghbXÞðeec � VmÞ

þ ðeK � VmÞPgK � a2f
dX

dt
: (1)

Here, the hair bundle conductance is represented by the

product of the maximum hair bundle conductance ghb and

the (resting) open probability Phb of the transducer channels

in the hair bundle. P9
hb is the derivative of this open

probability with respect to X, the displacement of the basilar
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membrane. gK is the maximum basolateral potassium

conductance and P is the open probability of the potassium

channel. f is a piezoelectric coefficient for the outer hair cell

motor. Piezoelectric current at the lateral wall is proportional

to the rate of length changes of the cell (Dong et al., 2002)

and thus is proportional to the velocity of basilar membrane

motion. To optimize phase relationships later on, we

introduce adjustable phase factors an with n ¼ 1, 2, . . .,
which are complex numbers with an absolute value of unity,

i.e., janj ¼ 1.

The displacement of the basilar membrane follows the

equation,

m
d2X

dt2
¼ �mv2

0X þ Fþ Fint (2)

because drag on the basilar membrane is not important (see

section on cochlear mechanics). Here m is the mass that

moves together with a local section of the basilar membrane,

v0 the natural resonance frequency of the basilar membrane,

and F the force applied to the basilar membrane by fluid

pressure due to acoustic stimulation (Fig. 1 C).

Fint represents interaction terms with other degrees of

freedom or other modes of motion. In a steady state, energy

loss due to gap drag is balanced by energy supplied by outer

hair cells. Since we assume that the amplitude of basilar

membrane motion is the same as the amplitude of gap shear,

this energy balance can be translated into force balance if

force that is produced by outer hair cells is utilized optimally.

This balance leads to the equation,

Fint ¼ a3 � ðVm � V0Þf� a1g
dX

dt
: (3)

Here (Vm – V0)f is the force applied by the outer hair cell

due to electromotility. The coefficient f in the equation is the

same as in Eq. 1 because of the piezoelectric reciprocal

relationship (Assumption 2) (Dong et al., 2002). The second

term is gap drag. As we will discuss later, the boundary-layer

thickness is always larger than the gap. Thus, gap drag is

proportional to the drag coefficient g and to velocity, which

is in turn proportional to frequency (Batchelor, 1967; Allen,

1980; Nobili and Mammano, 1993).

What results is a one-degree-of-freedom description of

basilar membrane vibration in which gap drag directly damps

its oscillation (Fig. 1 C), analogous to a one-dimensional

rendering (Kanis and de Boer, 1993) of a two-mass system

(Neely and Kim, 1986). For example, it can be shown in

a two-mass system that condition (Assumption 3) is realized

when the ratio of drag force to coupling spring force is small.

The argument of a1 then becomes constrained to near zero

by the requirement that gap drag in Eq. 3 functions as

a damping factor on basilar membrane vibration.

Gap drag �gdX/dt can be nullified by the effect of hair

cell feedback force if their phases oppose whereas the mag-

nitudes of the two terms agree. That is,

a1g
dX

dt
¼ a3 � ðVm � V0Þf: (4)

For convenience, we call this ‘‘Gold’s condition,’’ which he

proposed in his pioneering work (Gold, 1948).

Inasmuch as we are interested in finding the frequency

limit of the system, we assume that it is driven by a small

FIGURE 1 The outer hair cell modeled as a capacitor containing

a piezoelectric material which responds with mechanical force to voltage

across its cell membrane. (A) Electromechanical feedback loop incorporat-

ing the outer hair cell (OHC). The OHC apical surface is a part of the

reticular lamina (RL) and has three rows of stereocilia. The tips of the tallest

stereocilia maintain firm contact with the tectorial membrane (TM). Its

apical surface is bathed in endolymph, high in Kþ and maintained at the

endocochlear potential of ;þ80 mV. The OHC itself is also high in Kþwith

a resting potential of approximately �70 mV. Its basolateral membrane is

bathed in perilymph, low in Kþ and at 0 mV potential. Acoustic stimulation

displaces the basilar membrane (BM), which is described by the variable X.

Displacement of the BM brings about shear motion between the RL and TM

of the same order of magnitude. This shearing stimulates mechanotrans-

duction channels in the stereocilia, producing the receptor potential Vm.

OHC force (Vm�V0)f counteracts viscous drag �gdX/dt. We ignore direct

drag on the basilar membrane itself inasmuch as the major drag originates in

the gap between the RL and TM which is mechanically coupled to BM

oscillation. This feedback loop consists of an electric part, which is

described in more detail in (B), and a mechanical part, which is described in

(C). (B) The electrical part of our model based on Eq. 1. Four currents charge

and discharge outer hair cell capacitance Cm. Standing current comes in

through the transduction channels Phb ghb and goes out through the cell’s Kþ

conductance PgK
, establishing a voltage operating point near �70 mV. A

small voltage oscillation about that point is affected by mechanically

oscillating the hair bundle conductance Phb9 ghbx. The quantity f(dX/dt) is

the small current necessary to operate the motors and a1 and a2 represent

phases. (C) The mechanical part of our model based on Eqs. 2 and 3 in

which gap drag force�a1gvx is coupled through an interaction force Fint to

the basilar membrane which is modeled as a simple harmonic oscillator. The

oscillator consists of local BM mass m coupled to a local spring k. We

ignore the smaller direct BM drag. This oscillator is driven by a voltage-

dependent motor force (Vm�V0)f. Our optimized phase approximation

states that the phases a1 and a3 provided by cochlear mechanics optimize

OHC feedback force so as to counteract viscous resistance dominated by gap

drag.
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acoustic stimulation at frequency v, and then solve for the

steady-state solution. Thus we put,

F ¼ a5 f exp½ivt�; (5)

Vm ¼ V0 þ y exp½ivt�; (6)

X ¼ a4x exp½ivt�; (7)

where the quantities expressed by lower case symbols are

small.

To proceed we need to know values for the parameters.

We show the best estimates for these parameters in Tables 1

and 2. In the following, we examine the first-order terms with

respect to these small quantities. Eq. 1 provides a relationship

between y and x,

y ¼ a4x
a1Phb9 ghb � ðeec � V0Þ � ia2fv

YðvÞ ; (8)

with the membrane admittance

YðvÞ ¼ ivCm þ Phbghb þ PgK: (9)

Numerical examination shows that the second term ia2fv

in the numerator of Eq. 8 can be ignored because it is much

smaller than the first term (see Piezoelectric Resonance

discussion). Next, we substitute for y from Eq. 8 into Gold’s

condition (Eq. 4) so that it reads

fPhb9 ghb � ðeec � V0Þ
jYðvÞj ¼ gv; (10)

where the phase parameters have been adjusted so that OHC

force opposes the drag.

CAPACITANCE AND DRAG SET
THE LIMITING FREQUENCY

Eq. 10 shows that we need to know the admittance Y(v) of

the cell membrane to determine the frequency that satisfies

Gold’s condition. The admittance Y(v) consists of a cap-

acitive part, which is proportional to the frequency, and

a conductive part.

Let us examine the relative importance of the capacitive

current in apical and basal hair cells. If the apical hair cell

characterized in Tables 1 and 2 would operate at 100 Hz then

its capacitive admittance is 28 nS, about an order-of-mag-

nitude larger than its ionic conductance. A basal cell that

operates at 10 kHz has a capacitive admittance of ;1 mS,

also about an order-of-magnitude larger than the cell’s ionic

conductance, which is much larger than that of apical cells.

Thus, both apical and basal cells are dominated by capacitive

admittance (jY(v)j � vCm).

Gold’s condition Eq. 10 becomes

v2 � fPhb9 ghb � ðeec � V0Þ
gCm

; (11)

which gives the frequency limit, above which the efficiency

of the outer hair cell as a cochlear amplifier sharply declines.

This limiting frequency does depend on the capacitance as

expected but not directly on the RC.

To obtain the frequency limit, viscous drag needs to be

evaluated. Periodic motion in a fluid is characterized by

a viscous boundary layer, which is defined by (Batchelor,

1967)

d ¼
ffiffiffiffiffi
2n

v

r
: (12)

Here n is the kinematic viscosity of the fluid, which is the

viscosity h divided by the density r. For length scales

smaller than d, corresponding to a Reynolds number less

than one, drag force predominates over inertial force

(Freeman and Weiss, 1988).

The thickness of the boundary layer d is ;48 mm at 100

Hz and 5 mm at 10 kHz with the value 0.72 3 10�3 Pa Æ s for

TABLE 1 Location-insensitive parameters

Parameter Value

eec 80 mV*

eK �100 mVy

V0 �70 mVz

f 0.1 nN/mV§

*Békésy (1952); Basal turn more positive than apical turn by ;20 mV (Salt

et al., 1989).
yThe Nernst potential with 140 mM Kþ inside and 2.7 mM Kþ outside the

cell.
zCody and Russell (1987).
§Iwasa and Adachi (1997).

TABLE 2 Location-sensitive parameters

Apical Basal

Cm 45 pF* 15 pF*

gK 2 nSy 50 nS* 100 nS§

ghb 0.8 nSz 28 nS{

Phb9 ghb 0.03 nS/nm 1 nS/nmk

g 0.3 3 10�7 Ns/m 1.4 3 10�7 Ns/m**

*Housley and Ashmore (1992)
yMammano and Ashmore (1996)
zAssumes that the equilibrium current through gK driven by V0 � eK �
30 mV equals the current through half open ghb, driven by eec � V0 �
150 mV.
§Russell et al. (1986a)
{The largest observed 9.2 nS hair bundle conductance in perilymph (Kros

et al., 1992) multiplied by 3 to account for increased conductance in low

Caþ2 endolymph (Kros, 1996).
kObtained by multiplying the steepest slope for hair bundle open probability

(25 nm)�1 (Russell et al., 1986b) by the highest estimate for hair bundle

conductance ghb � 28 nS (Kros, 1996; Kros et al., 1992). We have assumed

a 1:1 ratio between hair bundle displacement and basilar membrane dis-

placement (see cochlear mechanics discussion).

**Per outer hair cell values for the viscous drag of the gap between the

tectorial membrane and reticular lamina (see text after Eq. 11).
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the viscosity of perilymphatic fluid (Dahl and Kleinfeldt,

1976). The gap between the tectorial membrane and the

reticular lamina should be about the same as the length of the

stereocilia, which is ;5 mm at the cochlear apex (100 Hz)

and 1 mm near the base (10 kHz) (Lim, 1980). The gap ap-

pears to be always shorter than the boundary layer (Freeman

and Weiss, 1988). Thus we can evaluate its drag by the for-

mula hSU/d, where S is the area of one of the confining

plates, d is the gap, and U is the relative velocity of the two

plates (Batchelor, 1967).

For apical cells, the the gap is ;5 mm. One of the two

confining plates is 60 mm long by 10 mm wide for a single

row of three outer hair cells and one inner hair cell. Shear

drag within this gap is shared by three outer hair cells so that

the drag per OHC is equivalent to the Stokes drag on a sphere

4 mm in diameter. The resulting frequency limit is ;3 kHz,

much higher than cell’s operating frequency of 100 Hz,

which is yet higher than its RC corner frequency of ;10 Hz.

This means that apical hair cells are capable of generating

more active force than Gold’s condition requires. In addition,

the RC corner frequency does not directly limit their

performance.

For basal hair cells, however, capacitive current and gap

drag do impose an upper limit. Although the area per outer

hair cell is about the same as apical turns, the gap d is ;1 mm

for the basal turn. Thus viscous drag is equivalent to a Stokes

sphere 21 mm in diameter. Then our set of parameter values

for basal hair cells, which could be regarded as somewhat

favorable, leads to a limiting frequency of 13 kHz. Although

this frequency is much higher than the RC corner frequency

of 1 kHz, it is also much lower than 40 kHz, the upper limit

of the auditory range for guinea pigs.

The so-called RC time constant problem is not relevant

when outer hair cells are integrated into the cochlea where

slope hair bundle conductance dominates the charging of the

cell. Whereas the cell’s capacitance Cm is an important

factor, the membrane resistance (or conductance) enters only

indirectly. Instead, the factors important for the characteristic

frequency are the sensitivity of hair bundle current to basilar

membrane displacement, a piezoelectric parameter of the

motor, and the viscous drag. Our analysis thus predicts that

electromotility is sufficiently effective except for the basal

turn, where the characteristic frequency is between 7 and 40

kHz. To operate at the high frequency end of the basal turn,

outer hair cells appear to require a mechanism in addition to

electromotility.

EFFECT OF LARGE NONLINEAR CURRENTS

Are there any ways of reducing the capacitive current, which

increases with frequency, to control the magnitude of the

admittance Y(v)?

If ion currents are linear (Ohmic), the ionic conductance

increases the absolute value jY(v)j of the admittance

function because the phases of the capacitive and conductive

components are perpendicular in the complex plane and no

destructive interference is possible.

However, if ion currents have voltage-dependent kinetics,

leading to delayed openings, then the phases of the ionic and

capacitive currents can be opposed and, consequently, de-

structive interference can take place. Such destructive inter-

ference can reduce the admittance, raising the frequency limit.

In the following, a couple of simple limiting examples are

examined.

Two-state channel

Let us consider that a short OHC contains a voltage-

dependent potassium channel that has one open state and

one closed state. Gating of this channel is represented

schematically,

1�P
ðclosedÞ

 ����!kþ
k�

P
ðopenÞ

;

where kþ and k� are transition rates. The probability that this

channel is open at time t after the membrane potential is

clamped to Vm follows a Hodgkin-Huxley type differential

equation,

dPðVm; tÞ
dt

¼ ðP‘ðVmÞ � PðVm; tÞÞ=t; (13)

where the relaxation time of the channel is given by t ¼
1/(kþ þ k�). P‘(Vm) is the equilibrium open probability at

membrane potential Vm.

Corresponding to an oscillating membrane potential Vm

(¼V0 þ y exp[ivt]), the open probability P of the channel is

divided into a steady-state component and an oscillating

component,

PðVm; tÞ ¼ P‘ðV0Þ þ p exp½ivt�: (14)

By substituting Eqs. 14 and 6 into Eq. 13, we obtain

p ¼ P‘9 y

ivt þ 1
: (15)

This term contains both a real part, which is in phase with the

voltage, and an imaginary part, which lags behind the volt-

age. P‘9 is the voltage derivative of P‘(V0).

By substituting Eq. 15 into Eq. 9, we find that the square

of the absolute value of the admittance is

jYðvÞj2 ¼ v2 Cm �
tgg

1þ ðvtÞ2
� �2

þ Phbghb þ P‘ðV0ÞgK þ
gg

1þ ðvtÞ2
� �2

; (16)

where gg is the slope conductance of the potassium channel

due only to its gating,

gg ¼ gKP‘9 ðV0 � eKÞ: (17)
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Eq. 16 shows that the nonlinear current reduces the

effective capacitive current, but also increases conductive

current. Because the channel time constant can be chosen so

that its effect on capacitive current is greater (vt . 1), the

net result is a decrease of the magnitude of the admittance.

With this mechanism, the magnitude of the admittance can

be reduced by a factor of two and extend the frequency limit

up to twofold (Fig. 2 C).

From Eq. 16, we can obtain a two-state channel’s

equivalent inductance under a special condition. If vt is

large, the imaginary part of a two-state channel’s admittance

is gg/(vt). Comparison with the 1/(vL) of an inductor

provides that L ¼ t/gg. The corresponding resonance

frequency is ðLCmÞ�1=2; implying that L must be small to

operate at high frequencies. This means that gg must be large

and t must be small. How does this inductance compare with

known values of other cells? The squid giant axon, with slow

potassium channels at a relatively low density, has a specific

inductance of 0.2 H cm2 (Cole, 1968). Applying the specific

inductance of the squid to a short OHC with a surface area

of ;800 mm2, we obtain ;2.5 3 104 H. Given the cell’s

capacitance this is several-orders-of-magnitude too large to

support resonance above 10 kHz. To estimate the inductance

of OHC, substitute into L ¼ t/gg channel parameters which

are appropriate to a short base coil OHC: (V0� eK)¼ 30 mV,

gK ¼ 100 nS, P‘9 ¼ 0:1=mV for a voltage sensitivity s ¼
3 mV, and t ¼ 50 ms. This leads to an inductance of 130 H.

Although a two-state channel is not very effective in

elevating the operating frequency, the channel does not have

to be particularly fast compared to this operating frequency

and its time constant does not have to be narrowly tuned.

Channels with more complex gating

In the following, we examine gating kinetics that are more

favorable for sustaining a very high frequency electrical

oscillation. One prominent difference between inductive

current and current due to a two-state channel is in their

instantaneous response to a voltage pulse. Whereas two-state

channel current has a component that instantaneously

increases on a voltage jump, inductive current does not

FIGURE 2 Comparison of two-state and multi-state

voltage-gated Kþ channels in their ability to reduce OHC

admittance and raise operating frequency. (A) Free energy

profile of a two-state channel (2SC) and that of

a hypothetical four-state channel (4SC). A positive jump

in the membrane potential elicits an increase in the open

probability of the 2SC with an exponential time course.

For the illustrated 4SC, the immediate response is

a transition from O3 to C2 on depolarization. This is

followed by an increase of the O4 population at the

expense of the C1 population. Thus, an initial closing

response is followed by an opening upon depolarization,

creating a delayed outward current. (B) Four currents

elicited by a square voltage pulse: RES, resistive current;

2SC, a simple two-state, voltage-gated Kþ channel; 4SC,

a four-state, voltage-gated Kþ channel; and IND, a perfect

inductor in series with a small resistor. The 2SC has

a resistive current component due to the channel being

partly open at rest. The 4SC first passes current inwardly,

effectively reducing the cell’s real conductance, before its

current turns outward. Thus it mimics an inductive current

much better than a 2SC. (C) Performance of a 2SC current

in reducing OHC admittance. Contour plot of the

admittance Y against conductance gg and the channel’s

gating rate constant 1/t Æ gg is the slope conductance of the

Kþ channel due only to its gating. The Ohmic conductance

of the cell at its operating point includes the dominant

basolateral Kþ conductance along with hair bundle

conductance. v is the angular frequency. The frequency

limit at which the OHC is able to counteract drag is

inversely proportional to its admittance. (D) example

showing the performance of a 4SC current in reducing

OHC admittance. Along the 0.1 contour, virtually all

capacitive admittance is eliminated. The 4SC contains an

additional fast off current (negative conductance) which

eliminates the conductance terms while leaving the slower

‘‘inductance’’ term in Eq. 16 virtually undisturbed.
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(Fig. 2 B). This feature can be mimicked by ion channels

with multiple states.

Let us consider a four-state potassium channel with two

closed states, c1 and c2, and two open states, o3 and o4 (Fig.

2 A). Suppose the energy levels c1 and o3 go up and c2 and

o4 go down on depolarization. Then, on depolarization, the

open probability of the channel can quickly decrease before

its increasing with a delay (Fig. 2 B). A current through this

four-state channel considerably improves the high-frequency

performance of short outer hair cells (Fig. 2 D).

The more effective reduction of admittance by a four-state

channel can be understood as reduction of the conductance

term P‘(V0)gk by initial early negative conductance due to

a fast gating process. The minimum of the admittance ratio is

very low. In an example shown in Fig. 2 D, it is lower than

0.001. Because the limiting frequency v and the admittance

are related by Eq. 10, this means that the frequency limit can

exceed 100 kHz, high enough to make outer hair cells

effective as an amplifier in the auditory range of all mammals

even including bats provided that the motor is fast enough to

be able to phase-lock to the membrane potential.

A mechanism similar to this multiple-state channel is

known in hair cells of the turtle and the frog (Crawford and

Fettiplace, 1981; Hudspeth and Lewis, 1988). In these cells,

a combination of two currents produce a phase delay.

Voltage-gated calcium channels are colocalized with

calcium-gated, large conductance potassium channels (Rob-

erts et al., 1990). Upon depolarization, an inward current due

to Ca2þ is activated at first, but as Ca2þ accumulates inside

the cell the Ca2þ-gated potassium channel is activated,

eliciting an outward current. Eventually potassium current

dominates, reversing the direction of the total current. This

mechanism would be advantageous for hair cells of the frog

and the turtle because these cells operate at relatively low

frequencies (�100 Hz). We speculate that this mechanism

may not be suitable above 10 kHz because it is dependent on

Ca2þ binding/unbinding kinetics, diffusion, and buffering.

TRANSFER FUNCTION NEAR
RESONATING POINT

To determine the frequency limit, we have analyzed our

basic Eqs. 1 and 2 by linear expansion. Then we imposed

Gold’s condition (Eq. 4) that viscous drag is counteracted by

force produced by hair cells. For this purpose, we used the

maximum value for displacement-to-conductance sensitivity

of the hair bundle.

The dominant nonlinearity of the system is the displace-

ment-to-conductance transfer function of the hair bundle. In

our linearized treatment, it was expanded to the first-order

term (Eq. 11), giving rise to Phb9 ghb; where Phb9 was con-

sidered constant. We now assume that the transfer function

Phb is not a constant but a Boltzmann function of basilar

membrane displacement X and return to Eqs. 1 and 2. We

first solve these equations numerically. Then we analytically

show that our system is poised on a Hopf bifurcation when

Gold’s condition is met.

When Gold’s condition is satisfied, i.e., the drag is exactly

canceled by the membrane motor force, the basilar mem-

brane’s force-to-displacement transfer function take the shape

of a cube-root (Fig. 3, A and B). As we show below, such

behavior is a generic property of a Hopf bifurcation,

a dynamical instability which occurs when a feedback os-

cillator has sufficient positive feedback so that it begins

to ‘‘ring’’ spontaneously at small amplitude (Eguı́luz et al.,

2000).

In the following we show the cube-root dependence of the

basilar membrane’s transfer function. First consider a simple

harmonic oscillator, which is described by

ðmv2
0 � mv2 þ igvÞx ¼ F: (18)

Here the oscillator with mass m is subjected to drag, which is

characterized by a drag coefficient g, and driven by periodic

external force F having frequency v. If the frequency of

driving force is the same as the resonance frequency v0 of

the oscillator, F ¼ igv0x. Thus, the phase of the external

force F must match that of the velocity iv0x.

We apply a similar argument to match phases in our model

and obtain,

i gv� fP9
hbghb � ðeec � V0Þ

vCm

� �
a4x ¼ a5 f ; (19)

FIGURE 3 Simulation of our model’s performance at high frequency (9.2

kHz) when it includes a two-state, large, fast, voltage-dependent Kþ

conductance, placing the system very near to a Hopf bifurcation. By

reducing the voltage-dependence of this conductance, the same system

shows low-gain, linear performance. (A) BM amplitude plotted against

external forcing. The system shows a compressive nonlinearity in its transfer

function when it is poised on a Hopf bifurcation, and linear behavior when

poised well below the bifurcation by turning off the voltage sensitivity of the

Kþ current. (B) Log–log re-plot of (A). The slope near the zero-crossing is
1=3, the dependence expected for a system poised on a Hopf bifurcation.

Because the simulation cannot be poised exactly at the bifurcation, there is

a small-amplitude forcing region with a linear transfer function. When the

voltage-dependence of the fast Kþ conductance is absent, the model meets

Gold’s condition, or poises on a Hopf bifurcation, at 6.2 kHz. Increasing the

voltage-sensitivity of the fast Kþ conductance raised the frequency limit to

9.2 kHz (The channel’s gating time constant is 30 ms. Its voltage sensitivity s

of e-fold current increase was changed from 100 to 2 mV).
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from Eqs. 1, 2, 5, and 7. Now with Gold’s condition, the left

side vanishes if Phb9 is treated as a constant. However,

whereas Phb is in fact a Boltzmann function (Russell et al.,

1986b), its higher order terms will become important,

Phb9 ðxÞ ¼
ae�ax

ð1þ e�axÞ2
; (20)

where a is a constant. If this is expanded near its peak

(x ¼ 0), we obtain

Phb9 ðxÞ ¼
a

4
� a3

8

x2

2
þ . . . (21)

Because Gold’s condition drops the first (constant) term

together with the drag, the second term in Eq. 21 dominates

the left side of Eq. 19. Thus x3 is proportional to external

forcing f and we obtain the cube-root dependence of the

transfer function expected for a system poised on a Hopf

bifurcation.

Our analysis demonstrates that on resonance our model,

with or without fast potassium conductance, has a cube-root

shaped force-to-basilar membrane displacement transfer

function (Ruggero, 1992). This result is due to the saturating

nonlinearity in the feedback loop, which is described by

a Boltzmann function. Without fast potassium conductance

the main source of nonlinearity is in the hair bundle’s

mechanical sensitivity.

DISCUSSION

Fast-activating currents

Our theory predicts that voltage-dependent, large, fast

currents should be present in outer hair cells that operate at

frequencies above ;13 kHz. These currents are unnecessary

in hair cells that operate at lower frequencies. According to

the frequency-location map (Greenwood, 1990), above 7

kHz corresponds to the base turn of the guinea pig cochlea.

Further we predict that the effectiveness of these currents

will critically depend on their detailed time courses of

activation.

In the literature, there are two kinds of reports on ionic

currents in basal outer hair cells. One of them uses whole-cell

voltage clamp on isolated outer hair cells. Current records

were obtained from an outer hair cell, isolated from the basal

turn with enzyme digestion (Housley and Ashmore, 1992).

The length of the cell is 22 mm. Its conductance is ;50 nS

and weakly nonlinear. The other is an in situ current clamp

experiment (Russell et al., 1986a). The resting conductance

is ;100 nS and has a very strong outward rectification

(e-fold conductance increase for s ¼ 3 mV), which would be

consistent with our prediction. These two kinds of reports

have been recognized as inconsistent (Kros, 1996). More

recently, fast potassium currents have been found in isolated

inner hair cells (Kros et al., 1998) making the absence of fast

channels in isolated outer hair cells all the more counterin-

tuitive and puzzling. As Kros has emphasized in his review,

cell properties could be significantly altered by the isolation

process, so that it is likely that the in situ data (Russell et al.,

1986a) better reflects the in vivo condition.

To resolve this problem, we are currently examining outer

hair cells for fast activating currents. Our preliminary results

indicate that short outer hair cells from the basal turn do in

fact have fast-activating, outwardly-rectifying currents. The

conductance we have observed is large (.100 nS) and it

activates in much less than 1 ms at 228C (Ospeck et al.,

2002). These fast-activating currents are absent in outer hair

cells from more apical turns. Although those apical outer hair

cells do have outwardly-rectifying currents, their activation

times are greater than 10 ms (Mammano and Ashmore,

1996), much too slow to counteract capacitive current.

Cochlear mechanics

The local resonance model that we propose is based on four

assumptions. Here, we briefly discuss issues in cochlear

mechanics related to these assumptions.

The significance of local resonance

It has been shown that local resonance is an essential element

of the mechanics of the cochlea (Huxley, 1969; Patuzzi,

1996). However, unlike a harmonic oscillator’s classical

resonance peak, the ear’s resonant spectral shape is not

symmetric with respect to a specific location’s characteristic

frequency but shows a steep high-frequency cutoff instead.

The reason for the asymmetry is due to wave propagation

which starts at the cochlea’s high-frequency end. Cochlear

traveling waves slow down considerably although growing

in amplitude as they approach their respective resonance

points and then diminish rapidly as they pass the resonance

point (Zweig, 1976; Lighthill, 1981). Wave energy is ab-

sorbed at the resonance so that the cochlea behaves like a

wave-guide with a high frequency cutoff.

Shear flow in the gap and basilar membrane displacement

The shearing motion of the fluid between the tectorial

membrane and the reticular lamina is indispensable to the ear

because the stereocilia of the inner hair cell is driven by this

shear flow (Freeman and Weiss, 1988). We have already

discussed how to evaluate the drag due to shear motion

within the gap, assuming a 1:1 ratio of basilar membrane

displacement to the shear (Table 2; Assumption 1). In the

following we discuss the basis for this ratio.

In a system with multiple degrees of freedom, the

amplitude of one mode of motion does not necessarily

determine the amplitude of another mode. However, the

amplitude of basilar membrane displacement and neural

output have a tight correlation (Ruggero, 1992). Also the

relative movement of the plates that form the gap is the same
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as the deflection of the OHC hair bundle. We estimate a 1:1

ratio of hair bundle displacement to displacement of the

basilar membrane based on the following comparison: The

bundle is gated from full closed to full open by a deflection

of only 80 nm (Russell et al., 1986a). The transfer function

for the basilar membrane undergoes a transition from

a compressively nonlinear regime to a linear one for ;100

nm peak-to-peak oscillations (Johnstone et al., 1986;

Ruggero, 1992). Loss of compressive nonlinearity indicates

that the amplifier is being turned off, which should ap-

proximately coincide with the hair bundle oscillating between

its full closed and full open states—hence the ratio of hair

bundle deflection to basilar membrane displacement should

be ;1:1.

Significance of gap drag

We assumed that gap drag is the dominant component of the

drag in the cochlea and has significant effects on its vibration

(Assumption 4). We will briefly discuss the validity of this

assumption.

It has been experimentally observed that the Q factor in

the base coil is sensitive to the ear’s condition—Q is greatly

diminished when the ear dies (see Patuzzi and Robertson,

1988, for review). Sensitivity also decreases reversibly near

the characteristic frequency when the endocochlear potential

is eliminated by furosemide (Ruggero and Rich, 1991). This

reduction in the sensitivity is accompanied by phase lag of

;778. These experimental observations can be understood

that drag is indeed important in the basal turn of the cochlea.

To reduce gap drag by an active mechanism, more force is

required in the basal turn than in the more apical turns

because Eq. 2 indicates increased drag force at higher

frequencies.

In addition to the gap itself, the stereocilia of inner and

outer hair cells can contribute to drag. Of the two, we can

ignore drag on the stereocilia of outer hair cells. Because the

tips of stereocilia of outer hair cells are embedded in the

tectorial membrane, these stereocilia are bent at their roots by

shear motion of the gap d. The velocity field of the fluid is

linear because the gap is smaller than the thickness of the

boundary layer d. Thus, the relative motion between the fluid

and the stereocilia of outer hair cells is too small to result in

significant drag. The hair bundles of inner hair cells may be

a more important factor. Because they are freestanding, they

bend depending on the balance between drag and bending

stiffness. The upper bound of hair bundle drag can be

evaluated by using an equivalent cylinder of 10 mm diameter

in a shear field (Freeman and Weiss, 1988). Our estimates

show that hair bundle drag of an inner hair cell is ;10% of

gap drag for apical cells and only ;0.5% for basal cells.

Drag that works on the basilar membrane has been

modeled. The model indicates that basilar membrane drag is

too small to affect cochlear mechanics significantly (Keller

and Neu, 1985).

Another important source of drag is the interior of the

organ of Corti. This drag is very difficult to evaluate because

detailed information on the mode of deformation of the organ

is required. We can provide only a crude estimate. Assume

that a quarter wavelength near the resonance point is of the

cellular dimension of ;10 mm (Zweig, 1976) (according to

a recent experimental report (Ren, 2002), the wavelength is

;150 mm) and that basilar membrane vibration accompanies

changes in thickness of the organ of Corti. Because organ of

Corti is filled with fluid, changes in its thickness elicit fluid

flow, resulting in drag due to exposed cells. For the sake of

order estimation, we further assume that the amplitude of

thickness change is the same as the amplitude of basilar

membrane vibration and that the depth of the fluid space in

the organ is the same as the length of the outer hair cell. The

resulting drag per outer hair cell is dependent on the

wavelength, the fluid viscosity, and the velocity of basilar

membrane. The ratio of internal drag evaluated in this way to

gap drag per outer hair cell is 3d/d, which is ;0.6 for the

basal turn. Thus, this term can reduce the limiting frequency

from 13 kHz to 10 kHz. In more apical turns, this correction

is less significant.

Our crude estimate appears reasonable from an evolu-

tionary view point. The highly organized organ of Corti is

a mammalian innovation that is associated with extending

the hearing range into higher frequencies. Thus the structure

of the organ of Corti likely minimizes its internal drag so as

not to overwhelm gap drag, which is indispensable for the

ear to function.

Piezoelectric resonance

The motile mechanism of outer hair cells is based on highly

effective and nonlinear piezoelectricity. In this sense, the

mechanism that we propose can be called piezoelectric

resonance (Mountain and Hubbard, 1994). However, it is not

‘‘pure’’ piezoelectric resonance that is based upon an in-

ductance in the equivalent circuits of piezoelectric elements

(Ikeda, 1990). A combination of capacitance and inductance

forms a resonating circuit, which can overcome the low pass

RC filter in sustaining electric oscillation at frequencies

higher than the RC roll-off frequency. However, our high-

frequency analysis requires that hair cells function simply as

an efficient motor and ionic currents function as the inductive

element. Why doesn’t the system behave as a much simpler

piezoelectric resonator?

In our treatment presented above, we ignored the

piezoelectric reciprocal effect term in Eq. 8 because for

basal OHC parameter values at 10 kHz it is more than an

order-of-magnitude smaller than the hair bundle conductance

term. If instead we ignore the hair bundle term in favor of this

reciprocal effect fv due to the motor, we obtain

v � f
2

gCm

; (22)

Limiting Frequency of Electromotility 747

Biophysical Journal 84(2) 739–749



instead of Eq. 11. Eq. 22 obviously represents the

piezoelectric resonance frequency, which is only ;750 Hz

for our basal OHC parameter values. Should the piezoelec-

tric coefficient f be made larger by a factor of four without

significantly increasing cell capacitance, then the reciprocal

effect of the motor would be important at 10 kHz. However,

in order for piezoelectric resonance to prove useful for the

ear of bats, which typically have thresholds below 0 dB SPL

at 80 kHz (Kössl and Vater, 1995), a prohibitively large

piezoelectric coefficient f would be required.

CONCLUSIONS

We propose an ‘‘optimized phase’’ approximation to

characterize the outer hair cell feedback loops near to a local

resonance inside the mammalian cochlea. This approxima-

tion provides the optimal condition for those hair cell’s

somatic electromotility to counteract viscous drag so as to

establish a low loss, or high Q resonance. When we include

the transduction channel’s saturating nonlinearity in our

model we can reproduce the compressive nonlinearity of the

mammalian ear’s transfer function. Such a nonlinearity is

due to the outer hair cell feedback loop being poised on

a Hopf bifurcation.

Our estimate of the upper frequency limit at which

electromotility is effective for the mammalian ear is between

10 and 13 kHz. Outer hair cells, except those in the basal

turn, should not need any additional mechanism that

enhances the effect of electromotility. Those in the basal

turn can have their frequency limit raised severalfold if

electromotility is aided by fast, voltage-gated ion channels,

which mimic inductance. We predict that such ‘‘inductive’’

channels are present in outer hair cells of the basal turn of the

cochlea.
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