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Multiplexed-Replica Exchange Molecular Dynamics Method for Protein
Folding Simulation

Young Min Rhee and Vijay S. Pande
Department of Chemistry, Stanford University, Stanford California 94305-5080

ABSTRACT Simulating protein folding thermodynamics starting purely from a protein sequence is a grand challenge of
computational biology. Here, we present an algorithm to calculate a canonical distribution from molecular dynamics simulation
of protein folding. This algorithm is based on the replica exchange method where the kinetic trapping problem is overcome by
exchanging noninteracting replicas simulated at different temperatures. Our algorithm uses multiplexed-replicas with a number
of independent molecular dynamics runs at each temperature. Exchanges of configurations between these multiplexed-replicas
are also tried, rendering the algorithm applicable to large-scale distributed computing (i.e., highly heterogeneous parallel
computers with processors having different computational power). We demonstrate the enhanced sampling of this algorithm by
simulating the folding thermodynamics of a 23 amino acid miniprotein. We show that better convergence is achieved compared
to constant temperature molecular dynamics simulation, with an efficient scaling to large number of computer processors.
Indeed, this enhanced sampling results in (to our knowledge) the first example of a replica exchange algorithm that samples
a folded structure starting from a completely unfolded state.

INTRODUCTION

In a molecular dynamics (MD) simulation study of

thermodynamics, a representative sampling over the entire

phase space is needed to obtain an accurate canonical

distribution at a given temperature. For large molecules such

as proteins, this sampling is usually difficult, especially at

physiological temperature, because molecules tend to be

trapped in a large number of local energy minima, which

slows the sampling of phase space.

Recently, a number of attempts have been made to

overcome this kinetic trapping problem (Berg and Neuhaus,

1991; Berg and Neuhaus, 1992; Hansmann, 1997; Hans-

mann and Okamoto, 1993; Hao and Scheraga, 1994;

Mitsutake et al., 2001; Nakajima et al., 1997; Torrie and

Valleau, 1977). One successful method is replica exchange

molecular dynamics (REMD). The replica exchange method

was developed first in the physics community to improve

sampling in glassy systems (Hukushima and Nemoto, 1996;

Shirakura and Matsubara, 1996), and has been recently

applied to an MD simulation of biomolecules by Sugita and

Okamoto (1999) and later by Garcı́a and co-workers (Garcı́a

and Sanbonmatsu, 2001; Sanbonmatsu and Garcı́a, 2002). In

this method, a number of simulations are performed at

different temperatures in parallel, and exchanges of config-

urations are tried periodically. Even if a trajectory is

temporarily trapped in a local minimum, the simulation

can escape from this minimum via an exchange with a higher

temperature configuration. With this method, one can obtain

various thermodynamic quantities as a function of temper-

ature for a wide temperature range from a single simulation

run. Moreover, because each replica can be simulated using

its own computer processor, the REMD method is well

suited for and very efficiently runs on parallel computers,

which have become ubiquitous in recent years.

However, there are two aspects to REMD that have

limited its ability to gain better thermodynamic sampling.

First, REMD can only be efficiently realized with a homo-

geneous parallel machine (or a homogeneous parallel cluster

of computers), where the performance of all processors is

comparable. Because an REMD calculation requires syn-

chronization between processors to facilitate the exchanges

between replicas, the slowest replica determines the overall

progress of the MD simulation and it becomes important to

use processors with the same speed. Therefore, REMD is not

suitable for a heterogeneous parallel system such as a large-

scale distributed computing (e.g., Folding@home (Shirts and

Pande, 2001b)). Second, the REMD method only scales

efficiently to tens of processors, inasmuch as each temper-

ature replica uses only one processor. One might be tempted

to efficiently scale to large processor clusters (and thus

achieve better sampling) simply by adding more replicas.

However, because efficient sampling requires diffusion in

temperature replica space (Sugita and Okamoto, 1999),

adding more temperature replicas means that the number of

swaps grows quadratically and that either longer simulations

are needed (which requires more CPU time) or exchanges

must be attempted more frequently (which typically requires

faster communication between processors). These limita-

tions are significant due to both the growing use of

heterogeneous clusters of PCs (either in worldwide distrib-

uted computing or smaller-scale calculations) as a computa-

tional platform for any scale of calculation, as well as the

great computational potential of thousands to millions of pro-

cessors that large-scale distributed computing may provide.

In this paper, we present our modified approach to the

REMD method. Multiple replicas are used for each

temperature level and exchanges between these replicas are
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also tried, eliminating the synchronization needed in the

original REMD method. This multiplexed-replica exchange

molecular dynamics (MREMD) method is tested with a small

model protein (BBA5) starting from a fully unfolded state.

With large-scale distributed computing, we have simulated

more than 200 microseconds of aggregate atomistic mo-

lecular dynamics simulation time, allowing our simulation to

reach the folded state of BBA5 starting from the unfolded

state (a first for REMD-based simulation). By comparing it

with a constant temperature simulation, it is shown that the

present method can achieve an appropriate sampling of the

configuration space in a shorter simulation time. We also

discuss the limitations of our method.

METHODS

Replica exchange molecular dynamics

Details of the REMD algorithm are described elsewhere (Sugita and

Okamoto, 1999). For completeness and comparisons to MREMD, we briefly

describe the REMD method. In REMD, regular MD runs are started from

a set of n independent configurations q0 ¼ fq1;0; q2;0; . . . ; qn;0g at cor-

responding temperatures fT1; T2; . . . ; Tng at time 0. After a certain amount

of integration time, a new set of configurations is obtained as

q1 ¼ fq1;1; q2;1; . . . ; qn;1g. At this time, an exchange of configurations

qi;1 and qj;1 is tried with a Metropolis criterion

Paccept ¼ min 1; exp � 1

kB

1

Tj

� 1

Ti

� �
Eðqi;1Þ � Eðqj;1Þ
� �� �� �

:

(1)

This acceptance probability ensures the detailed balance condition of the

overall Monte Carlo process. These simple two steps are repeated and an

average of a thermodynamic property A at temperature Tl is obtained from

an average

hAðqlÞi ¼ lim
N!‘

1

N þ 1
+
N

t¼0

Aðql;tÞ: (2)

This procedure can be considered as a Markov process with two

operators. Namely, if we define the MD operator M as one that generates the

result of MD simulation with the given time step, and swap operator S as

another that swaps two configurations with the above probability given in

Eq. 1, a thermodynamic property can be obtained with a Markov chain

ðq0; q1; . . . ; qt; . . .Þ determined with

qt ¼ ðSMÞtq0: (3)

In practice, exchanges between adjacent temperature levels are tried

(namely, j ¼ iþ 1 or j ¼ i� 1 in Eq. 1) to increase the acceptance ratio.

Also, a number of swaps (up to n/2) can be tried after each MD run.

Multiplexed-replica exchange molecular dynamics

Instead of using one replica for each temperature, we have multiplexed

the replica in each temperature by M-times. Accordingly, we have

Q0 ¼ fQ1;0; Q2;0; . . . ; Qn;0g for corresponding temperatures fT1; T2; . . . ;

Tng with

Qi;0 ¼ fq1
i;0; q2

i;0; . . . ; qM
i;0g ði ¼ 1; 2; . . . ; nÞ (4)

at time 0. To distinguish replicas within one temperature level from those

with different temperatures, let us denote them as multiplexed-replicas. In

other words, there are M multiplexed-replicas in each set Qi;t. We can extend

our definition of MD and swap operators such that they can act on Qt.

Now, let us suppose a rearrangement operator Ri, which rearranges the

multiplexed-replicas within the i-th temperature level in an arbitrary order.

Namely,

RiQi;t ¼ fqr1
i;t; qr2

i;t; . . . ; qrM
i;t g ði ¼ 1; 2; . . . ; nÞ; (5)

where fr1; r2; . . . ; rMg is an arbitrary rearrangement of f1; 2; . . . ; Mg.

Because Ri rearranges configurations within the same temperature, applying

it to the Monte Carlo process generates another Markov chain. Namely,

a Markov chain ðQ0; Q1; . . . ; Qt; . . .Þ determined with

Qt ¼ ðSRMÞtQ0 (6)

gives a correct thermodynamic property when averaged over all multi-

plexed-replicas:

hAðTlÞi ¼ lim
N!‘

1

N þ 1

1

M
+
N

t¼0

+
M

j¼1

Aðqj
l;tÞ: (7)

Here, R is a rearrangement operator over all temperature levels defined as

RQt ¼ fR1Q1;t; R2Q2;t; . . . ; RnQn;tg: (8)

This process is schematically illustrated in Fig. 1 together with the

original REMD. In MREMD, it can be considered that there are M

multiplexed-replica ‘‘layers,’’ each of which has n different temperature

levels. After each MD step, exchanges between replicas in different layers

are tried as well as exchanges between regular replicas in the same layer.

Even though any arbitrary rearrangement is acceptable mathematically,

we must be careful in practice in how we schedule simulations when using

a cluster with different processor speeds to achieve the greatest performance

of the cluster. In particular, the rearrangement of multiplexed-replicas is

conducted in such a way that the simulations in the multiplexed-replica

layers are scheduled to be completed from the top layer as simulations in

each temperature level are completed. The configuration completed first in

one temperature level is sent to the first layer, and following configurations

are sent to the next layers in the order of completion. This rearrangement

greatly enhances the efficiency of the method on heterogeneous clusters.

The efficiency enhancement arises from the following. Before an

exchange of configurations can be tried, there will always be some

processor idling time, the length of which is mainly determined by the nature

of the processors in the system. Namely, for any exchange pair, simulation

on the configuration completed earlier must wait until the second is

completed. In a regular REMD method, each configuration is paired to only

one other configuration. In MREMD method, on the other hand, any

configuration can be exchanged with M multiplexed-replicas. By rearrang-

ing multiplexed-replicas, it becomes possible to minimize the total idling

time. Also, the idling time becomes negligible compared to the total

simulation time if a large number of multiplexed-replicas are used.

Furthermore, we expect that the additional simulations used in the

multiplexing at each temperature level should also enhance sampling.

Consider M replicas running at the same temperature. Because folding of

FIGURE 1 Schematic illustrations of a REMD and b MREMD method

with five replicas. M ¼ 2 is used for MREMD for simplicity.
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small proteins generally follows single exponential kinetics, one can

efficiently speed the sampling of folding simulations by performing many

independent simulations. Indeed, we expect the fraction that fold in time t to

be f ðtÞ ¼ 1 � e�kt � kt, where k is the folding rate. From 1000 independent

simulations of a fast folding protein with k ; 1/5000 ns, we expect 1000

simulations 3 50 ns/5000 ns ¼ 10 simulations to fold. Thus, because

additional simulations can also aid the sampling and lead to the folded state,

the MREMD method takes advantage of both the multiple temperature

aspect of REMD as well as a large number of independent simulations to

considerably enhance sampling as compared to either method alone.

Computation

The method presented above was applied to the folding simulation of the

23-amino acid model protein BBA5 with the capped sequence Ace-

YRVPSYDFSRSDELAKLLRQHAG-NH2. BBA5 was modeled using the

OPLS united atom parameter set (Jorgensen and Tirado-Rives, 1988) and

Still’s GB/SA implicit solvent model (Qiu et al., 1997) in our modified

version of the TINKER molecular dynamics simulation package (http://

dasher.wustl.edu/tinker/) within Folding@home (Shirts and Pande, 2001b).

Langevin dynamics with Allen’s stochastic integrator (Allen, 1980; Allen

and Tildesley, 1987) was used to simulate the viscous drag of water (g ¼
91 ps�1) and bond lengths were constrained using RATTLE algorithm

(Andersen, 1983) allowing 2 fs of time step. For electrostatic calculations,

16 Å cutoffs and 12 Å tapers were employed. MREMD exchanges of

configurations were attempted every 1 ns and trajectories were integrated up

to 50 ns, leading to the total aggregate simulation time of 10 ms for each

temperature level. The simulation time between configuration exchanges is

relatively long compared to the one adopted by previous investigators

(Sanbonmatsu and Garcı́a, 2002; Zhou et al., 2001). The benefit of longer

times between exchanges is the possibility of greater decorrelation of the

simulations between exchange attempts. The principal disadvantage is that

we must use more closely spaced temperature levels to enable exchanges

with high acceptance ratios. To that end, we employed 20 exponentially

distributed temperatures between 250 and 500 K with 200 multiplexed-

replicas in each level. A fully extended structure with angles (’,  ) ¼
(�1358, 1358) for all amino acids was generated and then equilibrated with

100 ps of molecular dynamics step. This stabilized structure was used for all

4000 starting configurations. The simulation was performed on a supercluster

of processors distributed worldwide, with the total number of processors

scaling to tens of thousands (Shirts and Pande, 2001b).

Structural characterization of the BBA5 requires the native structure of

the peptide. For this purpose, an NMR structure was taken (Struthers et al.,

1998) and then stabilized by performing 10 steps of BFGS quasi-Newton

energy minimization (Fletcher, 1987) followed by 100 ps of molecular

dynamics simulation at 279 K. Secondary structure was determined using

the program DSSP (Kabsch and Sander, 1983) with the default hydrogen

bond cutoff parameter of 0.5 kcal/mol. a-helices were found by searching

for conformations containing at least four consecutive helical residues

according to this program. b-hairpins were found by searching b-bridges

between residues 2-7 and 3-6. To find conformations with correct tertiary

structure, the a-carbon root-mean-square distance (RMSDa) with respect

to the native structure was calculated using an efficient geometry align-

ment algorithm (Rhee, 2000). A conformation was declared to be folded

if it contained both the helix and the hairpin, and had RMSDa below

3.6 Å.

RESULTS AND DISCUSSION

Replica exchange diagnostics

Because the advantage of the MREMD method arises from

the exchanges of configurations between different temper-

atures, it is vital to use temperatures that allow a significant

number of such exchanges. Fig. 2 a shows the probability

distributions of potential energy at each temperature level

using configurations obtained after 10 ns of simulation time.

By discarding the initial 10-ns data for each replica, we

eliminated the unrealistic high energy populations caused by

the memory of the fully extended starting configuration.

From this figure we can see that any two distributions with

adjacent temperatures show a significant overlap. As a result,

a high fraction of exchange trials was accepted with the ratio

reaching up to 65% over the entire temperature range. The

extent of exchanges in temperature space is illustrated in

Fig. 2 b. Here, the temperature indices are followed for 20

different trajectories started from the first multiplexed-

replica layer. All other trajectories show similar exchange

patterns. From this figure, it is also clear that any trajectory

visits nearly all temperature levels within the simulation

FIGURE 2 (a) Probability distributions of potential energy at all

temperature levels obtained with MREMD method. Configurations obtained

after 10 ns are used to generate the distribution. The leftmost one represents

the 250 K result. The temperature rises as it goes to the right. (b) Exchanges

of replicas in the temperature space; drawn by following temperature indices

of 20 example configurations, each of which was started from a different

temperature level. (c) Ratios of probabilities with adjacent temperatures.
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time. To verify that these exchanges lead to a desirable

sampling over the potential energy space, we have also

examined the ratio of the potential energy distributions of

adjacent temperatures. If the potential energy distribution

functions PðE; TiÞ and PðE; TjÞ follow the Boltzmann

distribution, their ratio will satisfy

ln
PðE;TiÞ
PðE;TjÞ

¼ 1

kB

1

Tj

� 1

Ti

� �
E þ constant: (9)

A plot of this ratio is shown in Fig. 2 c. For all

temperatures, satisfactory linearity is observed, suggesting

that the configurations from our simulation follow the

Boltzmann distribution.

Comparison with the constant
temperature simulation

Experimentally, BBA5 was found to have a well-defined

a-helix and a b-hairpin in its native state (Struthers et al.,

1998). Because we have started simulations from a fully

extended (i.e., completely nonnative) configuration for all

the replicas, an inspection of trajectories reaching the folded

state reveals the extent to which the simulation samples the

available configuration space. Fig. 3 shows the stereo

representation of a folded conformation obtained with the

simulation, together with the experimentally determined

native structure. Overall, the conformation reached by

simulation shows a good agreement with experiment with

well-defined secondary structure. To represent the time

variation of structural features, snapshots of three arbitrarily

chosen folding trajectories are illustrated in Fig. 4. The

variations of potential energy and RMSDa of these tra-

jectories are also presented in Fig. 5. From a comparison

with Fig. 2, it can be inferred that the potential energy values

sampled by these folding trajectories contribute to low

energy population in the distribution. It is also clear that

these trajectories reach the folded state characterized by well-

defined secondary structure and low RMSDa. Because we

observe a large number of such trajectories (;100), we

conclude that our simulation has sampled the folded state

region of the configuration space within a relatively short

simulation time.

In addition, the number of trajectories with such well-

defined native-like structure will increase in time because

we started the simulation from a fully unfolded state as

described above. The primary reason to use an REMD-like

method is the hope that REMD will speed sampling. To this

end, we can calculate the rate of structure formation using

REMD and compare it directly to non-REMD enhanced,

constant temperature methods. Although the ‘‘rate’’ of

folding obtained from an REMD simulation cannot be

FIGURE 3 Stereo representations of (a) a folded conformation example

and (b) the native structure. For simplicity, only Ca backbone and selected

side chains (Val3, Phe8, Leu14, Leu17, and Lue18) are shown. The

b-hairpin (residues 2-7) and the a-helix (residues 12-20) regions are

represented in blue and red, respectively.

FIGURE 4 Snapshots of three selected folding trajectories obtained at

every 10-ns simulation time. The same coloring scheme in Fig. 3 is adopted.
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compared with experiment (because the exchanges in

temperature space destroys the kinetic information), this

REMD rate can still be used as a useful measure to estimate

its effectiveness over the constant temperature molecular

dynamics (CTMD). Indeed, if MREMD speeds sampling,

we would expect the MREMD folding rate to be faster than

that of CTMD. Moreover, a comparison of the MREMD rate

with CTMD allows one to quantitatively evaluate the

enhancement of sampling gained by MREMD.

For the purpose of the comparison of MREMD and

CTMD, we compare our MREMD results with a CTMD

simulation performed with 200 independent trajectories of

50 ns each at a relatively low temperature (279 K). Fig. 6

shows the time evolution of the fractions of configurations

containing the a-helix and b-hairpin secondary structures at

the same temperature for both MREMD and CTMD methods

together with the average RMSDa. For both of the secondary

structure elements, one can see that MREMD shows faster

population growth through the overall simulation time. Time

evolution of the average RMSDa shows a similar result. As

a consequence, we can conclude that the MREMD method

enables a considerable speedup for the search in configura-

tion space. Namely, whereas a trajectory in CTMD spends

a significant amount of time in local minima, a trajectory in

MREMD method easily escapes from such states by

exchanging configurations from different temperatures. This

trapping effect can be clearly visualized by comparing the

potential energy distributions obtained with both methods;

because configurations trapped in local minima will con-

tribute to high energy population, the potential energy

distribution from CTMD will display a shift toward a high

energy direction unless the simulation time is long enough.

Fig. 7 compares the potential energy distribution obtained

with CTMD with one from MREMD. One can clearly see

that the energy distribution from CTMD shows the expected

shift.

Because a massive number (tens of thousands) of

trajectories have been simulated in this study, we have

observed a considerable fraction of trajectories reaching the

folded state within the 50-ns simulation time (per processor,

for a total of 200 ms). To estimate the speedup by MREMD

in a more quantitative manner (and to test how MREMD

enhances the sampling of the native state), the ensemble

dynamics method (Shirts and Pande, 2001a; Zagrovic et al.,

2001) was applied where the folding rate k is estimated from

the probability distribution for folding event

PfoldedðtÞ ¼
Nfolded

M
¼ 1 � e�kt: (10)

FIGURE 5 Evolution of RMSDa (solid lines) and the potential energy

(dotted lines) of the selected folding trajectories.

FIGURE 6 Evolutions of populations with native-like characters: (a)

a-helix, (b) b-turn; (c) evolution of the average RMSDa. Solid lines

represent the results at 279 K of temperature obtained with MREMD

method. Dotted lines represent the results from CTMD method at the same

temperature.
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Here, M is the total number of independent ensembles,

or the number of multiplexed-replicas in one temperature

level. When t is close to zero, this ratio shows a linear

relationship and the folding rate can be approximated as

k ¼ Nfolded=M3 t. The estimated folding time constants

(k�1) at 279 K for MREMD and CTMD were found to be

0.97 ms and 6.4 ms, respectively. Although the rates and

kinetics resulting from MREMD are devoid of a physical

meaning as mentioned earlier, this difference demonstrates

that the MREMD with replica-exchange trial frequency of

once per 1 ns speeds the search in the configuration space

with approximately an order of magnitude difference.

One possible concern here may be the degree of agreement

between the structure of the native states dictated by the

theoretical model and the experiment. Namely, assuming

that the experimental structure is unstable or metastable on

the forcefield adopted in the simulation, it can be argued that

the search may have only reached this native-like confor-

mation without truly accessing the most stable free energy

minimum. From the fact that the potential energy values of

the ‘‘folded conformation’’ is usually on the low energy side

of the distribution shown in Fig. 2, we speculate that this will

be rather implausible, even though we cannot ascertain it at

this stage because the stability is determined by free energy

rather than the potential. To verify the stability of the

experimental native structure on the forcefield, it is necessary

to perform a simulation starting directly from this structure.

This will be discussed in the following section.

Sampling of the configuration space:
comparison with an unfolding simulation

Suppose that the experimentally determined native structure

is unstable on the forcefield adopted in the simulation. Then,

the majority of trajectories will lose structural features if we

perform a number of simulations starting from this native

structure. (Henceforth, the simulation started from the

extended state will be denoted as the run started unfolded,

whereas the simulation started from the native state will be

denoted as the run started folded.) Therefore, the run started

folded can be used to manifest the stability of the ex-

perimental native structure on the forcefield. We have

performed the same MREMD simulation from the native

structure. From an ensemble of 10,000 configurations (200

multiplexed-replicas with 50-ns simulation with configura-

tions sampled each nanosecond) obtained at 300 K, we have

obtained a representative conformation by calculating the

distance matrix for each member of the ensemble, averaging

this matrix over the ensemble, and then finding the structure

that most closely resembles the ensemble averaged distance

matrix (Zagrovic et al., 2002). Fig. 8 shows the stereo

representation of this configuration, which presents a re-

markable resemblance to the native structure in Fig. 3.

Moreover, both the a-helix and b-hairpin were found to be

intact in most of the trajectories ([65%) at low temperatures

(\350 K). Accordingly, we may safely assume that the

native structure is stable in the forcefield adopted in this

work.

Perhaps the most important advantage of this supplemen-

tal simulation is the fact that its result can be used to examine

the convergence of the MREMD method. Although we have

observed a significant speedup using MREMD instead of

CTMD, this does not imply that the configurations sampled

during the simulation represent the entire available space for

this model protein. In fact, convergence to the thermo-

dynamically correct equilibrium is the most demanding

objective to accomplish in a simulation of a large molecule.

In principle, a sufficient sampling requires the trajectories

to visit the entire range of the available configuration space,

and will be accompanied by a full loss of memory of the

initial conditions. Accordingly, if we can observe the same

convergence from two independent simulations started from

fairly different configurations, i.e., from both runs started

unfolded and folded, the method will be more reliable in

terms of sampling of the configuration space. To precisely

monitor the convergence, it is useful to survey the time

variation of thermodynamic properties. To this end, the free

energy distribution, or the potential of mean force (Leach,

2001) as a function of RMSDa and the radius of gyration of

the entire peptide (Rg)

F ¼ �kBT ln PðRMSDa;RgÞ (11)

has been monitored. The principal component method

(Garcı́a, 1992) was not used in this study, as the principal

component basis vectors from the runs started unfolded and

folded, obtained with all sampled configurations in each

FIGURE 8 Stereo representation of a representative conformation from

the unfolding simulation.

FIGURE 7 Probability distributions of potential energy at 279 K from

MREMD (solid line) and CTMD (dotted line) methods.
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case, will likely have different physical implications. Instead,

it is more direct to use the well-understood degrees of

freedom RMSDa and Rg.

Fig. 9 shows the free energy contour maps obtained from

the runs started unfolded and folded at various temperatures.

It also shows the difference of the free energy patterns from

both simulations. It can be clearly seen that free energy

patterns from both runs become more similar with longer

simulation time. One striking feature to note is that even

though the free energy pattern is converging, a satisfactory

convergence within 50 ns of simulation time has been

reached only in the high temperature (500 K) case. To

facilitate a direct comparison, one-dimensional free energy

versus RMSDa and the potential energy at 300 K of

temperature is plotted in Fig. 10.

The discrepancy between the results from the runs started

unfolded and folded suggests an important precaution and

limitation for the application of the replica exchange method.

Even when the potential energy distribution displays a correct

Boltzmann distribution as shown in Fig. 2 c, it is possible

that the sampling over the configuration space is not

sufficient. This is especially important in the replica

exchange method because what is pursued in this type of

simulation is thermodynamically reliable information of the

system with relatively short simulations per replica. This

result is consistent with previous replica exchange simu-

lations of proteins, because although Boltzmann sampling

appears to be satisfied, no previous REMD simulation

starting from an unfolded structure has reached the folded

state, thus suggesting incomplete sampling. Our ability

(using thousands of processors with MREMD) to reach

the folded state starting from an unfolded configuration

represents greater sampling, but clearly even this level of

computation is insufficient for complete sampling of the

phase space.

In principle, the speedup in a replica exchange method

arises from the fact that a trajectory trapped in a local

minimum can be forced to escape by exchanging config-

urations with a higher temperature simulation. However, the

exchange itself is another important mechanism that can

render faster convergence. Suppose we have a system with

two local potential energy minima, or two states as shown

in Fig. 11 a. If the degrees of freedom along a reaction

coordinate in the two states are different from each other at

any given energy, free energies of the two states will have

different temperature dependences. Accordingly, the prob-

ability distribution along the coordinate will also be different

at different temperatures. (See Fig. 11, b and c.) Now

suppose that one performs a simulation with two replicas

starting from each potential energy minimum point. Within

a very short simulation time, one will observe a significant

speedup over a single simulation started from one state

because any exchange will cause each trajectory to sample

both states. Namely, because both of the states cannot be

reached within that short simulation time in a regular single

simulation, the sampling with the exchange method will

appear to be considerably improved. Nevertheless, the

probability distribution with this short simulation at one

temperature will be strongly correlated to the distribution at

the other temperature. In this two-state case, for example, the

probability distributions will be complementary to each other

as shown in Fig. 11 d. Therefore, we can infer that it is not

possible to obtain correct probability distributions for both

temperatures only with such exchanges. As the simulation

time is lengthened, the trajectory started from one state will

visit the other state and this complementariness will be

removed. Consequently, one can conclude that the simula-

tion time should be long enough such that each trajectory can

cover the entire configuration space as well as the entire

temperature space to overcome this fictitious speedup. In

fact, this is why it is not feasible to decrease the necessary

simulation time by simultaneously performing a multiple

number of simulations starting from different configurations.

Unless the initial configurations properly represent the entire

configuration space of the system, thermodynamically

acceptable results cannot be expected within relatively short

simulation time.

Moreover, it is interesting to ask to what degree we expect

exchange methods to speed sampling. To answer this

question, one must formulate a model of the dynamics of

exchange-based simulations, inasmuch as the rate of

convergence and sampling is a kinetic phenomenon. Toward

this end, consider a system with two states, unfolded (U) and

folded (F) and with some temperature dependent rates of

conversion kU!FðTÞ and kF!UðTÞ, respectively. In an

exchange simulation, we also must consider the rate of

exchange between replicas at different temperatures within

a given state, i.e., kUðT ! T9Þ and kFðT ! T9Þ. The overall

kinetics of the system will depend on both types of rates, as

summarized in Fig. 12. With this system and the rates, our

question is what is the new effective rate connecting states U

and F at the temperature of interest (e.g., 300 K). Usually, the

exchange rates between different replicas within a state are

orders of magnitude faster than the conversion rates between

different states. For example, whereas the conversion rates

kU!F and kF!U are in the order of (10 ms)�1 at 300 K for

BBA5, the timescale of the exchanges is in nanoseconds in

our case, and is typically faster in other exchange-based

simulations. Therefore, it can be inferred that the overall rate

is still determined by the slow conversion rates, even though

we are using an exchange method for the very reason that the

rate of crossing between U and F is very slow.

Next, we consider the effect of using replicas with

elevated temperatures. For proteins at a very high temper-

ature (e.g., 500 K), the folding rate kU!F is extremely slow

(ms�1 or slower) because the folded state (F) is thermody-

namically unstable with very high free energy. (Because

kU!F ¼ expðDG=kBTÞkF!U, where DG is the stability of the

protein, and for high temperatures DG will be negative with

a large magnitude, the folding rate kU!F will be very small.)
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FIGURE 9 Time evolution of free energy contour maps

versus RMSDa and Rg at (a) 250 K, (b) 300 K, (c) 402 K,

and (d) 500 K. From the left, each column represents the

distributions obtained from the run started unfolded,

the run started folded, and the difference, respectively.

From the top, each row is based on configurations obtained

during 0 ; 10-ns, 20 ; 30-ns, and 40 ; 50-ns simulation

time windows, respectively. Color code is explained in the

inset at the bottom. Free energy is in kBT unit.
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FIGURE 9 (continued )
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Thus, simulations started from U will not be significantly

sped toward F by exchanges. There will be some speed

increase because there will likely be a rate maximum

between 300 K and 500 K, and an exchange method will take

full advantage of this. However, this increase will hardly be

over an order of magnitude. On the other hand, the rate kF!U

is fairly fast (ns�1), and in simulations started from F, one

would observe sampling of the unfolded state in a short

simulation time. Nevertheless, the simulations will rarely

refold in such a short time, and the sampling would be

incomplete inasmuch as a thorough sampling is obtained

when the memory of the initial condition is completely lost.

At this point, it will be pertinent to compare our results

with previous replica exchange protein folding studies using

much shorter simulation time in each replica. Sanbonmatsu

and Garcı́a (2002) studied the structural properties of five-

residue peptide, Met-enkephalin with 16 temperature levels

ranging from 275 K to 419 K. Simulations were conducted

for 2 ns in each temperature level. By comparing config-

urations from all temperature levels with configurations

obtained with a single 32-ns constant temperature simula-

tion, they showed that the replica exchange method covered

approximately five times larger configuration space. One

interesting additional comparison that can be suggested for

this system is to use 16 independent constant temperature

runs starting from the same initial configurations used in

replica exchange simulations. By comparing it with the

single trajectory result, it may be possible to extract the

aforementioned speedup effect. In our case, it should be

pointed out that it is impossible to conduct such a comparison

in the practical sense; the aggregate simulation time is ;200

ms, and it will be extremely difficult to perform a single

constant temperature simulation of this timescale.

Likewise, Zhou and co-workers reported replica exchange

simulation results for the C-terminal 16-residue portion of

protein G (Zhou et al., 2001). Using also 2 ns of simulation

FIGURE 10 One-dimensional free energy profiles from the run started

unfolded (solid lines) and the run started folded (dotted lines) as a function

of (a) RMSDa and (b) the potential energy at 300 K. For visual clarity,

curves are shifted down from each other by 7 kBT.

FIGURE 11 Schematic illustration of the fictitious speedup by configu-

ration exchanges for a two-state system. (a) The potential energy of the

system; (b) free energy at a high (solid line) and a low (dotted line)

temperatures; (c) the correct probability distributions at the two temper-

atures; (d) an example of incorrect probability distributions obtained with

a short replica exchange simulation, where the two distributions are

complementary to each other.

FIGURE 12 Schematic illustration of an exchange simulation for a simple

two-state system.
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time for each of 64 replicas, they found that the resulting free

energy contour surfaces showed noticeable ruggedness when

plotted against overall RMSD and Rg. This is in qualitative

agreement with the result reported by Garcı́a and Sanbon-

matsu (2001) for the same system with 3.5-ns simulation

time and 32 replicas. However, it is in sharp contrast

to Pande and co-workers’ result obtained with a greater num-

ber of individual trajectories and longer simulation time

(Zagrovic et al., 2001). This discrepancy may be attributed to

the slow change of RMSD described previously. Assuming

that the RMSD of this protein changes at a slow rate as in our

system, it is highly probable that the contour map shows

a clustered distribution around 64 initial configurations with

only 2-ns simulation time. Also, this ruggedness may have

been more pronounced than in the Met-enkephalin case

(Sanbonmatsu and Garcı́a, 2002), as an increase in the

system size can slow the motion of the protein along RMSD.

CONCLUSIONS

Massively parallel clusters or ‘‘distributed computing’’ are

becoming a significant computational paradigm for compu-

tational biology. Indeed, thousands to millions of processors

can be harnessed to potentially break existing computational

barriers. However, the efficient use of this resource is

nontrivial. Unlike parallel supercomputers, distributed com-

puting clusters 1), have many more processors (tens of

thousands versus hundreds), 2), have a heterogeneous mix of

processor speeds, and 3), are connected by considerably

slower networking. Thus, to efficiently use the great potential

of distributed computing, new algorithms are needed.

To efficiently use this new computational paradigm to

study protein folding thermodynamics and to use this great

resource to potentially go beyond previous calculations

using considerably smaller (tens of processors) homoge-

neous processor clusters, we have developed a modified

algorithm of a replica exchange molecular dynamics method.

The algorithm was applied to the folding simulation of

a small model protein started from a fully extended state.

Within 50-ns simulation time in each of the replicas, we have

reached a folded state with correct native-like structure.

Compared to a constant temperature simulation, the folded

state was accessible within a significantly shorter simulation

time. Although we have been able to successfully reach the

folded state with MREMD (which was not possible with

previous REMD simulations), the simulation time was not

long enough to reach a satisfactory thermodynamic conver-

gence. In other words, a fraction of runs do fold, but not the

fraction expected thermodynamically. Moreover, assuming

that the MREMD speedup is on the order of one order of

magnitude over constant temperature simulation, the fraction

folded is consistent with what we would expect from kinetic

considerations.

From these findings, it may be generalized that one has to

be extremely cautious especially in comparing the replica

exchange result with the constant temperature simulation. To

prevent the comparison from being obscured by the fictitious

speedup caused by configuration exchange, it may be help-

ful to perform a multiple number of constant temperature

simulations instead of one long simulation. After such

a precaution is taken, the method will be of considerable

utility, because it can achieve a remarkable enhancement in

the configuration sampling over the constant temperature

simulation, as shown in the previous section.

Indeed, this difficulty of the replica exchange method is

a generic problem of any trajectory method. Namely,

a thermodynamically meaningful result can only be obtained

after a trajectory covers the entire available configuration

space, whether it is obtained with Monte Carlo or molecular

dynamics method. In an REMD simulation, therefore, the

simulation time must be longer than the minimum simulation

time required at the highest temperature because the motion

in the configuration space at any temperature is expected

to be slower than at the highest temperature. For large

molecules, this will continue to be a burden even at tem-

peratures considerably higher than the physiological one.

This difficulty can be avoided when the simulations covering

different regions of configuration space can be combined in

an appropriate way. In this respect, it is interesting to

compare REMD with another generalized-ensemble method

(Mitsutake et al., 2001) developed to accomplish an

enhancement of the sampling. This method, usually known

as a multicanonical algorithm, adopts a deformation on the

potential energy surface with a biasing potential so that the

probability distribution may show a uniform distribution

over the original potential as in the umbrella sampling

method (Torrie and Valleau, 1977). This method was

originally proposed for an efficient Monte Carlo simulation

of phase transitions (Berg and Neuhaus, 1991; Berg and

Neuhaus, 1992) and then applied to Monte Carlo simulations

of biomolecules (Hansmann and Okamoto, 1993) and to

molecular dynamics ones (Hansmann et al., 1996; Nakajima

et al., 1997). In this type of method, a series of simulations

are performed with different biasing potentials. By properly

choosing the biasing potentials, it is possible to distribute the

sampled configurations over the entire configuration space

available. The results are then statistically combined using

the weighted histogram analysis method (Kumar et al.,

1992). The difficulty within this method lies in the selection

of the biasing potentials. They are not a priori known, and

must be found by trial and errors. Moreover, the variables of

the biasing potentials are often selected from the geometrical

variables (e.g., a distance between two atoms), and the

coverage over the entire configuration space can be easily the

coverage only over the subspace defined by those selected

variables. To alleviate the difficulty caused by the selection

of the variable, Karplus and co-workers further developed an

adaptive umbrella sampling algorithm, where the potential

energy itself is used as the variable (Bartels and Karplus,

1998). However, the biasing potential still cannot be easily
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determined without rather a tedious iterative procedure.

The replica exchange method is free from such difficulties

because the weight factor is simply the product of Boltzmann

factors, and is essentially known before any simulation

(Sugita and Okamoto, 1999).

Therefore, one can naturally anticipate an advanced

method where the advantages of both methods can be

combined for better sampling in shorter simulation time. For

example, an algorithm that utilizes both the replica exchange

and the umbrella sampling has been already reported (Sugita

et al., 2000). Because the replica exchange is itself a Markov

process that does not necessitate any reweighting, the

concept of exchange can be readily expanded to a general

parameter space other than temperature. One challenge in

this approach is the availability of a massively parallelized

computer. Our ability to use thousands of processors

previously mentioned will be of great importance in tackling

this challenge.
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