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ABSTRACT A theory of channel-facilitated transport of long rodlike macromolecules through thin membranes under the
influence of a driving force of arbitrary strength is developed. Analytic expressions are derived for the translocation probability
and the Laplace transform of the probability density of time that a macromolecule spends in the channel. We also derive
expressions for the (conditional) probability densities of time spent in the channel by translocating and nontranslocating
(returning back) macromolecules. These results are used to study how the distribution of the macromolecule lifetime in the
channel depends on a polymer chain length and the driving force. It is shown that depending on the values of the parameters,
the lifetime probability density may have one or two peaks. Our theory is a generalization of the theory developed by Lubensky
and Nelson, who were inspired by recent experiments on driven translocation of single-stranded RNA and DNA molecules
through single channels in narrow membranes.

INTRODUCTION

When a large molecule enters a membrane channel, the

electrolyte ion current through the channel decreases because

the solute blocks the channel. This provides an opportunity

to study channel-facilitated transport of metabolites and

macromolecules by measuring the current through a single

channel (Bezrukov et al., 1994; Bezrukov, 2000). This was

beautifully demonstrated in a recent study of driven trans-

location of single-stranded RNA and DNA molecules

through single a-hemolysin ion channels (Kasianowicz

et al., 1996) and subsequent experiments (Akeson et al., 1999;

Henrickson et al., 2000; Meller et al., 2001). Kasianowicz

et al. (1996) determined the probability density for time

spent by the macromolecule in the channel and analyzed

how this density depends on the applied voltage and the

length of the polymer. A theory of this experiment was put

forward by Lubensky and Nelson (1999). In the present

paper we propose an improved theory that removes an

important restriction of the Lubensky-Nelson theory.

The probability density found by Kasianowicz et al.

(1996) has three peaks. The authors interpreted the three-

peak density as a superposition of two two-peak probability

densities corresponding to different orientations of the DNA

molecules in the channels. Position of the first (short time)

peak very weakly depends on both the chain length and

applied voltage. The authors attributed this peak to those

molecules that did not translocate and escaped on the same

side of the membrane where they had entered. The second

peak located at larger times is due to the molecules that

traverse the membrane. Its position depends on the ori-

entation of the macromolecule. For both orientations the posi-

tion linearly grows with the chain length and decreases, as

the applied electric field, E, increases, as 1/E.

The Lubensky-Nelson theory (Lubensky and Nelson,

1999) of driven polymer translocation through a narrow pore

in a thin membrane exploits the idea that passage of a long

polymer through the pore can be described in terms of one-

dimensional diffusion of a point particle on interval (0, L),

where L is the contour length of the polymer. Lubensky and

Nelson calculated the probability density for the polymer

lifetime in the channel by solving the corresponding dif-

fusion equation with absorbing boundary conditions at the

ends of the interval. These boundary conditions have an

unpleasant feature: the particle cannot enter the interval

through an absorbing end point because it is instantly trapped

by the absorbing boundary. Lubensky and Nelson called this

‘‘a pathology of our model.’’

In this paper we generalize the Lubensky-Nelson theory

by replacing absorbing boundary condition by radiation

ones. Indeed, when a polymer inserts its head (or tail) into

the channel, it can either escape on the same side of the

membrane or make a couple of steps forward and, perhaps,

eventually translocate the membrane. In terms of the one-

dimensional diffusion model, such a behavior can be

described using radiation (partially, but not perfectly ab-

sorbing) boundary conditions. As Lubensky and Nelson, we

neglect the effect of the entropic barrier on the trans-

location, i.e., consider a rodlike polymer. For this model

in the next section we find an exact solution for the prob-

ability density of the polymer lifetime in the channel. We

also derive the translocation and return probabilities and aver-

age times that translocating and nontranslocating molecules

spend in the channel as well as the probability densities

for these times.
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In ‘‘Results and Discussion’’, we analyze the dependence

of the probability density of the polymer lifetime in the

channel on the chain length and the driving force. In suf-

ficiently strong fields, we found the same behavior of the

probability density as was observed in the experiment by

Kasianowicz et al. (1996). It is interesting that the probability

density has two peaks only when the driving force is strong

enough. For weaker forces the density has qualitatively the

same behavior as in the absence of the force and mo-

notonically decays with time. A critical driving force that

separates monotonic and two-peak probability densities de-

pends on the competition between the drift and diffusion

as well as the trapping efficiency at the ends of interval. We

analyze this question in ‘‘Results and Discussion, one peak

or two peaks’’.

Finally, it is worth mentioning that the problem we are

discussing in this paper is a fragment of a general problem of

the polymer translocation through membrane pores. One can

gain broader view on this subject from recent papers (Simon

et al., 1992; Peskin et al., 1993; Baumgartner and Scolnick,

1994, 1995; Yoon and Deutsch, 1995; Lee and Obukhov,

1996; Schatz and Dobberstein, 1996; Sung and Park, 1996;

Deutsch and Yoon, 1997; Di Marzio and Mandell, 1997;

Carl, 1998; Park and Sung, 1998a,b,c; De Gennes,

1999a,b,c; Di Marzio, 1999; Han et al., 1999; Muthukumar,

1999, 2001; Kumar and Sebastian, 2000; Chern et al., 2001;

Chuang et al., 2002) and references therein.

THEORY

Consider a long rodlike macromolecule of length L that translocates through

a narrow channel in a thin membrane under the action of a constant electric

field. We neglect the membrane thickness and describe the translocation as

diffusion of a point particle on an interval of length L in the presence of

a constant driving force F. Position of the particle on the interval at time t

is equal to the length of that part of the macromolecule that has passed

through the membrane by time t (see Fig. 1). We assume that the macro-

molecule enters the channel at t ¼ 0. This means that at t ¼ 0 the particle is

injected onto the interval at x ¼ 0 (Fig. 1 a). Its further fate is described by

the propagator or Green’s function, G(x, t), that satisfies the diffusion

equation:

@

@t
Gðx; tÞ ¼ D

@

@x

@

@x
Gðx; tÞ � bFGðx; tÞ

� �
; (1)

where D is the diffusion constant, b ¼ 1=kBT ; and kB and T are the

Boltzmann constant and absolute temperature. Equation 1 describes diffusion

of the particle in the linear potential U(x) ¼�Fx that gives rise to a constant

drift velocity

y ¼ DbF: (2)

Equation 1 will be solved with the initial condition

Gðx; 0Þ ¼ dðxÞ; (3)

where d(x) should be understood as d(xþ 0), so that
R L

0
Gðx; 0Þdx ¼ 1: The

radiation boundary conditions imposed at the ends of the interval are

D
@

@x
Gðx; tÞ

�����
x¼0

¼ ðk þ yÞGð0; tÞ (4a)

�D
@

@x
Gðx; tÞ

�����
x¼L

¼ ðk � yÞGðL; tÞ; (4b)

where k is a rate constant that characterizes how fast the macromolecule

escapes into the bulk when it is at the channel boundary. k ¼ ‘ describes

instantaneous escape into the bulk that corresponds to perfectly absorbing

boundary conditions, the case studied by Lubensky and Nelson. k ¼ 0

corresponds to reflecting boundary conditions that describe a situation when

the macromolecule is anchored on both sides and therefore cannot escape

from the membrane.

Survival probability of the particle on the interval is given by

SðtÞ ¼
ðL

0

Gðx; tÞdx: (5)

The main quantity of our further analysis is the probability density for the

time that the macromolecule spends in the channel.

fðtÞ ¼ � d

dt
SðtÞ: (6)

This probability density can be written as a sum of two probability fluxes

escaping the interval through different ends

FIGURE 1 The one-dimensional diffusion model for translocation of

a long rodlike macromolecule through a narrow channel in a thin membrane.

Panels a and c show the entrance of the molecule into the channel at t¼ 0 and

its escape at a time t, respectively, whereas panel b shows the molecule at an

intermediate moment of time.
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fðtÞ ¼ f0ðtÞ þ fLðtÞ ¼ k½Gð0; tÞ þ GðL; tÞ�: (7)

The flux f0ðtÞ ¼ kGð0; tÞ describes macromolecules that do not translocate

and escape the channel at time t on the same side of the membrane where

they entered. The flux fLðtÞ ¼ kGðL; tÞ gives the contribution into f(t) due

to translocating macromolecules that escape the channel at time t.

These fluxes can be used to find probabilities that the macromolecule

translocates, Ptr , and does not translocate, Pntr , through the membrane

Ptr ¼
ð‘

0

fLðtÞdt; Pntr ¼
ð‘

0

f0ðtÞdt: (8)

Using these probabilities, one can introduce conditional probability densities

for the lifetime

ftrðtÞ ¼
fLðtÞ
Ptr

; fntrðtÞ ¼
f0ðtÞ
Pntr

(9)

that characterize the time spent in the channel by translocating and

nontranslocating macromolecules. One can find moments of the time that

these molecules spent in the channel by

htnitr=ntr ¼
ð‘

0

tnftr=ntrðtÞdt: (10)

The probability density in Eq. 7 can be written as a weighted sum of the

conditional densities

fðtÞ ¼ PntrfntrðtÞ þ PtrftrðtÞ: (11)

It is obvious that fntrðtÞ monotonically decays with time whereas ftrðtÞ is

nonmonotonic; initially it grows with time, reaches a maximum, and then

decays. Whether f(t) is monotonic or has two peaks depends on the com-

petition between the two terms in the right-hand side of Eq. 11. This question

is analyzed in detail in ‘‘Results and Discussion, one peak or two peaks’’.

Solutions

One can find exact solutions for the Laplace transforms of the fluxes and

probability densities. The Laplace transform of a function F(t) denoted by

F̂FðsÞ; where s is the Laplace parameter, is defined as

F̂FðsÞ ¼
ð‘

0

e�stFðtÞdt: (12)

Using standard methods, one can derive the following expressions for the

Laplace transforms of the fluxes:

Then one can find the Laplace transform of the probability density f(t),

which according to Eq. 7 is given by

f̂fðsÞ ¼ f̂f0ðsÞ þ f̂fLðsÞ: (14)

Note that fluxes in Eqs. 13 vanish when k ¼ 0 because the macromolecule

anchored on both sides cannot escape from the membrane. In the opposite

limiting case, when k ! ‘, f̂f0ðsÞ ¼ 1 and, hence, f0ðtÞ ¼ dðtÞ, whereas

f̂fLðsÞ ¼ fLðtÞ ¼ 0 as it must be with absorbing boundary conditions.

The expressions in Eqs. 13 allows one to find the probabilities defined in

Eq. 8. The translocation probability is given by

Ptr ¼ f̂fLð0Þ ¼
y

yð1 þ e�yL=DÞ þ kð1 � e�yL=DÞ

¼ DbF

DbFð1 þ e�bFLÞ þ kð1 � e�bFLÞ (15)

and the nontranslocation probability is

Pntr ¼ f̂f0ð0Þ ¼
ye�yL=D þ kð1 � e�yL=DÞ

yð1 þ e�yL=DÞ þ kð1 � e�yL=DÞ

¼ DbFe�bFL þ kð1 � e�bFLÞ
DbFð1 þ e�bFLÞ þ kð1 � e�bFLÞ :

(16)

These probabilities are obtained assuming that k is finite. When k ¼ 0, the

fluxes in Eqs. 13 vanish and, hence, Ptr ¼ Pntr ¼ 0 as it must be when the

macromolecule is anchored on both sides. When k ! ‘, Ptr ! 0, whereas

Pntr ! 1; as it must be.

The Laplace transforms of the conditional densities defined in Eq. 9 are

given by

f̂ftrðsÞ ¼
f̂fLðsÞ
Ptr

; f̂fntrðsÞ ¼
f̂f0ðsÞ
Pntr

: (17)

These densities can be used to find the moments defined in Eq. 10:

htnitr=ntr ¼ ð�1Þn dnf̂ftr=ntrðsÞ
dsn

�����
s¼0

¼ ð�1Þn

Ptr=ntr

dn f̂fL=0ðsÞ
dsn

�����
s¼0

: (18)

In our further analysis, we will use the average translocation time given by

httri ¼
L

y
1 � 2D

Ly
þ D

kL

y þ 2k

y þ k

� �

¼ L

DbF
1 � 2

bFL
þ D

kL

bFL þ 2kL=D

bFL þ kL=D

� �
: (19)

All the quantities considered above depend on the problem parameters.

These dependencies are discussed in the next section. Before proceeding to

this discussion, we note that the Laplace transform of the Lubensky-Nelson

result for ftrðtÞ is recovered from f̂ftrðsÞ in Eq. 17 in the limiting case of k!
‘. Here, according to Eq. 15, Ptr ¼ 0; as it must be. However, the ratio in Eq.

17 remains finite because the flux in the numerator also vanishes as k ! ‘.

Note that the fluxes fLðtÞ and f0ðtÞ can be derived using the eigenfunction

expansion of the propagator. However, we found the Laplace transform

formalism more convenient for our analysis.

Concluding this section, we indicate that the theory above should be

modified in several respects to treat the case when two orientations of the

macromolecule differ from one another. First, one has to use different rate

constants in the radiation boundary conditions at x ¼ 0 and x ¼ L in Eqs. 4.

f̂f0ðsÞ ¼
k

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Ds þ y2

p
þ 2K � y þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Ds þ y2

p
� 2k þ y

� �
e�

ffiffiffiffiffiffiffiffiffiffi
4Dsþy2

p
L=D

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Ds þ y2

p
þ Ds þ k2 þ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Ds þ y2

p
� Ds � k2

� �
e�

ffiffiffiffiffiffiffiffiffiffi
4Dsþy2

p
L=D

(13a)

f̂fLðsÞ ¼
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Ds þ y2

p
e�

ffiffiffiffiffiffiffiffiffiffi
4Dsþy2

p
�yð ÞL=2D

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Ds þ y2

p
þ Ds þ k2 þ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Ds þ y2

p
� Ds � k2

� �
e�

ffiffiffiffiffiffiffiffiffiffi
4Dsþy2

p
L=D

: (13b)
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Second, the diffusion constant in Eq. 1 may depend on the orientation of the

macromolecule. Third, the probability density for the blockade time is

a linear combination of the solutions found for different orientations. The

coefficients in this linear combination are the entrance probabilities for

macromolecules of different orientations. To find these probabilities, one has

to analyze how macromolecules enter the channel, which seems to us an

extremely difficult task.

RESULTS AND DISCUSSION

The probability density of the polymer residence time in the

channel depends on four dimensional parameters, namely,

D, k, L, and bF. In this section we analyze how the density

depends on L and F at fixed D and k, which are used

to arrange scales for length and time, D/k and D=k2;
respectively. Using these scales, we introduce dimension-

less time, ~tt ¼ k2t=D; and will analyze the dependence

of its density on the dimensionless driving force,
~FF ¼ DbF=k ¼ y=k; and the dimensionless length of the

macromolecule, ~LL ¼ kL=D: The Laplace transform in Eq. 14

is numerically inverted using the Stehfest algorithm

(Stehfest, 1970) or its modification, the BigNumber-Stehfest

algorithm (Valko and Vajda, 2002). To transfer to dimen-

sionless variable, we put D ¼ k ¼ 1 in Eqs. 13 that leads to
~FF ¼ y ¼ bF and L ¼ ~LL:

Dependence on the field

To study how the density depends on ~FF; we inverted the

dimensionless version of the Laplace transform in Eq. 14

numerically for ~FF ¼ 0, 1, 5, 10, 20, and 30 at constant
~LL ¼ 30: The densities are shown in Fig. 2. The density

monotonically decreases with time when ~FF ¼ 0; whereas for

all other values of ~FF the density has two peaks. Position of

the second peak, ~ttmax; moves to shorter times as ~FF increases.

Times~ttmax are given in Table 1. In this table we also give the

product ~ttmax
~FF: One can see that the product is practically

a constant when the field is strong enough. This means that in

such fields ~ttmax } 1=~FF; as was found in the experiment

(Kasianowicz et al., 1996).

The second peak is due to macromolecules that pass

through the channel. It is natural to assume that the

probability density for the translocation time is approxi-

mately a Gaussian with the maximum at h~tttri; where h~tttri is

given by the dimensionless version of Eq. 19. To check this

assumption, we give times h~tttri in Table 1. One can see that
~ttmax and h~tttri are close in sufficiently strong fields that

confirms the assumption. In weaker fields, the two times

differ and, hence, the assumption is not valid.

Dependence on the length of the macromolecule

To study the ~LL-dependence of the density, we inverted the

dimensionless version of the Laplace transform in Eq. 14

numerically for ~LL ¼ 10, 20, and 30 at constant value of
~FF ¼ 20: The densities are shown in Fig. 3. As one might

expect, the longer is the macromolecule, the larger is the time
~ttmax: Times~ttmax are given in Table 2, where we also give the

ratio ~ttmax=~LL and average translocation times, h~tttri: One can

see that the ratio is practically a constant. This means that
~ttmax } ~LL as was found experimentally (Kasianowicz et al.,

1996). One can also see good agreement between times ~ttmax

and h~tttri that supports the assumption about Gaussian shape

of ftrð~ttÞ for given values of ~FF and ~LL:

One peak or two peaks

When ~FF decreases, the second peak moves to larger times

and its amplitude decreases. One might expect that the

probability density fð~ttÞ is monotonic only when ~FF ¼ 0,

whereas at any finite ~FF it has two peaks. In fact, this is not

true, and fð~ttÞ remains a monotonic function even at finite
~FF if it is sufficiently small.

To show this, we use Eq. 11 that gives fð~ttÞ as a sum of the

monotonically decaying term, Pntrfntrð~ttÞ; and the non-

monotonic term, Ptrftrð~ttÞ: In Fig. 4 we show these two

terms and their sum, fð~ttÞ; as well as first derivatives of these

functions at ~FF ¼ 0:2 and ~LL ¼ 10: One can see that the

derivative dfð~ttÞ=d~tt is always negative. It has a local

maximum at ~tt ¼ ~tt�, where dfð~ttÞ=d~ttj~t � � 4:243 10�4.

FIGURE 2 The probability density of the macromolecule lifetime in the

channel at different values of the driving force ~FF ¼ 0, 1, 5, 10, 20, and 30.

The values are indicated by the numbers near the curves. The contour length

of the macromolecule is ~LL ¼ 30:

TABLE 1 Characteristic times as a function of the field ~FF at

the constant macromolecule length ~LL530

~FF 30 20 10 5 1

~ttmax 1.022 1.531 3.048 6.022 26.77
~ttmax

~FF 30.65 30.63 30.48 30.11 26.77

h~tttri 1.032 1.547 3.089 6.153 29.5
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When ~FF increases, the monotonic term decreases whereas

the growing part of the nonmonotonic term increases, as

shown in Fig. 5. As a consequence, when the driving force

increases, dfð~ttÞ=d~ttj~t � approaches zero, then becomes equal

to zero at a certain critical field, ~FFc; and eventually becomes

positive when ~FF[~FFc: This means that at ~FF[~FFc, the

growing part of Ptrftrð~ttÞ is sufficiently large to produce the

second peak as shown in Fig. 6.

We have discussed the transition between monotonic and

nonmonotonic behavior of the probability density at fixed

values of the parameters k and D. In fact, whether f(t) is

monotonic or has two peaks depends on these parameters

also. For example, when k ! 0 and/or D ! ‘, the equi-

libration occurs much faster than escape and we have

Ptr ¼
1

1 þ expð�bFLÞ ; Pntr ¼
expð�bFLÞ

1 þ expð�bFLÞ (20)

and

fðtÞ ¼ ftrðtÞ ¼ fntrðtÞ ¼ G expð�GtÞ; (21)

where G ¼ kbF coth(bFL/2). One should not be confused

by the absence of k in probabilities given in Eq. 20, which

are the leading terms of the probabilities given in Eqs. 15 and

16 in the small k limit. Additional explanation of the

dependence on k is given just below Eq. 16.

CONCLUDING REMARKS

To analyze the residence time that macromolecules spend in

the membrane channel, we have used a one-dimensional

diffusion model that is similar to one suggested by Lubensky

and Nelson (1999). The key difference between the two

models is that we impose radiation (partially and not

perfectly absorbing) boundary conditions at the ends of the

interval whereas Lubensky and Nelson assumed that the ends

are perfectly absorbing. This difference in the boundary

conditions is really important because it allowed us to

eliminate the ‘‘pathology’’ inherent in the Lubensky-Nelson

model.

The translocation probability and Laplace transform of the

residence time probability density were derived within the

framework of our model. The Laplace transform was

numerically inverted to study how the probability density

depends on the length of the macromolecule and external

driving force. It is interesting that the probability density

changes its shape at a certain critical value of the driving

force. The density has two peaks when the driving force is

larger that the critical value and monotonically decreases

with time when the force is smaller that this value. The

FIGURE 3 The probability density of the lifetime in the channel at the

driving force ~FF ¼ 20 for macromolecules of different contour lengths, ~LL ¼
10, 20, and 30. The lengths are indicated by the numbers near the curves.

FIGURE 4 Panel a shows the probability density fð~ttÞ (solid curve) and its

two components, Ptrftrð~ttÞ and Ptrftrð~ttÞ (dotted and dashed curves) for

macromolecules of the contour length ~LL ¼ 10 at the driving force ~FF ¼ 0:2:

Panel b shows the first derivatives of these functions.

TABLE 2 Characteristic times as a function of the

macromolecule length at the constant field ~FF 520

~LL 10 20 30

~ttmax 0.525 1.029 1.531
~ttmax=~LL 5:253 10�2 5:153 10�2 5:113 10�2

h~tttri 0.547 1.047 1.547
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dependencies predicted by the model in sufficiently strong

fields are the same as those observed in experiments on

driven translocation of single-stranded RNA and DNA

molecules through single a-hemolysin ion channels by

Kasianowicz et al. (1996).

The model analyzed in the paper is oversimplified because

we assume that the polymer is a rigid rod. Single-stranded

DNA and RNA molecules used in the experiment corre-

spond more closely to a freely jointed polymer chain. For

such polymers the entropy barrier has to be taken into

consideration as first indicated by Sung and Park (1996).

Neglecting the entropy potential, we considerably simplify

the problem. This makes it possible to derive an exact

solution for the Laplace transform of the probability density

of the polymer lifetime in the channel, which is used in our

analysis to study the shape of the probability density as

a function of the driving force and the length of the polymer.

It is impossible to find an analytical solution without this

simplifying assumption, i.e., when the entropy barrier is

included. The fact that our model predicts the behavior

qualitatively similar to that observed in the experiment

suggests that the contribution into the driving force due to the

entropy potential is small compared to the contribution due

to the external field when the field is strong enough. We

suppose to analyze this question in the future.

We thank Sergei Bezrukov and Attila Szabo for very helpful discussions.

We also thank P. Valko for his help with the BigNumber-Stehfest algorithm.
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