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Analysis of Metabolic Capabilities Using Singular Value
Decomposition of Extreme Pathway Matrices

Nathan D. Price, Jennifer L. Reed, Jason A. Papin, Iman Famili, and Bernhard O. Palsson
Department of Bioengineering, University of California/San Diego, La Jolla, California 92093-0412

ABSTRACT It is now possible to construct genome-scale metabolic networks for particular microorganisms. Extreme pathway
analysis is a useful method for analyzing the phenotypic capabilities of these networks. Many extreme pathways are needed to
fully describe the functional capabilities of genome-scale metabolic networks, and therefore, a need exists to develop methods
to study these large sets of extreme pathways. Singular value decomposition (SVD) of matrices of extreme pathways was used
to develop a conceptual framework for the interpretation of large sets of extreme pathways and the steady-state flux solution
space they define. The key results of this study were: 1), convex steady-state solution cones describing the potential functions
of biochemical networks can be studied using the modes generated by SVD; 2), Helicobacter pylori has a more rigid metabolic
network (i.e., a lower dimensional solution space and a more dominant first singular value) than Haemophilus influenzae for the
production of amino acids; and 3), SVD allows for direct comparison of different solution cones resulting from the production of
different amino acids. SVD was used to identify key network branch points that may identify key control points for regulation.
Therefore, SVD of matrices of extreme pathways has proved to be a useful method for analyzing the steady-state solution
space of genome-scale metabolic networks.

INTRODUCTION

There has been intense effort and investment in sequencing

and annotating the genomes of an increasing number of

organisms (Drell, 2002). Genome research has provided the

scientific community with an invaluable ‘‘parts catalog’’ for

cells. This parts catalog leads to the construction of genome-

scale networks (Covert et al., 2001; Edwards and Palsson,

1999; Schilling et al., 2002; Schilling and Palsson, 2000),

which substantiates the need for integrative analysis.

Extreme pathway analysis has emerged as a useful

approach for analyzing systemic features of reconstructed

networks (Papin et al., 2002a; Price et al., 2002a; Schilling

and Palsson, 2000; Wiback and Palsson, 2002). This analysis

approach generates a unique and conically independent set of

vectors called extreme pathways. Extreme pathways form the

convex basis for the steady-state solution space. All possible

steady-state flux distributions through the metabolic network

are nonnegative linear combinations of the extreme pathways,

thus forming a solution space that is a convex cone and whose

edges are the extreme pathways (Fig. 1). This cone sits in

a high-dimensional space, termed the flux space, where each

axis corresponds to a flux through a reaction in the network.

Analyzing these high-dimensional solution cones has pro-

vided insight into the integrated functions of metabolic

networks (Papin et al., 2002a,b; Price et al., 2002a).

The calculation of extreme pathways for increasingly

large networks is computationally intensive (Samatova et al.,

2002) and results in the generation of large data sets (Papin

et al., 2002a; Price et al., 2002a). Even for integrated geno-

me-scale models of microbes under simple conditions

(minimal medium and the production of individual amino

acids), extreme pathway analysis can generate thousands of

vectors. These large sets of extreme pathways have been

statistically analyzed and network properties have been

identified (Papin et al., 2002a,b; Price et al., 2002a). For

example, it has been shown that for the production of the

amino acids, the metabolic network of Haemophilus
influenzae has an order of magnitude larger degree of

pathway redundancy than the metabolic network of

Helicobacter pylori, meaning that in general there are far

more systemically independent pathways in H. influenzae
leading to the production of an amino acid (Papin et al.,

2002a; Price et al., 2002a). It has also been found that the

number of reactions that participate in the extreme pathways

that produce a particular product is poorly correlated to the

product yield and the molecular complexity of the product.

Reaction sets that always appear together in any steady-state

solution have also been identified with extreme pathway

analysis generating hypotheses about systemic regulation

(Papin et al., 2002b).

Other network-based analysis methods have been utilized

to study metabolic networks. Elementary modes analysis

(Schuster et al., 2000), a very similar pathway analysis

technique, has been successfully used to identify optimal

poly-b-hydroxybutyrate yields in Saccharomyces cerevisiae
(Carlson et al., 2002), and to identify optimal aromatic

amino acid yields in Escherichia coli (Liao et al., 1996).

These analyses then guided the development of E. coli
strains that attained these high yield values. All of the

analyses described above for the extreme pathways are

equally applicable to the elementary modes. In addition,

other approaches for modeling biological systems have

yielded for important results, including metabolic control
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analysis (Fell, 1996), kinetic theory (Reich and Sel’kov,

1981; Heinrich and Schuster, 1996), and flux balance

analysis (Varma and Palsson, 2002; Bonarius et al., 1997;

Edwards et al., 1999). Taken together, these results represent

emergent properties of reconstructed metabolic networks

that can only be calculated from such integrative techniques.

Inasmuch as the set of extreme pathways for metabolic

networks is generally very large, it canbe a challenge to extract

all the relevant information from these calculations. General

methods are now needed to extract such information, as well

as reduce the dimensionality of the data sets to facilitate

physiological characterizations. Singular value decomposi-

tion (SVD) is a well-developed method for extracting

dominant features of large data sets and for reducing the

dimensionality of the data. SVD has been used for analyzing

microarray data (Alter et al., 2000) and predicting regulatory

networks (Yeung et al., 2002), as well as for diverse ap-

plications such as data compression and image processing.

Recently, SVD analysis has been used to extract systemic

reactions and key functions from the stoichiometry of

metabolic networks (Famili and Palsson, unpublished results).

SVD of stoichiometric matrices reveal key chemical trans-

formations of the respective metabolic networks.

The work presented herein is a novel approach for using

SVD analysis to describe the solution space of metabolic

networks. It will be shown that the first mode of the SVD

corresponds to a valid biochemical pathway that is mass

balanced and does not violate reaction directionality. This

first mode represents a center line of the allowable solution

space of the metabolic network. The subsequent modes will

be shown to correspond to important directions in the

solution space that, if regulated, would best control the

phenotypic potential of the metabolic network.

MATERIALS AND METHODS

Calculation of the extreme pathway matrix

An m 3 n stoichiometric matrix, S, was constructed relating m metabolites

to n reactions (Edwards and Palsson, 1999; Schilling et al., 2002; Schilling

and Palsson, 2000). Each column in the matrix corresponded to either

a metabolic reaction or a transport process, with the elements in the column

representing the reaction stoichiometry. Internal fluxes corresponded to the

movement of mass through a reaction within the system, whereas exchange

fluxes transferred mass across a system boundary. Assuming steady state,

mass balances around each metabolite were written as

S � v ¼ 0; (1)

where v is a vector of fluxes for the n reactions in the network.

The defined reversibility or irreversibility of an internal reaction placed

thermodynamic constraints on the network. These constraints were applied

by decoupling reversible reactions into a forward and a reverse reaction, and

constraining all fluxes to be greater than or equal to zero.

vi $ 0; 8i: (2)

Using Eqs. 1 and 2, a set of convex basis vectors that do not violate

thermodynamic constraints was generated. The basis vectors for this convex

space, called extreme pathways, represent a unique and minimal set of

vectors that spans the solution space (Schilling et al., 2000). Any point in the

steady-state solution space can then be written as a nonnegative linear

combination of the extreme pathways, forming a cone (Eq. 3).

C ¼ fv : v ¼ +ai pi;ai $ 0; 8ig: (3)

C is the convex cone formed by the extreme pathways (pi) and for which

any feasible steady-state flux distribution (v) can be written as a weighted

linear combination of the extreme pathways, where ai is the weight for each

extreme pathway. A detailed algorithm for calculating the extreme pathways

has previously been described (Schilling et al., 2000).

The extreme pathway matrix, P, was formed with all of the extreme

pathways, pi, as columns and the reactions as rows, where the elements in

a column represent the usage of reactions in the corresponding extreme

pathway. Because all reversible reactions were decoupled into two different

reactions, only nonnegative values were contained in the extreme pathway

matrix. Thus, the convex solution space spanned by the extreme pathways

must lie in the positive orthant of the flux space. Extreme pathways that do

not utilize any exchange fluxes were excluded from the extreme pathway

matrix because they are thermodynamically infeasible (Beard et al., 2002;

Price et al., 2002b).

Each extreme pathway was normalized to unit length before the SVD was

calculated. Normalization was performed because the extreme pathways can

be arbitrarily scaled. By normalizing all extreme pathways to unit length,

equal weighting was given to each extreme pathway when calculating the

SVD. An alternative way to normalize pi is to use the limiting vmax in the

pathway, if such values are known.

Extreme pathways of H. influenzae and H. pylori

Extreme pathway matrices were previously calculated for the production of

different individual amino acids using genome-scale stoichiometric matrices

for H. pylori (Price et al., 2002a) and H. influenzae (Papin et al., 2002a).

These extreme pathway matrices were analyzed using the SVD methods

detailed below. For H. pylori, the extreme pathway matrices used in this

FIGURE 1 Schematic of a biochemical re-

action network and its convex, steady-state

solution cone. Extreme pathway analysis gen-

erates a set of vectors that define a convex

solution space. This solution space circum-

scribes all possible flux distributions, thus the

phenotypes, of the biochemical reaction net-

work.
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study were calculated with the following outputs: a single nonessential

amino acid (asparagine, aspartic acid, cysteine, glutamine, glutamic acid,

glycine, lysine, proline, serine, threonine, tryptophan, or tyrosine),

succinate, acetate, formate, lactate, ammonia, and carbon dioxide. For H.

influenzae, the extreme pathway matrices were calculated with the following

outputs: acetate, carbon dioxide, and a single nonessential amino acid

(alanine, asparagine, aspartic acid, glutamine, glycine, histidine, isoleucine,

leucine, lysine, methionine, phenylalanine, proline, serine, threonine,

tryptophan, tyrosine, or valine). The only allowable inputs for both

organisms were constituents of the respective minimal medium (Edwards

and Palsson, 1999; Schilling et al., 2002; Schilling and Palsson, 2000). For

H. influenzae these inputs were: fructose, glutamic acid, ammonia, oxygen,

arginine, cysteine, heme, NAD, phosphate, panthoenate, putrescine,

spermidine, thiamin, and uracil. For H. pylori the allowable inputs were:

alanine, arginine, adenine, phosphate, sulfate, oxygen, histidine, isoleucine,

leucine, methionine, phenylalanine, valine, and thiamin.

Singular value decomposition

For a given extreme pathway matrix P 2 Rnxp, SVD decomposes the

extreme pathway matrix into three matrices,

P ¼ U
S 0
0 0

� �
nxp

V T; (4)

where U 2 Rnxn is an orthonormal matrix of the left singular vectors (as

columns in U), V 2 Rpxp is an analogous orthonormal matrix of the right

singular vectors, and S 2 Rrxr is a diagonal matrix containing the singular

values si;

S ¼ diagðs1;s2; . . . ;srÞ; where r ¼ rankðPÞ: (5)

The diagonal elements of S are arranged in descending order such that

s1 $ s2 $ . . . $ sr[ 0. The first r columns of U and V, referred to as the

left and right singular vectors, or modes, are unique and form the

orthonormal basis for the column space and row space of P, respectively.

The singular values are the square roots of the eigenvalues of PTP (Lay,

1997). The magnitude of the singular values in S indicate the relative con-

tribution of the singular vectors of U and V in reconstructing the P matrix.

The second singular vector thus contributes less to the construction of P than

the first singular vector, and its relative contribution can be assessed by the

magnitude of its singular value compared to other singular values. All SVD

calculations were performed using MATLAB (Mathworks, Natick, MA).

The fractional singular values were calculated by dividing each si by the

sum of all singular values. The cumulative fractional contribution is defined

as the sum of the first n fractional singular values, where n can vary from 1 to

r. Note that ‘‘singular vector’’ and ‘‘mode’’ are used interchangeably in this

manuscript. The columns of U can be called ‘‘eigenpathways’’ and the rows

of VT can be called ‘‘eigenparticipations’’ (Fig. 2). The eigenparticipations

(Fig. 2), or the modes of V, represent how the extreme pathways can be

linearly combined to form the scaled modes of U, as illustrated in Eq. 6.

P � V ¼ S � U: (6)

V gives the weightings on the pathways needed to reconstruct each of the

modes of U as scaled by their respective singular values. P can be thought of

as a matrix that operates upon a unit sphere, V, to form an ellipse that is

elongated along each singular vector of U in proportion to the corresponding

singular value in S (Lay, 1997). The modes referred to throughout this

manuscript are the columns of U, or eigenpathways.

Extreme pathway decomposition

Each extreme pathway can be described as a weighted (positive or negative)

linear combination of the first r modes of U, where r is the rank of P.

Because the modes are orthonormal to each other, the weighting for each

mode was found by taking the dot product of an extreme pathway with

a given mode of U. The modal spectrum (or the set of r weightings) was

calculated in this manner and gave insight into which mode is most

important for constructing a particular extreme pathway.

CONCEPTUAL FRAMEWORK

Interpretation of the first mode

Computing the SVD of a convex basis for a solution space

that lies within the positive orthant of the flux space ensures

that the first mode must lie within the solution cone. In terms

of the solution space of metabolic networks, this means that

the first mode corresponds to a valid biochemical pathway

through the network (i.e., mass balance and thermodynamic

constraints are obeyed).

In general, the first mode, or first eigenpathway is directed

down the middle of the space spanned by the extreme

pathways (Fig. 3A). In a symmetric cone, the first mode would

come up through the geometric center of the cone (Fig. 3 B).

However, if the cone is asymmetric, the first mode will be

pulled more closely toward those portions of the cone with

higher extreme pathway density. Portions of the extreme

pathway cone that contain a high density of extreme pathways

form ‘‘soft edges’’ and represent many systemically in-

dependent flux distributions that yield similar metabolic

phenotypes. Thus, fluxes that are common in the extreme

pathways will be reflected more heavily in the dominant mode

of the cone. It should also be noted that the lengths of the

extreme pathways can alter the direction of the first mode,

wherea longer extremepathwaywill pull thefirstmode toward

itself. In this study, however, all extreme pathways have unit

length since the necessary vmax data is not available.

Interpretation of subsequent modes

Each subsequent mode (or eigenpathway) after the first

describes the direction of most variance in the subspace that is

orthogonal to the previous modes. For example, the second

mode describes the next direction in which most of the

variance can be explained, and is orthogonal to the first mode.

Fig. 3C schematically demonstrates how the first three modes

can characterize the solution space defined by the extreme

pathways. Because each of the subsequent modes must be

orthogonal to the first mode, they describe the cross section of

the cone orthogonal to the dominant mode. Thus, in the three-

dimensional case, the first mode defines the plane in which

the second and third modes must lie. The second mode

characterizes the direction that captures the most variance in

this plane, and is the line with the minimum sum of squared

differences between the line and all the extreme pathways.

Thus, the direction of the mode is influenced by both the width

of the cone in a particular direction and by the number

of extreme pathways that are closely aligned along that

direction. Thus, it can correspond to either the widest region
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of a cone (Fig. 3 C), or to a region that has a high extreme

pathway density (Fig. 3 D). Because each of the modes is

a linear combination of the extreme pathways, each mode

satisfies the mass balance constraints. However, in contrast to

the first mode, the subsequent modes individually will not

necessarily satisfy reaction directionality constraints.

These subsequent modes represent important directions in

the cone. For example, in Fig. 3 C, if extreme pathway 1

(EP1) were the desired state, then the second principal mode

could represent a critical regulatory modality. Movement of

the solution from the flux distribution corresponding to the

first mode to the desired state would be accomplished by

moving in the direction defined by the second mode.

Similarly, if extreme pathway 2 (EP2) represented the

desired state, then movement along the third principal mode

would lead from the flux distribution corresponding to the

first mode to the desired flux distribution. Moving a solution

along a mode thus represents desired systemic regulatory

control of the corresponding flux values.

Special case: subsets of orthogonal
extreme pathways

Although the extreme pathways are not generally orthogonal

to each other, it is possible in certain cases to have an extreme

pathway or a subset of extreme pathways that are orthogonal

to the rest. SVD of a cone containing extreme pathways that

are orthogonal can generate modes that are identical to, or

combinations of, these orthogonal pathways. Consequently,

these components may not be represented in the first mode,

inasmuch as they are decoupled from the rest of the extreme

pathways. Although in general the first mode will involve the

use of every flux used in any extreme pathway, it may not

include fluxes that are only used in extreme pathways that are

orthogonal to all other extreme pathways.

Interpretation of singular values

The singular values of the extreme pathway matrix charac-

terize the amount of variance described by the directions of

the corresponding modes. Large singular values indicate that

a high degree of variance is captured in the direction of the

corresponding mode. A large first fractional singular value

means that the extreme pathways lie, on average, closer to the

first mode in comparison to evenly distributed fractional

singular values, which indicate that the extreme pathways are,

on average, farther from the first mode.

SVD analysis of simple reaction networks

SVD of extreme pathway matrices of simple reaction

networks demonstrated how important characterizations

FIGURE 2 The singular value decomposition of the extreme pathway matrix.

FIGURE 3 Conceptual framework for application of singular value

decomposition to extreme pathway analysis. In panel A, a convex

representation of the cone defined by the extreme pathways is illustrated.

The first mode from SVD analysis represents the principal direction of the

cone. In panel B, the effect of symmetry of the convex cone is demonstrated.

The areas shown represent cross sections of the multidimensional cone. The

extreme pathways are represented by gray circles on the edges of the cone.

The first mode is represented by a black circle inside the space. With ‘‘soft

edges’’ in a cone, the dominant mode is ‘‘pulled’’ toward this region of the

space. In panel C, we can see how the second and third principal modes

characterize the convex cone. In the plane perpendicular to the first mode,

the second and third modes characterize the variance in mutually

perpendicular directions. Movement along the second mode allows for the

most control of the space characterized by the first mode. In panel D, the

effect of ‘‘soft edges’’ on the directions of the second and third mode is

demonstrated.
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about the function of metabolic networks could be gained

from this type of analysis. The system in Fig. 4 A is a simple

linear chain of reactions. For this case, only one extreme

pathway exists. The solution space is a degenerate cone; it is

simply a line in the six-dimensional space characterized by the

six fluxes. Thus, only one singular value exists and the first

mode captures all of the variance of the one-dimensional

solution space. This very simple case shows how a high first

fractional singular value (in this case 1 or 100%) is a measure

of how well the dominant mode represents the system. At

100%, the dominant mode represents the entire cone, because

the cone is in fact this very line. Once one flux is set to

a particular value, the values for all the other fluxes are fixed.

A slightly more complex example system demonstrates

how the SVD describes flux variability allowed within the

cone. The system in Fig. 4 B is defined by eight fluxes and

four extreme pathways. However, the solution cone itself is

a three-dimensional object, and thus there are three singular

values. The first mode captures 47% of the variance. The

second and third modes account for 28% and 22% of the

variance, respectively. Because there are multiple modes,

flexibility exists in the allowable ratios between the flux

values.

Fig. 4 C shows a reaction network that is similar to the one

in Fig. 4 B, but that contains one additional exchange flux.

For the extreme pathway matrix of this system, there are four

singular values, indicating a four-dimensional cone residing

in the nine-dimensional flux space. The first, second, third,

and fourth modes account for 39%, 22%, 20%, and 19% of

the variance in the system, respectively. In Fig. 4 B, if the

reaction that converts metabolite B to C is active, then the

reaction that converts C to D is active, or the reaction that

converts C to E is active, or both are active. However, this is

not the case for the system in Fig. 4 C; there is the additional

exchange flux for metabolite C. Thus, a wider range of

steady-state solutions is available to the network.

The importance of the modes subsequent to the first is

evident in Fig. 4, B and C. These subsequent modes illustrate

important tradeoffs in the network where flux levels can be

increased or decreased to change the steady-state flux

distribution through the network. These tradeoffs in the

metabolic network correspond to movement along the line

described by the mode in the flux solution space. In the

figure, the changes in the numerical value for fluxes shown in

black are opposite to that of the fluxes shown in gray. Thus,

if a black flux increases, a gray flux decreases, or vice versa.

The second mode in panel B illustrates that for a given state

of the network, if the reaction that converts C to D is

increased, the reaction that converts C to E is decreased. This

shift would move the solution point from a balanced D and E

secretion (as seen in the first mode) to one that gives more

weight to the secretion of D over E. In Fig. 4 B, the third

FIGURE 4 Singular value decomposition of

sample reaction networks. The SVD of these

three reaction networks demonstrates how the

SVD characterizes general properties of the

solution cone, defining the phenotypic possi-

bilities of the metabolic networks. In panel A,

we have the simplest case—the linear chain of

reactions has simply one extreme pathway, and

consequently the first mode characterizes

100% of the extreme pathway matrix. This

cone can be visualized as a simple vector, the

‘‘narrowest’’ possible case. In panel B, the

system has four extreme pathways. Its first

mode characterizes 47% of the total solution

space. In panel C, the system has six extreme

pathways. The first mode characterizes only

39% of the system. The first modes represent

valid biochemical pathways in the network.

The black and gray arrows in subsequent

modes represent increased and decreased flux

levels, respectively. The widths of all of the

arrows in the representations of the modes are

proportional to the flux through the corre-

sponding reaction.
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mode illustrates a split at metabolite B. The exchange flux for

metabolite A and the reaction that converts A to B are gray.

The exchange flux for metabolite B and the fluxes for all

subsequent processing reactions are black. The subsequent

modes thus represent key branch points in the network and

how they influence the flux distribution.

Similar tradeoffs can be seen in Fig. 4 C. In the second

mode, the black fluxes involve the input of metabolite B, the

conversion of B to C, and the output of C. All other fluxes are

gray. If black is chosen to represent a flux increase with

respect to the first mode, then B will be consumed and

converted to C at a higher rate, whereas the consumption of

A will decrease as well as the production of D and E. In the

third mode, there is a split between the conversion of C to D

or E (similar to that seen in the second mode of Fig. 4 B). In

the fourth mode, one branch point is the production of C over

the production of D and E.

Each of these subsequent modes obeys mass balance

constraints, i.e., the magnitude of the increases in the fluxes

out of a metabolite equals the magnitude of the fluxes that

increase going into the metabolite. Consequently, in the

second mode of Fig. 4 B and the third mode of Fig. 4 C, the

black flux that leaves metabolite C has a value that is equal and

opposite the gray flux that leaves metabolite C. This effect can

also be seen in the fluxes around metabolite C in the fourth

mode of Fig. 4C. The black exchange flux leaving metabolite

C is equal in magnitude to the sum of the black flux entering

and the negative of the two gray fluxes leaving.

These sample systems illustrate how the SVD framework

presented herein can elucidate systemic tradeoffs at key

branch points in metabolic networks. Systemic tradeoffs

represent critical decision points that affect what state the

system can achieve and thus have relevance to regulation of

the network. For instance, in the second mode of Fig. 4 B and

the third mode of Fig. 4 C, metabolite C is a critical decision

point where the output flux for D and the output flux for E

can be changed.

RESULTS

SVD was applied to the extreme pathway matrices pre-

viously calculated for amino acid production in H.
influenzae and H. pylori (Papin et al., 2002a; Price et al.,

2002a). Briefly, the extreme pathway matrices were

calculated for the synthesis of each of the nonessential

amino acids of the two organisms. There are 17 nonessential

amino acids in H. influenzae (alanine, asparagine, aspartic

acid, glutamine, glycine, histidine, isoleucine, leucine,

lysine, methionine, phenylalanine, proline, serine, threonine,

tryptophan, tyrosine, and valine) and 12 in H. pylori
(asparagine, aspartic acid, cysteine, glutamine, glutamatic

acid, glycine, lysine, proline, serine, threonine, tryptophan,

and tyrosine). Thus, a total of 29 extreme pathway matrices

were studied. A list of the number of extreme pathways for

each condition can be found in Fig. 5.

Singular values

The cumulative fractional contributions of the singular values

(reported as a percent) are shown in Fig. 5. Each curve

represents the cumulative fractional contribution of the modes

to the extreme pathway matrix associated with a particular

amino acid. For H. influenzae, the 17 curves (one for each

nonessential amino acid) are shown in gray; For H. pylori,
the 12 curves (one for each nonessential amino acid) are

represented in black (see Fig. 5). The cumulative fractional

contributions for the amino acids tightly cluster according to

the respective organism. The difference between the average

first fractional singular value and the average second

fractional singular value in H. pylori is 0.20. The same

difference in H. influenzae is 0.09. The effect of this

difference can be seen in Fig. 5, where the cumulative

fractional contribution increases faster for H. pylori than for

H. influenzae. These results indicate a more even distribution

of singular values in H. influenzae than in H. pylori.

Effective dimensionality

The rank of each of the extreme pathway matrices for amino

acid production in H. pylori and H. influenzae was

calculated. The number of singular values needed to

characterize 95% of the variance (Scrit) was also evaluated

(Fig. 5). The average rank for H. pylori extreme pathway

matrices was 45, meaning that the convex space can be

completely described by an average of 45 modes. However,

95% of the variance can be described by just the first 18

modes. Interestingly, even though H. influenzae had

a smaller average rank (38) than H. pylori (45), more

modes were needed in H. influenzae (between 22 and 24)

than in H. pylori (18) to describe 95% of the variance. The

effective dimensionality of the solution spaces (defined by

a stringent 95% cutoff) was around one-half of the rank for

both organisms.

Comparing dominant modes

Because the first mode best describes the variance of the

entire cone, comparing the first modes of different extreme

pathway matrices is a way to compare the direction of the

two corresponding cones. The dominant modes of the

extreme pathway matrices associated with the production of

different amino acids were compared by calculating the

angles between the modes for both H. pylori and H.
influenzae. Dominant modes that lie in a similar direction

(i.e., a small angle between modes) indicate that the principal

utilization of the metabolic network is similar when

achieving the different objectives. The angles between the

first modes for the 17 amino acids in H. influenzae can be

found in Table 1. The three smallest and the three largest

pairs of angles were underlined and bold faced respectively.

The three smallest pairs of angles were for tyrosine and
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phenylalanine (2.98), asparagine and aspartic acid (3.88), and

serine and glycine (4.68). The synthesis of tyrosine and

phenylalanine differ by only a few final processing steps,

explaining the proximity of their dominant modes. The three

largest pairs of angles are for leucine and proline (25.18),

alanine and proline (22.48), and leucine and threonine

(22.18). The angles between the second and third modes were

also calculated, and the average angles are shown in Table 1.

When analyzing the first, second, and third modes, alanine

consistently had a high average angle in comparison to the

other amino acids, which indicates that the convex solution

cone for alanine production is the most distinct in the

multidimensional space.

Similar calculations were done for the set of extreme

pathways for H. pylori amino acid synthesis (Table 2). The

three smallest pairs for the first modes in the H. pylori
extreme pathway matrices were serine and glycine (3.78),

glutamine and glutamatic acid (3.88), and tyrosine and

cysteine (3.98). The three largest pairs were aspartic acid and

proline (15.78), asparagine and proline (14.98), and glycine

and proline (14.68). The average angles between the first,

second, and third modes are also indicated in Table 2.

The relative proximity of the first modes tends to coincide

with the biochemical precursors from which the individual

amino acids are derived. The three largest angles between the

first modes for the analyzed data sets in H. influenzae and H.
pylori correspond to pairs of amino acids that are derived

from different central metabolic precursors. For example, the

largest angle in the H. influenzae data set is between the first

modes corresponding to proline and leucine; proline is

derived from a-ketoglutarate whereas leucine comes from

pyruvate. In contrast, the three closest pairs in each case

occur between amino acids that stem from the same

precursor; the only exception is for cysteine and tyrosine

in H. pylori. Examination of the first modes from these two

extreme pathway sets shows that they both have higher

fluxes through reactions involved in oxygen consumption, as

compared to the first mode for tryptophan (which has a larger

angle but is synthesized from the same precursor as

tyrosine). This result indicates that the systemic production

of cysteine and tyrosine consumes more oxygen then the

systemic production of tryptophan in H. pylori. Thus, the

angles between the first modes can be influenced by systemic

considerations that are not evident based solely upon the

identification of the key precursor in central metabolism.

Subsequent modes

The extreme pathways associated with histidine and alanine

synthesis in H. influenzae were further analyzed to help

identify possible control points in some of the subsequent

modes. First, the extreme pathways that correspond to

maximum histidine and alanine yield in H. influenzae were

decomposed to ascertain the weightings for each of the

modes that were necessary to reconstruct each pathway.

There were 18 extreme pathways (out of 4934) with the

maximum alanine yield and 64 extreme pathways (out of

4702) with the maximum histidine yield.

In Fig. 6, A and C, the extreme pathway decompositions

are shown, with the weightings for each mode given on the y
axis. Each line represents the modal spectrum for one ex-

treme pathway. The modes with the maximum contribution

FIGURE 5 Cumulative frac-

tional contributions for the singular

value decompositions of the ex-

treme pathway matrices in H.

influenzae and H. pylori. The

cumulative fractional contribution

is defined as the sum of the first n

fractional singular values (reported

as a percent). This value represents

the contribution of the first n modes

to the overall description of the

system. The rank of the respective

extreme pathway matrix is shown

for nonessential amino acids. The

Scrit value is the number of singular

values that account for $95% of the

variance in the matrices. Entries

with ‘‘- - -’’ correspond to essential

amino acids.
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to alanine or histidine production were determined by multi-

plying the mode’s alanine or histidine exchange flux by the

mode’s weight.

For the alanine extreme pathway decomposition, mode 2

had the largest contribution to the net alanine production.

This mode was inspected, and one branch point in the central

metabolic network is indicated in Fig. 6 B. This branch point

demonstrated an increase in the glycolytic flux that leads to

the synthesis of pyruvate, a key precursor to alanine, and

a decrease in the flux leading to the pentose phosphate

reactions.

In the modal spectrum of the 64 extreme pathways with

maximum histidine yield, mode 11 had the most significant

contribution to a change in histidine flux. One branch point

in this mode is indicated in Fig. 6 D. This branch point shifts

flux from the pentose phosphate reactions (indicated in gray)

to the reactions catalyzed by the rpiA and prsA gene

products that lead to the synthesis of PRPP (phosphoribosyl

TABLE 1 Angles between the first dominant modes of the extreme pathway matrices for amino acid synthesis in H. influenzae

ALA ASN ASP GLN GLY HIS ILE LEU LYS MET PHE PRO SER THR TRP TYR VAL

ALA 0.0 – – – – – – – – – – – – – – – –

ASN 14.9 0.0 – – – – – – – – – – – – – – –

ASP 14.6 3.8 0.0 – – – – – – – – – – – – – –

GLN 16.8 7.9 9.0 0.0 – – – – – – – – – – – – –

GLY 16.6 6.0 7.1 8.1 0.0 – – – – – – – – – – – –

HIS 17.6 9.0 10.9 11.5 11.2 0.0 – – – – – – – – – – –

ILE 15.0 11.2 10.4 14.2 13.7 16.0 0.0 – – – – – – – – – –

LEU 18.8 19.2 19.8 20.4 19.5 19.2 19.7 0.0 – – – – – – – – –

LYS 13.3 9.6 9.0 12.6 12.4 14.2 7.9 18.6 0.0 – – – – – – – –

MET 17.7 11.5 10.7 14.4 13.4 16.2 8.6 21.8 10.0 0.0 – – – – – – –

PHE 15.6 7.1 7.2 10.8 10.0 11.0 10.0 18.4 9.4 10.6 0.0 – – – – – –

PRO 22.4 16.9 17.1 16.7 18.2 20.0 14.8 25.1 16.1 14.6 15.7 0.0 – – – – –

SER 15.3 4.7 5.6 7.9 4.6 10.2 12.0 18.8 10.7 11.9 8.2 17.1 0.0 – – – –

THR 15.7 11.1 9.9 14.4 14.3 16.2 6.6 22.1 8.4 8.9 10.7 16.0 12.5 0.0 – – –

TRP 16.7 8.1 8.9 11.6 11.5 8.9 12.0 19.1 11.1 12.4 5.5 16.8 9.4 12.3 0.0 – –

TYR 15.6 6.4 6.6 10.2 9.2 10.5 10.5 18.2 9.6 11.0 2.9 16.1 7.4 11.1 5.6 0.0 –

VAL 13.5 13.0 13.0 15.0 14.4 15.9 12.1 13.3 11.2 14.7 12.2 18.8 13.1 14.2 13.8 12.3 0.0

M1 16.3 10.0 10.2 12.6 11.9 13.7 12.2 19.5 11.5 13.0 10.3 17.6 10.6 12.8 11.5 10.2 13.8

M2 80.5 18.5 19.3 23.1 22.7 38.8 18.9 39.3 18.6 19.6 18.4 30.9 19.5 21.5 24.1 18.5 24.0

M3 76.7 35.5 35.0 40.8 39.2 47.8 52.1 49.2 56.0 48.9 34.9 56.3 35.8 61.8 39.0 35.0 62.6

The amino acids are represented by their three-letter abbreviation. The angles are in degrees. Also note that the matrix is symmetric, and consequently only

half of the values are shown. The lowest angles between the first modes of the extreme pathway matrices for the production of the individual amino acids are

underlined. The largest angles between the first modes are shown in boldface type. The row M1 corresponds to the average angle between the first mode of

the extreme pathway matrix for the indicated amino acid and all of the other data sets. The row M2 corresponds to the average angle between the second

modes. The row M3 corresponds to the average angle for the third mode.

TABLE 2 Angles between the first dominant modes of the extreme pathway matrices for amino acid synthesis in H. pylori

ASN ASP CYS GLN GLU GLY LYS PRO SER THR TRP TYR

ASN 0.0 – – – – – – – – – – –

ASP 4.0 0.0 – – – – – – – – – –

CYS 7.8 9.2 0.0 – – – – – – – – –

GLN 5.6 6.1 8.8 0.0 – – – – – – – –

GLU 6.3 6.7 8.1 3.8 0.0 – – – – – – –

GLY 5.3 6.0 8.2 6.0 6.5 0.0 – – – – – –

LYS 8.0 9.0 5.9 8.1 7.3 8.8 0.0 – – – – –

PRO 14.9 15.7 11.3 13.0 11.4 14.6 10.9 0.0 – – – –

SER 4.7 5.7 6.5 5.3 5.6 3.7 7.2 13.3 0.0 – – –

THR 5.7 6.6 5.4 6.9 6.5 6.9 5.4 12.2 5.4 0.0 – –

TRP 9.4 10.7 6.0 10.8 10.3 9.5 9.0 14.0 8.3 8.2 0.0 –

TYR 8.1 9.3 3.9 9.2 8.4 8.2 6.5 11.7 6.6 6.0 4.5 0.0

M1 7.2 8.1 7.4 7.6 7.4 7.6 7.8 13.0 6.6 6.8 9.2 7.5

M2 28.8 26.5 29.4 24.9 25.3 22.3 29.0 52.4 22.2 23.7 53.4 31.0

M3 33.7 35.7 40.8 33.1 31.7 32.1 35.5 64.2 29.8 30.8 48.0 36.8

The amino acids are represented by their three-letter abbreviation. The angles are in degrees. Also note that the matrix is symmetric and consequently only

half of the values are shown. The lowest angles between the first modes of the extreme pathway matrices for the production of the individual amino acids are

underlined. The largest angles between the first modes are shown in boldface type. The row M1 corresponds to the average angle between the first mode of

the extreme pathway matrix for the indicated amino acid and all of the other data sets. The row M2 corresponds to the average angle between the second

modes. The row M3 corresponds to the average angle for the third mode.
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pyrophosphate), a key precursor of histidine. Other branch

points were present within the mode but are not shown.

DISCUSSION

This study presents the application of SVD to the analysis of

large sets of extreme pathways generated from analysis of

genome-scale metabolic networks. SVD of extreme pathway

matrices has led to the following key results: 1), Convex

steady-state solution cones characterizing the potential

functions of biochemical networks were described using

the modes generated by SVD, as readily illustrated by

representative example systems; 2), SVD of extreme

pathway matrices characterizing amino acid synthesis

demonstrated that H. pylori has a more ‘‘rigid’’ metabolic

network (lower effective dimensionality and more dominant

first singular value). This interpretation is consistent with

previously published results (Price et al., 2002a); and 3),

SVD allowed for the comparison of different solution cones

corresponding to the production of different amino acids

within a genome-scale metabolic network.

Extreme pathways define a convex cone in a high-

dimensional flux space that can be difficult to interpret and

understand. The value of understanding the solution cone lies

in its circumspection of all possible metabolic phenotypes

available to a given network. SVD of extreme pathways gives

several important measures that characterize these cones.

First, the singular values can give a measure of the distribution

of variance within the solution cone. A more even distribution

of the contribution of the singular values is indicative of a cone

that has wide variability with respect to its modes. Another

important feature can be seen in the interpretation of the first

mode; the first mode is a valid pathway through the network.

With the exception of orthogonal extreme pathways (as was

FIGURE 6 Key branch points in H. influenzae metabolic network for the synthesis of alanine and histidine. In panel A, there are 18 extreme pathways

represented, each with the maximum yield of alanine. A key branch point in mode 2 of the metabolic network for alanine synthesis is shown in panel B. In panel

C, there are 64 extreme pathways represented, each with the maximum histidine yield. A key branch point in mode 11 of the metabolic network for histidine

synthesis is shown in panel D. Black and gray fluxes change in opposite directions. Dashed lines correspond to reactions not shown. Indicated metabolites are

the following: E4P, erythrose 4-phosphate; F6P, fructose 6-phosphate; FDP, fructose-1,6-diphosphate; FRU, fructose; OA, oxaloacetate; PRPP,

phosphoribosyl pyrophosphate; PYR, pyruvate; R5P, ribose 5-phosphate; RL5P, D-ribulose 5-phosphate; S7P, sedo-heptulose 7-phosphate; T3P1,

glyceraldehyde 3-phosphate; T3P2, dihydroxyacetone phosphate; X5P, D-xylulose-5-phosphate. Reactions are catalyzed by the following enzymes: fba,

fructose-1,6-bisphosphatate aldolase; fbp, fructose-1,6-bisphosphatase; pfkA, phosphofructokinase; prsA, phosphoribosyl pyrophosphate synthase; rpiA,

ribose-5-phosphate isomerase A; talB, transaldolase B; tktA, transketolase; tpi, triosphophate isomerase.
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previously discussed), the first mode can be visualized as

a single vector that characterizes the general direction of the

cone. These features give very specific quantitative measures

of the systemic capabilities of a network. It is important to

note that SVD characterizes the linear, rather than the convex,

space defined by the extreme pathways. Thus, the modes

characterize a space that includes the complete solution space,

but also span an additional space that is infeasible due to

thermodynamic constraints. Therefore, not all combinations

of the modes yield valid solutions. However, each valid flux

distribution defined by the extreme pathways can be uniquely

decomposed into the modes. It has been shown herein that it is

possible to utilize SVD in such a manner that the de-

composition yields insight to biological function.

This framework was subsequently applied to the analysis

of the extreme pathway matrices for amino acid production

in H. influenzae and H. pylori. The metabolic network for

amino acid production in H. pylori was characterized by

higher first fractional singular values and a lower effective

dimensional space in comparison to the results from H.
influenzae. These results are in agreement with previously

published analyses that demonstrated a much more restricted

metabolic potential for H. pylori than H. influenzae (Papin

et al., 2002a; Price et al., 2002a). Understanding and

characterizing the metabolic potential of pathogens like H.
pylori and H. influenzae can also lead to the targeting of an

organism’s weaknesses, important for therapeutic purposes

and metabolic engineering design.

The comparison of solution cones can be challenging

because cones differ in their dimensionality. Direct compar-

isons can only be made for cones of the same dimension and

with the same fluxes. SVD can be used to facilitate rough

comparisons between cones. The first mode describes the

direction of most variance within the cone. Thus, by

comparing the angle between the first mode of different

cones, a comparison can be made between the general

directions of the two cones. The first modes must contain the

same sets of fluxes to be compared directly. For this reason,

the comparisons made between the first modes of solution

cones were only made within the same organism and for the

production of one amino acid with all other allowable fluxes

being identical (i.e., the same stoichiometric matrix). Thus,

for these calculations we were able to make comparisons

between solution cones.

Subsequent modes may serve to further the understanding

of regulatory logic in metabolic networks. The subsequent

modes of the SVD characterize orthogonal pathways that

describe the variance in the flux space. An interpretation of

these modes will enable the characterization of the tradeoffs

in flux values that best reconstruct the solution space. The

subsequent modes identify key branch points in the network,

which are potential control points for regulation. Thus, these

subsequent modes can be thought of as finding key

regulatory modalities. They represent orthogonal directions

in the space, and thus they are uncoupled from each other in

a mathematical sense. However, biological systems are not

constrained by the need for orthogonal regulatory modalities.

Once the subsequent modes that best represent the solution

space (or a portion of the solution space that is of most

interest) are calculated, these modes can be transformed into

nonorthogonal, biologically meaningful vectors. A need

exists for the elucidation of optimal criteria for decoupling

these predicted regulatory modalities based upon biochem-

ical considerations, rather than by the mathematical

definition of orthogonality. The elucidation of the way in

which the subsequent modes describe cellular regulation

warrants further study, as does an investigation of the criteria

by which these subsequent modes can be transformed to

maximize insight into the regulation of biological systems.

Extreme pathways are becoming an important tool for the

analysis of metabolic networks. Flux balance analysis

(Edwards et al., 1999), kinetic theory (Reich and Sel’kov,

1981; Heinrich and Schuster, 1996), elementary modes

(Schuster et al., 2000), and metabolic control analysis (Fell,

1996) have yielded biologically important results. Extreme

pathway analysis generates a unique and minimal set of basis

vectors that circumscribe all possible steady-state flux

solutions of a metabolic network. As such, the understanding

and analysis of extreme pathways result in time-invariant,

systemic characterizations of the full capabilities of an

organism. SVD of extreme pathway matrices is a novel

application for reducing the dimensionality of these data sets

and providing succinct characterizations of the metabolic

solution space.

Taken together, the SVD of extreme pathway matrices has

led to interesting and important characterizations of the

properties of metabolic networks, and may potentially

provide clues to inherent systemic regulatory structures.

The results presented herein point to how emergent properties

can be elucidated from systemic in silico analyses. As the

amount of genomic data expands, approaches such as extreme

pathway analysis and the SVD of its resultant pathways will

lead to a systemic understanding of biological systems.
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