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ABSTRACT We have developed a model of cardiac thin filament activation using an Ising model approach from equilibrium
statistical physics. This model explicitly represents nearest-neighbor interactions between 26 troponin/tropomyosin units along
a one-dimensional array that represents the cardiac thin filament. With transition rates chosen to match experimental data, the
results show that the resulting force-pCa (F-pCa) relations are similar to Hill functions with asymmetries, as seen in
experimental data. Specifically, Hill plots showing (log(F/(1-F)) vs. log [Ca]) reveal a steeper slope below the half activation point
(Ca50) compared with above. Parameter variation studies show interplay of parameters that affect the apparent cooperativity
and asymmetry in the F-pCa relations. The model also predicts that Ca binding is uncooperative for low [Ca], becomes steeper
near Ca50, and becomes uncooperative again at higher [Ca]. The steepness near Ca50 mirrors the steep F-pCa as a result of
thermodynamic considerations. The model also predicts that the correlation between troponin/tropomyosin units along the one-
dimensional array quickly decays at high and low [Ca], but near Ca50, high correlation occurs across the whole array. This work
provides a simple model that can account for the steepness and shape of F-pCa relations that other models fail to reproduce.

INTRODUCTION

Cardiac muscle exhibits high sensitivity to calcium (Ca) so

that during each heartbeat, relatively small changes in free

cytosolic [Ca] produce large changes in developed force. A

protocol to characterize Ca sensitivity is to measure steady-

state force as a function of activator calcium, known as

a Force-pCa (F-pCa) relationship as shown in Fig. 1 A
(diamonds). Typical for cardiac muscle, the data can be

approximately fit by a Hill function given by

Force ¼ 1

1 þ ½Ca50�
½Ca�

� �NH

;

(1)

where [Ca] is the free Ca concentration, [Ca50] is the Ca

concentration producing half maximal force, and NH is the

Hill coefficient. The solid trace in Fig. 1 A is a Hill function

fit to the experimental data with NH equal to 8. A more

precise method to characterize this coefficient is a Hill plot

where log (Force/(1�Force)) is plotted as a function of log

[Ca], as shown in Fig. 1 B. For a true Hill function (solid
trace), a straight line is found where the slope is the Hill

coefficient and the zero crossing corresponds to [Ca50]. In

contrast, the experimental data are better fit by two slopes

(dotted traces) where the initial slope is 10 and the final

slope is 5. Hence, the apparent cooperativity is greater below

[Ca50] than above. Similar results have been reported

elsewhere for cardiac and skeletal muscle (Brandt et al.,

1980; Moss et al., 1985, 1983; Sweitzer and Moss, 1990).

In cardiac muscle, the force generating actin-myosin

interactions are sterically controlled by troponin, a protein

complex with a single regulatory binding site for Ca (Dotson

and Putkey, 1993). A single binding site should theoretically

produce a single Hill coefficient equal to 1, hence the high

local slopes of the experimental Hill plot are indicative of

cooperative behavior. However, the exact source of the

cooperativity is still under much debate with many proposed

mechanisms (Razumova et al., 2000; Rice et al., 1999). For

example, cross-bridges are thought to increase the affinity of

troponin for Ca so that Ca sensitivity should increase with

developed force (Guth and Potter, 1987; Hofmann and

Fuchs, 1987). Experimental evidence also shows coopera-

tivity between neighboring cross-bridges so that an attached

cross-bridge may facilitate binding of nearby cross-bridges.

One possible mechanism is that strongly bound cross-

bridges hold the tropomyosin in permissive conformation to

facilitate attachment of nearby cross-bridges. For example, in

vitro studies suggest that binding of isolated myosin heads

can produce activation of the thin filament even in the

absence of Ca (Bremel and Weber, 1972; Swartz and Moss,

1992; Trybus and Taylor, 1980). Also, the forces from

a bound cross-bridge may produce significant realignment of

actin-binding sites along compliant thick and thin filaments

to increase the binding of nearby cross-bridges (Daniel et al.,

1998). Another proposed cooperative mechanism involves

end-to-end interactions of the regulatory troponin/tropomy-

osin (T/T) units along the thin filament. The T/T units

overlap by several residues, a feature thought to mediate end-

to-end interactions that increase apparent cooperativity

(Johnson and Smillie, 1977; Pan et al., 1989).

There have been many attempts to model cardiac

myofilaments based on one or more of the cooperative

mechanisms given above (Dobrunz et al., 1995; Landesberg

and Sideman, 1994; Razumova et al., 2000; Rice et al., 1999;
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Zou and Phillips, 1994). Unfortunately, many of the model-

ing efforts are hampered by the paucity of direct experiment

estimates of the cooperative mechanisms, especially with

regard to nearest-neighbor cooperative effects (Razumova et

al., 2000; Rice et al., 1999). Moreover, the models fail to

reproduce basic cooperative behavior as characterized by

F-pCa relations. Specifically, the models have failed to pro-

vide a framework to understand why F-pCa relations are

closely approximated by Hill functions and why Hill plots

show two slopes. This work seeks to address these issues by

proposing a model of cardiac thin filament activation using

an Ising model approach from equilibrium statistical physics.

Similar Ising models published previously have focused on

simulating cooperative binding of S1 myosin heads to

skeletal muscle, a related but critically different mani-

festation of thin filament cooperative behavior (Hill et al.,

1980; Tobacman and Butters, 2000).

METHODS

The model is developed using a 4-state Markov model of a T/T unit as

shown in Fig. 2 A. We assume troponin binds a Ca ion on a single regulatory

site as appropriate for cardiac myofilaments. The two right states have Ca

bound to troponin, inasmuch as the two left states have no Ca bound. The

T/T unit is assumed to be in either a nonpermissive state that prevents cross-

bridge binding or a permissive state that allows cross-bridges to cycle to

generate force. The nonpermissive conformations are shown as the two

upper states in Fig. 2 A, whereas permissive conformations are the two lower

states. Note that cross-bridges are not explicitly represented but are assumed

to cycle and generate force whenever the T/T unit becomes permissive. Each

4-state model represents one of 26 T/T units (Brandt et al., 1987) in a one-

dimensional linear array to represent the thin filament. The ends of the array

are assumed to connect (referred to as periodic boundary conditions) so that

every unit has two neighbors.

Ca binding is assumed to follow simple first-order kinetics. The forward

rate is assumed to be diffusion limited and independent of the permissive

state so that kon ¼ k9on. The reverse rate is assumed to depend on the

permissive state of the T/T unit. The model assumes koff . k9off in agreement

with experimental evidence that the affinity of troponin for Ca increases

when activated in the presence of cycling cross-bridges. The relationship

between koff and k9off is set by a parameter m . 1 such that the following

relations hold:

Kd ¼
koff

kon

; (2)

K9d ¼
k9off

k9on

¼ koff=m

kon

¼ Kd

m
: (3)

Many researchers have assumed that the steep F-Ca relations in cardiac

muscle result from end-to-end interactions of T/T units along the thin

filament. The model implements such a cooperative mechanism by making

the rates between nonpermissive and permissive states depend on the states

of the two nearest-neighbor T/T units. The nearest-neighbor interactions are

set by a parameter g whose physical interpretation will be discussed

momentarily. The neighbor dependencies appear as exponents on g that

are computed by the number of neighboring units in the permissive

conformation as shown in Fig. 2 B. The exponent n can take on the values of

0 for no permissive neighbors, 1 for a single permissive neighbor, and 2 for

both neighbors permissive. The net effect of the gn terms is to increase the

nonpermissive to permissive transition rates when the neighbors are

also permissive. Similarly the g�n terms decrease the reverse rates from

permissive to nonpermissive states. Therefore an individual T/T unit is more

likely to make the transition to permissive when its neighbors are

permissive. Likewise, an individual T/T unit is more likely to make the

transition to nonpermissive when its neighbors are nonpermissive. Hence,

the gn and g�n terms promote uniformity along the thin filament so that T/T

units tend to take the permissive states of their neighbors.

The physical interpretation of g comes from the neighbor-induced change

in the transition energy barrier between nonpermissive and permissive states.

More specifically, one can write

g ¼ e�DE=2; (4)

where DE is the change in the free energy difference induced by either

neighboring T/T being in the permissive state.

FIGURE 1 Experimentally measured F-pCa relation from cardiac mus-

cle from rat. The muscle is skinned (the sarcolemma is removed) to allow for

precise control of activator [Ca] level, and the sarcomere length is

maintained at 2.05 mm via feedback control. The data are similar to that

from a previous publication that provides a complete description of the

methods (Dobesh, 2001). (A) Data are plotted as normalized force (Force)

vs. the log of activator [Ca] in mM (i.e., 1.0 corresponds to 10 mM). The

symbols show the mean of the data, and the error bars show the standard

error. The solid trace data are fit using a Hill function with [Ca50] ¼ 3.8 and

NH ¼ 8. (B) Data from A are replotted using a Hill plot with log (Force/

(1�Force)) plotted as function of log [Ca]. The solid trace shows the true

Hill function which produces a single straight line in the Hill plot (slope ¼
NH and zero crossing¼ log[Ca50]). In contrast, the experimental data are not

fit by a single straight line but are more closely fit by two straight lines with

slopes equal to 10 and 5 (dashed traces). Note that the errors bars show the

standard error computed after transforming the raw data points individually

using log (Force/(1�Force)). Because this transformation is nonlinear, the

standard error reported in A may differ from that in B. Hence, the fit to the

experimental data may fall within the error bars in A but not B.
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Although the gn and g�n terms set the cooperative effects, the base rate

for transitions between nonpermissive and permissive states must still be

defined. The base rates are set as follows for nonpermissive to permissive

transitions:

knp1 ¼ Qkbasic; (5)

knp0 ¼ knp1=m ¼ Qkbasic=m; (6)

where kbasic is a rate in units of s�1 and Q is a coefficient that is assumed to

be larger than 1 for this model of the thin filament. The rationale of this

construction will be considered momentarily. Note that without Ca bound to

the T/T unit, transition rate from nonpermissive to permissive is slower by

the factor m defined above. Hence the relaxed, nonpermissive state is favored

when no Ca is bound. The opposite is also true, and Ca binding to the T/T

unit promotes activation. Also by choosing the factor m defined above, the

system will satisfy microscopic reversibility for any choice of n. Hence, the

product of rates in the clockwise direction will equal the product in the

counterclockwise direction in Fig. 2 A. A similar construction has been used

elsewhere (Dobrunz et al., 1995). Note that m has a dual role by both

inhibiting the transitions to permissive when no Ca is bound and enhancing

binding of Ca when the unit is permissive. The net effect of increasing m is

to augment the bias toward nonpermissive at low [Ca] and permissive at

high [Ca].

The base rate for transition rates from the permissive to the non-

permissive state is assumed to be independent of whether Ca is bound (i.e.,

knp0 ¼ knp1). However, we choose to use g to determine these rates with the

following relation:

kpn0 ¼ kpn1 ¼ g2kbasic: (7)

To understand the rational of this construction, consider some specific

thin filament configurations. First, assume that the thin filament is

completely in the nonpermissive state so that n will be 0 for all units and

FIGURE 2 The model assumes

26 equivalent T/T units that are

situated end-to-end along the thin

filament. (A) Each T/T unit can be

represented by a 4-state Markov

model with transition rates between

the states as shown. The states are

coded with 0x or 1x to represent no

Ca or Ca bound, respectively, to the

single regulatory site on cardiac

troponin. The units are coded with

xN and xP to represent states that

are in the nonpermissive and per-

missive conformations, respec-

tively. Cross-bridges are not

explicitly represented but are as-

sumed to bind and generate force

when units become permissive. The

transition rates are shown for Ca

binding are given by kon[Ca] and

koff for the nonpermissive states and

k9on[Ca] and k9off for the permissive

states. The transition rate from

a nonpermissive to a permissive

state depends both on a base rate

and a cooperativity term. The base

rates are the knpx and kpnx where x is

0 or 1 depending on whether or not

Ca is bound. The base rates are

modified by cooperativity terms gn

and g�n where n is the number of

neighboring units in the permissive

conformation (see B). The model

can be solved in steady state using

an Ising approach where each T/T

unit is assumed to have two spins, d

and s. The d spin can take on values

�1 for no Ca bound and þ1 for Ca

bound, and the s spin can take on

values �1 for nonpermissive and

þ1 for permissive. (B) The nearest-

neighbor dependencies appear as

exponents on g terms that are computed on the number of neighboring units in the permissive conformation. The exponent n can take on the values of

0 for no permissive neighbors, 1 for a single permissive neighbor, and 2 when both neighbors are permissive. The whole model consists of 26 T/T units along

the thin filament where the first and last units are assumed to be connected so that all units have two neighbors.
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knp1g
n=kpn1g

�n ¼ knp1=kpn1 ¼ Q=g2: (8)

Assuming that g2 � Q . 1, then nonpermissive states are highly

favored, and the thin filament will be close to fully relaxed. Now consider

when the thin filament is fully activated, then n will be 2 for all units so that

knp1g
n=kpn1g

�n ¼ knp1g
2=kpn1g

�2 ¼ Qg2: (9)

For the same assumption that g2 � Q . 1; then permissive states are

highly favored, and the thin filament will be close to fully activated.

Now consider when the thin filament is in a state where half the units are

in the permissive conformation and the other half are in the nonpermissive

conformation. This corresponds to a half-maximum force in terms of

conventional muscle physiology. In this situation, n will not be 1 for all

units, but we will make this approximation for the moment and compute

knp1g
n=kpn1g

�n ¼ knp1g=kpn1g
�1 ¼ Q: (10)

Assuming that Q . 1, then permissive states are favored over

nonpermissive states. The parameter Q can be considered a bias term to tip

the system toward fully permissive as Ca levels increase. As Q increases, the

system tends to activate more easily, and the fraction of permissive units will

approach 1 at high Ca. Conversely, as Q decreases toward 1, the fraction of

permissive units will approach 0.5 at high Ca.

The model construction and rates as defined correspond best to ideas

developed from experimental characterizations of muscle physiology. The

system can be implemented in a straightforward fashion using Monte Carlo

techniques. We can assume 26 T/T units in a one-dimensional linear array to

represent the thin filament. At each time step, the exponent n must be

computed for each of the units, and we assume that the ends are wrapped so

that unit 1 and unit 26 are connected. The state of each T/T is then updated

considering the transition rates as defined in Fig. 2 A, and the system can be

evolved forward in time.

However the same model can also be solved in equilibrium conditions

using an Ising approach. To do this, we recast the system so that each T/T

unit has two spins, d and s. The d spin can take on values �1 for no Ca

bound and þ1 for Ca bound. The s spin can take on values �1 for

nonpermissive and þ1 for permissive. Comparing to the states represented

in Fig. 2 A, the d spin corresponds to the left-to-right direction, and the

s spin corresponds to the top-to-bottom direction. Assuming each of the

T/T is one of four states the complete thin filament model has 4N ¼ 426

configurations. The probability associated with any configuration is

computed using

p } e�bH; (11)

where the energy H is computed as

H ¼ �+
N

i¼1

ðhdi þ jsi þ kdisi þ lsisiþ1Þ; (12)

and h, j, k, and l are constants that are determined from the rates in Fig. 2 A.

The constants h and j correspond to magnetic fields applied in the d spin and

s spin directions, respectively. A coupling term k exists to couple changes in

the d spin and s spin directions. Intuitively, this forces the Ca binding

transition to affect the nonpermissive to permissive transition. A coupling

term l exists so that neighboring units will tend to align in s spin direction.

Intuitively, this produces an energetic penalty when one unit is non-

permissive and the next unit is permissive, or vice-versa. Hence the lowest

energy is obtained when the neighboring units are either both nonpermissive

or both permissive.

The partition function of the system is

Z ¼ +
fdig

+
fsig

e�bH: (13)

A more convenient form of the partition function can be computed using

the transfer matrix formalism (Plischke and Bergersen, 1989) with

Z ¼ TrPN; (14)

where Tr is the trace of a matrix and

P ¼
ebð�jþlÞ2cosh bðh � kÞ ebð�j�lÞ2cosh bðh � kÞ

ebðj�lÞ2cosh bðh þ kÞ ebðjþlÞ2cosh bðh þ kÞ

2
4

3
5:
(15)

By computing eigenvalues (l1 and l2) of P, the partition function can be

rewritten as

Z ¼ lN

1 þ lN

2 : (16)

The eigenvalues will be derived as functions of the model parameters

later. For now, the eigenvalues can be used to derive the mean spins in the d

and s directions as follows:

hdi ¼ 1

N

@lnZ

@bh
¼ 1

lN

1 þ lN

2

lN�1

1

@l1

@bh
þ lN�1

2

@l2

@bh

� �
(17)

hsi ¼ 1

N

@lnZ

@bj
¼ 1

lN

1 þ lN

2

lN�1

1

@l1

@bj
þ lN�1

2

@l2

@bj

� �
(18)

To convert from the Ising approach to the kinetic model of Fig. 2, we use

the principle of detailed balance, according to which wxypy ¼ wyxpx; where

wxy is the transition probability per unit time for converting state y to state x,

and px is the equilibrium probability of state x. Using that the kinetics rate

constant kxy linking state x to y is proportional to the transition probability

per unit time wxy, detailed balance yields

kxy

kyx

¼ exp½�bðHðxÞ � HðyÞÞ�: (19)

Here we have used that the probability of state x in the Ising model is

given by the Gibbs distribution of Eq. 12, with the energy function H

corresponding to that state. Notice that in Eq. 19, the left side refers to the

kinetic model, whereas the right side refers to the Ising model. Thus we can

recast the kinetic parameters described earlier in terms of the Ising model

parameters.

As an example, let us consider the transition between the state x¼ 1N
(d ¼ 1, s ¼ �1) and y¼ 0N ðd¼�1; s¼�1Þ: The left side in Eq. 19

yields kon½Ca�=koff or using Eq. 2, ½Ca�=Kd ¼Ca: The difference in energy

between these two states is HðxÞ�HðyÞ ¼ 2ðk� hÞ: Thus, from Eq. 19,

bh ¼ bk þ 1

2
lnCa; (20)

where Ca ¼ ½Ca�=Kd; the free [Ca] normalized by Kd, the binding constant

for troponin in the nonpermissive conformation. Using similar arguments, it

can be shown that

bk ¼ 1

4
lnm; (21)

bl ¼ 1

2
lng; (22)

bj ¼ �bk þ 1

2
lnQ: (23)
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Given that the Ising approach solves for equilibrium, then only the ratios of

rates actually need to be considered. Hence Kd is used instead of kon and koff,

and kbasic becomes unimportant as it appears in both forward and reverse rates

for the nonpermissive to permissive transition rates. Inasmuch as only the

ratios of rates actually need to be considered, we constructed the model in Fig.

2 based on individual forward and reverse rates for two reasons. First, some of

the rates could be estimated from experimental data. Hence, the individual

rates are more closely aligned with physiologist’s views of the system.

Second, the model in Fig. 2 may be extended to nonequilibrium conditions

using Monte Carlo methods. Although not considered in this paper, the rates

provided here produce reasonable results in this application.

For any overlap or thick and thin filaments, there is a maximal amount of

steady-state force that occurs for large, saturating [Ca] levels. Although we

lack direct experimental evidence, we assume that this situation corresponds

to all T/T units in the permissive conformation (permissive fraction equals 1)

to allow for maximal actin-myosin interactions. Hence a permissive fraction

equal to 1 will recruit all potential cross-bridges that can cycle so that

normalized force will also be equal to 1. At the other extreme of low [Ca],

the fraction of permissive units will equal 0, and no cross-bridges will be

cycling to produce a normalized force equal to 0. For intermediate values of

[Ca], we assume that the fraction of permissive units translates into the

fraction of recruited, cycling cross-bridges, and hence also the fraction of

normalized force. For example, if the permissive fraction is 0.3, then we

assume 30% of potential cross-bridges are cycling and generating force, and

the normalized force equals 0.3.

RESULTS

Computing force and Ca-binding relations

A primary goal of this study is to understand the role of

nearest neighbor cooperativity in producing steep F-pCa
relation in cardiac muscle. In steady state, the fraction of

cycling cross-bridges should be determined primarily by the

activation state of the thin filament (i.e., the fraction of

permissive T/T units will be the same as the fraction of

cycling cross-bridges) if filament overlap is not considered,

as done in this model. If one makes this assumption that

normalized force is equal to the fraction of permissive units

(see Methods), then an analytic solution for force can be

derived using the Ising model. As shown in Fig. 2, the state

of each of the 26 T/T units is either nonpermissive (s ¼ �1)

or permissive (s ¼ þ1). Hence, the average s spin for the

whole system, denoted by hsi, will take values between �1

and 1. Then the fraction of permissive units, fp, can be

computed using

fp ¼ hsi þ 1

2
: (24A)

The equation for hsi is derived using the eigenvalues of P
as described in the Methods section to yield

where

A ¼ m1=4ðQ1=2 � Q�1=2Þ; (25)

B ¼ m�3=4ðQ1=2 � mQ�1=2Þ; (26)

and

l1;2 ¼
g1=2

2Ca1=2

�
A9Ca þ B9

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðACa þ BÞ2 þ 4g�2m�1=2ðCa þ 1ÞðmCa þ 1Þ

q �
;

(27)

where

A9 ¼ m1=4ðQ1=2 þ Q�1=2Þ; (28)

B9 ¼ m�3=4ðQ1=2 þ mQ�1=2Þ: (29)

In the equations above, Ca is a nondimensional variable

computed by normalizing free [Ca] by Kd. One must simply

vary free [Ca] and compute fp as shown above to generate

the relations shown in Fig. 3 A. Data are shown for g set to

10, 20, 30, and 40; all other parameters remain the same (Kd

¼ 10 mM, m ¼ 10, Q ¼ 2). The results show increasing

steepness as g is raised to larger values. The steepness can be

quantified using a Hill plot shown in Fig. 3 B. The Hill plot

shows log ( fp/(1�fp)) as function of log [Ca] where fp is the

fraction of permissive units from Fig. 3 A. The slope of the

Hill plot reports the apparent cooperativity in the system at

any value of [Ca].

As shown in Fig. 2, the state of each of the 26 T/T units

has either Ca unbound (d ¼ �1) or Ca bound (d ¼ þ1). The

average d spin for the whole system, denoted by hdi, will

take values between �1 and 1. Then the fraction of T/T units

with Ca bound can be computed using

fcb ¼ hdi þ 1

2
: (30)

The Ca binding curves in Fig. 4 are produced for the same

parameters and values of g as in Fig. 3. Fig. 4 A included two

additional traces that illustrate predicted binding curves for

simple buffers withKd ¼ 10mM andK9d ¼ 1mM. The model

results show that the Ca binding initially resembles the lower

curve for the simple buffer corresponding to Kd ¼ 10 mM.

fp ¼ 1

2
1 þ ACa þ Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðACa þ BÞ2 þ 4g�2m�1=2ðCa þ 1ÞðmCa þ 1Þ
q lN

1 � lN

2

lN

1 þ lN

2

2
64

3
75; (24B)
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However as a greater fraction of units become permissive, the

model Ca binding becomes steeper and switches to the upper

curve for the simple buffer corresponding to K9d ¼ 1 mM. In

the model, K9d= m ¼ Kd so that binding of Ca first follows

a curve determined by Kd and then switches to a curve

determined by Kd and m. The switch between the curves

follows the highly cooperative fp curves. Hence, the apparent

cooperativity of Ca binding is greatly increased during the

transition phase. The switch is most clearly seen in the Hill

plots of fcb shown in Fig. 4 B. In these plots, the slope is

initially 1 reflecting the uncooperative binding at low [Ca].

Near the transition region, the slope gets larger indicating the

higher apparent cooperativity near the Ca50 point. At even

larger [Ca], the slope again returns to 1 as the binding again is

uncooperative.

Returning to Fig. 3, the model fp curves can be compared

to Force-pCa relations reported for real muscle. The

comparison to real F-pCa relations becomes important when

one attempts to narrow the range of parameters for the

myofilament model. Real cardiac muscle shows steep F-pCa
relations with Hill coefficients in the range of 7–10. We will

determine the apparent cooperativity at the point where half

the T/T units are permissive. This point, referred to the Ca50

point, can be found by the zero crossings in the Hill plots as

shown in Fig. 3 B. The Ca50 point can be determined

analytically using the expression,

Ca50 ¼ �B

A
¼ ðQ�1 � m�1Þ

ð1 � Q�1Þ (31)

FIGURE 3 Model results are shown for four values of g. (A) The fraction

of permissive units ( fp) is plotted vs. log [Ca]. These plots can be compared

to the F-pCa relation in Fig. 1 if one assumes that force is proportional to the

fraction of permissive units. The values of g are 10, 20, 30, and 40 as

labeled, whereas the other parameters were fixed (Kd ¼ 10 mM, m¼ 15, and

Q ¼ 2). As g increases, the steepness also increases indicating higher

apparent cooperativity. (B) Apparent cooperativity is assessed using a Hill

plot showing log (fp/(1�fp)) as a function of log [Ca]. The traces are

sigmoidal and not linear; hence, the model does not produce true Hill

functions. The slope is close to maximal near [Ca50] (corresponding to the

zero crossing) and decreases to either side. The NH50 values (the slope at

Ca50) point are 4.4 for g ¼ 10, 7.7 for g ¼ 20, 9.4 for g ¼ 30, and 10.3 for

g ¼ 40.

FIGURE 4 Model results are shown for four values of g. (A) The fraction

of unit with Ca bound (fcb) is plotted vs. log [Ca]. The four data traces are

from the same simulation as those in Fig. 3. In the lower [Ca] range, the fcb

initially resembles the lower thick trace that shows the Ca binding curve for

a simple buffer with a dissociation constant ¼ 10 mM. In the upper [Ca]

range, the fcb resembles the upper thick trace that shows the Ca binding

curve for a simple buffer with a dissociation constant ¼ 1 mM. The transition

between the curves reflects the highly cooperative fp curves shown in Fig. 3.

(B) Apparent cooperativity is assessed using a Hill plot showing log (fcb/

(1�fcb)) as a function of log [Ca]. The slope is initially 1 reflecting the

uncooperative binding at low [Ca]. Near the transition region, the slope gets

larger indicating the higher apparent cooperativity near the [Ca50] point. At

even larger [Ca], the slope again returns to 1 as the binding again is

uncooperative. The slope is largest near [Ca50] point (corresponding to the

zero crossing in Fig. 3 B). For the cases shown, the slope is 2.9 for g ¼ 10,

4.2 for g ¼ 20, 4.8 for g ¼ 30, and 5.1 for g ¼ 40.
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where the concentration is normalized by Kd. The value of

actual calcium concentration ([Ca50]) that corresponds to

50% force can be calculated as

½Ca50� ¼ KdCa50: (32)

Note that the Ca50 point does not depend on g. The slope of

the Hill plot at the Ca50 point, referred to as NH50, can be

computed analytically as

NH50 ¼
@

@logCa
log

fp

1 � fp

����
Ca¼Ca50

¼ gm3=2

2

ð1 � mQ�1Þð1 � QÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ m�1 � 2

p lN

1 � lN

2

lN

1 þ lN

2

; (33)

where g, Q, and m are defined as before and l1 and l2 are the

two eigenvalues of P from Eqs. 15 and 27.

Study of parameter space

Fig. 5 shows NH50 as a function of g and Q at three levels of

m. The parameter g is varied between 5 and 45 in increments

of 2.5, whereas the parameter Q is varied between 1.25 and 3

in increments of 0.25. The lines show isoclines of NH50 as

labeled with an increment of 2 between adjacent lines. The

three panels show results for m ¼ 5 (A), 10 (B), and 15 (C).

The results show that NH50 is a monotonically increasing

function of g. Initially the increase is a linear function of g as

might be predicted by the first g term in Eq. 33. However as

g increases, the growth slows as evidenced by widening

isoclines. The decreased growth results from the ðlN
1 �

lN
2 Þ=lN

1 þ lN
2 term. This term is nearly 1 for small values

of g, because the larger eigenvalue (l1) dominates with N ¼
26 in this model. However, as g increases, the two

eigenvalues become nearly equal at the Ca50 point. In this

case, the term is ,1, and the net effect is to reduce NH50.

Hence, the growth becomes less than linear with respect to g.

The effects of parameter Q are more complicated. For

large m, NH50 is a monotonically increasing function of Q
(see Fig. 5, B and C). However, for m ¼ 5, the apparent

cooperativity is a nonmonotonic function of Q (see Fig. 5 A).

This effect is further explored in Fig. 6. Fig. 6 A shows the

model fp relations for Q ¼ 1.25, 1.5, 2.0, and 3.0. The other

parameters are fixed values (Kd ¼ 10 mM, m ¼ 5, g ¼ 20).

The parameter Q affects the value of fp at extremely large

and small values of [Ca]. With Q �1, the plateau fp
approaches 1 at large, saturating values of [Ca]. The effect

can be most easily seen in the Hill plots with log ( fp/(1�fp))

plotted as a function of log [Ca] in Fig. 6 B. For example,

with Q¼ 3, the Hill plot approaches 2.72 which corresponds

to a plateau fp ¼ 0.998. In contrast, for the smallest value

shown, Q ¼ 1.25, the Hill plot only approaches 1.29 which

corresponds to a plateau fp ¼ 0.951. The opposite relation

occurs for low values of [Ca]. In this regime, low Q produces

a very small fp whereas a larger Q promotes a larger fp,

indicating more activation at low values of [Ca].

Besides affecting the saturating level of fp, Q also affects

the symmetry of the fp relations. This effect can be seen in

the Hill plots in Fig. 6 B, but for additional clarity, the slopes

of the Hill plots are also plotted in Fig. 6 C. Larger Q values

produce more activation at low [Ca]. This increased

activation at low [Ca] has the side effect of causing the

peak apparent cooperativity to shift to higher values of [Ca],

sometimes occurring above the Ca50 point. For example, the

data for Q ¼ 3 show a peak apparent cooperativity which is

slightly above the Ca50 point (compare the location of the

arrows for the Q ¼ 3 traces in B and C). Because of this type

of asymmetry, the NH50 values (as reported in Fig. 5) may

not correspond to the maximum slope of the corresponding

Hill plot. For Q near 2, the fp relations become closer to

symmetric, and the peak slope of the Hill plots is close to the

Ca50 point. As Q is reduced to 1.5 and 1.25, the Hill plots

become less symmetric. Now the peak apparent coopera-

FIGURE 5 The Hill coefficient at half activation, NH50, is plotted as

a function of g and Q at three levels of m. The parameter g is varied between

5 and 45 in increments of 2.5, whereas the parameter Q is varied between

1.25 and 3 in increments of 0.25. The contour lines show the isoclines for

levels as labeled and increase with an increment of 2. Results for m ¼ 5 (A),

10 (B), and 15 (C). In general, NH50 is an increasing function of g, m, and Q.

However, for the m ¼ 5 case, the dependence on Q is nonmonotonic,

a feature investigated further in Fig. 6 (see text for details).
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tivity occurs below the Ca50 point (compare the location of

the arrows for the Q ¼ 1.25 traces in B and C). Note that the

Ca50 refers to the true fp ¼ 0.5 point, not the point of half-

maximum force point that could be obtained if the fp values

were renormalized to the measured plateau level at saturating

[Ca]. See also that the peak slope of the Hill plots falls below

Ca50 point as Q is reduced toward 1. This observation

is important because real muscle shows greater apparent

cooperativity below vs. above Ca50, as seen in Fig. 1 B.

Given the analysis above, the roles of parameters g, m, and

Q should be clearer. The parameter g plays an important role

is setting the apparent cooperativity, but does not affect the

Ca50 point. The parameter Q sets the plateau levels of the fp
relations at the extremes of high and low [Ca] and affects the

symmetry and apparent cooperativity in the transition

regions. Recall that m has a dual role by both inhibiting

the transitions to permissive when no Ca is bound and

enhancing binding of Ca when the unit is permissive. Hence,

the most obvious effect of increasing m is to shift Ca50

leftward. Another effect of increasing m is to augment the

bias toward nonpermissive at low [Ca] and permissive at

high [Ca]. Hence, increasing m will also augment cooper-

ativity and increase the difference in the plateau levels of the

fp relations at the extremes of high and low [Ca] (data not

shown). The model actually contains one other parameter

Kd. However, changing Kd alone produces a trivial change of

translating the fp relations and fcb relations to left or right

without affecting the shape or apparent cooperativity. Note

that N, the T/T units in thin filament, is a fixed parameter

equal to 26 for all of the simulations presented in this paper.

The choice of N ¼ 26 is consistent with experiment

estimates, but the exact value of this parameter does strongly

effect results as long as N is large (.20). Hence we chose

a fixed value for N to reduce dimensionality of the parameter

space to be characterized.

Correlation between units

The model is constructed so that the s spins of neighboring

T/T units will tend to align. This effect is quantified by

computing r(i), the correlation of a reference unit (0) with

another unit (i) in the one-dimensional array. The value of

r(i) can be calculated as follows:

rðiÞ ¼ hs0sii � hsi2

hs2
0i � hsi2 ¼ hs0sii � hsi2

1 � hsi2 ; (34)

where hsi is the mean spin computed across the whole

ensemble as calculated by Eq. 18. The correlation term

hs0sii is the correlation of the spin of the reference T/T unit

(the 0th T/T unit) and the ith T/T unit away along the thin

filament model. This value can be calculated as

hs0sii ¼ 1 þ 4ðC � l1ÞðC � l2Þ
ðl1 � l2Þ

3 1 � lN

1

lN

1 þ lN

2

l2

l1

� �i

� lN

2

lN

1 þ lN

2

l1

l2

� �i
" #

; (35)

FIGURE 6 The plots illustrate the effects of variation of parameter Q.

(A) fp relations are shown for Q ¼ 1.25, 1.5, 2.0, and 3.0. The other

parameters were fixed values (Kd ¼ 10 mM, m ¼ 5, g ¼ 20). The parameter

Q affects the value of fp at extremely large and small values of [Ca]. With

a large value of Q, the plateau fp approach 1 at high, saturating values of

[Ca]. (B) Hill plots show log (fp/ (1�fp)) plotted as function of log [Ca]. The

data are the same as in A. The arrows indicate the zero crossings that

correspond to the [Ca50]. (C) Slope of the Hill plots from B is also plotted.

The slope reports the apparent cooperativity at different levels of [Ca]. In

general larger Q values produce more activation at low [Ca]. The value of

parameter Q also affects the symmetry of the fp relations. See that the peaks

of the slopes do not always line up with the [Ca50] points, as indicated by the

arrows drawn at the same [Ca] as the zero crossings in B. Hence, the NH50

value that reports the Hill coefficient at half activation does not always report

the maximum slope of the corresponding Hill plot.

904 Rice et al.

Biophysical Journal 84(2) 897–909



where

C ¼ m1=4g1=2Q1=2ðCa1=2 þ Ca�1=2Þ: (36)

Hence, the value of r(i) is both a function of [Ca] and of the

model parameters. For all parameter choices, r(0) ¼ 1 and

r(i) ¼ r(�i).
Fig. 7 shows the calculated values of r(i) for two sets of

parameter variations. In Fig. 7 A, all model parameters are

fixed (corresponding to the g¼ 20 trace in Fig. 3), and the Ca

level is set to three fixed values (log [Ca mM] ¼ 0.4, 0.9, and

1.5). The middle level corresponds to Ca50, and values near

Ca50 produce high correlation between units for separation as

large as 12. Hence, units are correlated for distances that

correspond to half the distance of the 26 T/T unit system. At

higher or lower Ca levels, the correlation level decreases more

rapidly with separation and is not a strong function of g.

Similar plots with g ¼ 10, 30, or 40 produce barely

perceptible changes at the high or low Ca levels (data not

shown). However, near Ca50, the dependence of correlation

on g is more pronounced as shown Fig. 7 B. Here, g is varied

whereas other parameters are fixed (corresponding to data in

Fig. 3), and the Ca level is set toCa50. Under these conditions,

the correlation is clearly dependent on g. For all separations

above 0 (that always yield 1), the correlation is found to be

a monotonically increasing function of g.

Fitting experimental F-pCa relations

A primary goal of this work is to explore if a model with

explicit nearest neighbor cooperativity could reproduce

experimentally observed F-pCa relations in cardiac muscle.

To this end, we attempt to reproduce the data shown in Fig. 1

using the model with appropriate choices for parameters. For

the model, the fraction of permissive units (fp) is compared

to normalized force in the experimental data. The model

results (solid trace) are shown in Fig. 8 A on the same axis

with the experimental data (symbols) and a true Hill function

(dashed trace) for comparison. The model results are similar

to the Hill function but are lower above Ca50, as is also seen

in the experimental data. To further quantify the apparent

cooperativity, the data are also shown as Hill plot in Fig. 8 B.

In the Hill plots, the model results show different slopes

above and below Ca50, although the transition is not as sharp

as in the experimental data (compare to Fig. 1 B). Moreover,

the initial slope below Ca50 is ;8 for the model, whereas the

experimental data can fit with a line with slope ¼ 10

(compare to Fig. 1 B.).
The model has essentially four free parameters that are

chosen with the following considerations. The Ca binding

constant, Kd, is adjusted to 2.125 which gives the proper

Ca50 value; changing this parameter makes a trivial change

of shifting the traces left or right on the abscissa. The value

of m is set to 15 as this seems to be roughly in line with

experimental results that show that troponin binds Ca more

strongly when cross-bridges are cycling. For example, Guth

and Potter (1987) estimated an increase of .10-fold, and the

modeling studies by Landesberg and Sideman (1994)

suggest an ;13-fold increase using the data of Hofmann

and Fuchs (1987). Inasmuch as our model does not explicitly

consider cross-bridges, the permissive state in the model is

assumed to represent this situation where the T/T unit is

activated and cross-bridges are cycling. With Kd and m

set, the remaining parameters were chosen as follows. A

relatively large value of g ¼ 40 is chosen to produce a high

apparent cooperativity (see Figs. 3 and 5). A relatively low

FIGURE 7 Correlation r(i) computed for two sets of parameter varia-

tions where i is the number of units from the point of reference. (A) Ca level

is set to three fixed values (log ([Ca] / 1 mM) ¼ 0.4, 0.9, and 1.5) whereas

other model parameters are fixed (Kd ¼ 10 mM, m¼ 15, Q¼ 2, and g ¼ 20).

The correlation is equal to 1 at i ¼ 0 and decreases in either direction. The

correlation falls most rapidly at high or low [Ca] whereas values near Ca50

produced correlation between units for separation as large as 12. (B) The

parameter g is set at four values whereas the parameters are fixed (Kd ¼ 10

mM, m ¼ 15, Q ¼ 2, and [Ca] ¼ [Ca50]). Near [Ca50], the correlation falls

off more slowly as g is increased. At [Ca] values much smaller or larger than

[Ca50] where normalized force is closer to 0 or 1, respectively, the falloff of

correlation is not as strongly dependent on g (data not shown).
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value of Q ¼ 1.5 is chosen to produce a larger disparity in

apparent cooperativity below vs. above Ca50 (see Fig. 6).

Note that there is an important tradeoff between g and Q.

As g increases, the overall apparent cooperativity goes up,

but a side effect is that the slopes above and below Ca50

become essentially the same. The effects of lowering Q are

roughly the opposite, lowering overall apparent coopera-

tivity but increasing the difference in the slopes above and

below Ca50. Given that no experimental estimate exists for g

and Q, we could, in principle, choose values we need. The

final choice, shown in Fig. 8, represents a reasonable

compromise with g and Q balanced to give high apparent

cooperativity and a breakpoint near Ca50. This compromise

was found through trial and error, so a slightly better fit to the

experimental data might be accomplished through other

means. Even so, our experience with the parameter variation

studies suggests that any improvements will be marginal

given the essential tradeoff between g and Q.

DISCUSSION

Cooperative mechanisms

The work here has focused on nearest-neighbor interactions

between adjacent T/T units. Considerable evidence suggests

the importance of this mechanism. For example, partial

extraction of as little as 5% of troponin C is seen to alter

F-pCa relations in skeletal muscle (Brandt et al., 1987). This

finding led the researchers to propose that all the regulatory

proteins shift in concert so that at any given time, the whole

thin filament is on or off. Although our model does not

completely support this point of view, our model does show

similar behavior with respect to the Ca dependence of

correlation. Near Ca50, correlation functions are near 1 for up

to half the distance of the network with g ¼ 40, the value

needed to reproduce experimental F-pCa relations (Fig. 7

B). Hence, near Ca50, the T/T units show high correlation

across the whole 26 unit system. However, for low or high

Ca, the correlation functions are much reduced (Fig. 7 B),

showing that the correlation of units across the thin filament

is a function of activator Ca level in this model. One

interpretation of this result is that the spread of activation will

also be a function of activator Ca level. Murray and Weber

(1980) first suggested that Ca level could modulate the

number of actin monomers activated by the binding of Ca to

troponin. Their experiments with regulated actin and S1

heads showed a greatly slowed onset of ATPase activity at

low Ca, suggesting that few actin monomers were activated

as compared to higher levels of Ca.

The modeling work here suggests that nearest-neighbor

interactions between adjacent T/T units are sufficient to

explain steep F-pCa relations. However, the construction of

the model may be able to accommodate other proposed

cooperative mechanisms as well. For instance, cycling cross-

bridges are known to increase the affinity of troponin for

Ca. In our model, the transition from nonpermissive to

permissive is assumed to increase the affinity of T/T units for

Ca by a factor of m (see Eq. 3). Recall from the Methods

section that the term m is required for the model to satisfy

microscopic reversibility. Hence, the change in Ca affinity is

concomitant to the end-to-end cooperative mechanism.

Another proposed cooperative mechanism is interactions

between neighboring cross-bridges. In our model, cross-

bridges are not explicitly represented but are assumed to

cycle and generate force whenever T/T units become

permissive. Given that neighboring T/T units are coupled

and their activity is correlated (see Fig. 7), then one can

extrapolate this to suggest that the activity on neighboring

cross-bridges would be correlated as a secondary effect

of direct neighbor interactions of the T/T units. Hence, the

same cooperative behavior could potentially have different

FIGURE 8 The model is used to fit the experimentally determined F-pCa

relation from Fig. 1. (A) The fraction of permissive units (fp, solid trace)

from the model is compared to normalized force in the experimental data

from Fig. 1. The plot also shows a true Hill function (dashed trace) for

comparison. The model results are similar to the Hill function but are lower

above Ca50, as is also seen in the experimental data. (B) Data is replotted

using Hill plots where both log (fp/(1�fp)) and log (Force/(1�Force)) are

plotted as a function of log of activator [Ca] in mM. In the Hill plots, the

model results show different slopes above and below Ca50, although the

transition is not as sharp as for the experimental data (compare to Fig. 1 B).

Moreover, the initial slope below Ca50 is ;8 for the model, whereas the

experimental data can fit with a line with slope ¼ 10. Model parameters are

Kd ¼ 2.125, m ¼ 15, g ¼ 40, and Q ¼ 1.5. See text for the method of

choosing the parameters. Note that the errors bars show the standard error

computed after transforming the raw data points individually using log

(Force/(1�Force)). Because this transformation is nonlinear, the standard

error reported in A may differ from that in B. Hence, the fit to the

experimental data may fall within the error bars in A but not B.
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manifestations that appear as separate phenomena depending

on whether one is considering cross-bridges, regulatory

proteins, or both in combination. Further study with refined

versions of the model is required before more definitive

arguments can be made as to how many proposed co-

operative mechanisms can be accommodated. Finally,

cooperative behavior has been proposed where the attach-

ment of one cross-bridge pulls the neighboring cross-bridges

into register, thereby increasing their probability of attach-

ment (Daniel et al., 1998). Our model could not account for

this type of cooperativity as cross-bridges are not explicitly

represented here.

Model limitations

Statistician George Box (1976) is quoted as saying, ‘‘all

models are wrong, but some are useful.’’ Likewise, the

purpose of this study is to develop a relatively simple, but

useful model of thin filament activation. This model has only

four parameters with straightforward physical interpreta-

tions, and the parameter space can be well characterized,

a feature that is often not possible with more sophisticated

models. The model’s ability to reproduce experimental data

F-pCa relation suggests that some ‘‘main ingredients’’ of

cooperative behaviors have been captured by our model.

However, like most simple models, we have made ab-

stractions that are inconsistent with known experimental

data. For example, the basic model construction is around

a functional unit of troponin and tropomyosin spanning

seven actin monomers. This functional unit concept has

a long history dating back to the work of Hill and co-workers

(1980). Such a construction may be inconsistent with many

known features of muscle (e.g., see model critique discussed

in Razumova et al. (2000)). Some recent work has even

argued that the system of overlapping troponins is more

closely approximated by a continuous chain rather than

discrete functional units spanning seven actin monomers

(Tobacman and Butters, 2000). Although we admit many

potential inconsistencies with experimental data, we focus

on the most pertinent limitations in the following discussion.

An obvious limitation is that the model lacks explicit

cross-bridge interactions. We assume that steady-state force

is proportional to the fraction of permissive T/T units in the

model—a reasonable, but not completely defensible posi-

tion. The presence of cross-bridges is thought to produce

several important changes to thin filament. For example,

strongly bound myosin heads appear to move troponin to

a more lateral position on the F-actin helical backbone of the

thin filament (e.g., Lehman et al., 2001). Also, data from

reconstituted thin filaments suggest that the presence of one

or two strongly bound myosin heads can ‘‘trap’’ the thin

filament in an activated state even after Ca has dissociated

(Bremel and Weber, 1972; Swartz and Moss, 1992; Trybus

and Taylor, 1980). Hence, real thin filament is regulated not

only by Ca as in this model, but attached cross-bridges

should also play an important role. Although future versions

of the thin filament model could in principle contain cycling

cross-bridges, significant modification may be necessary.

For example, the model in Fig. 2 is constructed assuming

detailed balance because no energy is added to the system.

By including cycling cross-bridges that hydrolyze ATP, such

an assumption cannot be made, so the number of parameters

to be defined is necessarily increased.

Another limitation is in the number of states represented.

In the model, T/T units are assumed to be in one of four states

as shown in Fig. 2. This number of states with simple Eyring-

type transition rates is a tremendous simplification for this

system of large proteins with potentially complex bio-

molecular interactions. For example, troponin and tropomy-

osin form large protein complexes with multiple points of

interactions with each other and the F-actin helical backbone

(e.g., Lehman et al., 2001). In regards to blocking actin-

myosin interactions, the model assumes only two positions,

nonpermissive and permissive. However, most experimen-

tal studies suggest at least three functional positions for

tropomyosin, referred to as blocked, closed, and open

(McKillop and Geeves, 1993). The first two states allow

only detached or weakly bound cross-bridges, whereas the

open state allows strongly bound cross-bridges. It is tempting

to consider that the permissive state in our model corresponds

to open whereas the nonpermissive state corresponds to

blocked and closed. However, regulatory proteins and cross-

bridges appear to be highly interactive; hence, the assump-

tion that T/T units act simply as an ‘‘on-off switch’’ to allow

cross-bridges to cycle is a simplifying assumption. We

envision that inclusion of three position states of the T/T units

would also require explicit cycling cross-bridges to produce

a meaningful model. This level of detail is a potential

refinement to the current model but is beyond the scope of

this modeling study.

In the model presented here, the end units were assumed to

be continuously wrapped so that T/T unit 1 communicates

with T/T unit 26. The assumption of periodic boundary

conditions is required to use transfer matrix formalism to

solve the Ising model (Eqs. 14–16). In a real thin filament,

no such wrapping is present. However, to implement this

nonperiodic boundary condition, a Monte Carlo approach

must be employed. Preliminary work suggests that this effect

will be nonnegligible. For example, assume that unit 1 and

unit 26 only have a single neighbor and n can be either 0 or 1,

but not 2 (see Fig. 2). This feature will tend to reduce

activation in these two units and across the whole system as

well. Recall from Fig. 7 B, that the correlations near Ca50

could be quite high even at distances up to half the network.

The repressing effect of nonperiodic boundary conditions is

not noticeable at low [Ca] where activation is essentially

0 already, but repression of force is more noticeable as [Ca]

and activation levels rise. The overall effect is similar to a

low value of Q, producing a greater disparity in apparent

cooperativity below Ca50 compared to above. The effect of
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unwrapping the ends may provide an additional mechanism

to contribute to the breakpoint in Hill plots, but this

mechanism will require further study with a Monte Carlo

implementation of the model.

Comparison with previous modeling efforts

There is a long history of modeling cooperativity in the

myofilament with models ranging from very simple to very

complex. Most of these previous studies fall into three main

classes. The first class of models are cooperative actin-

myosin models that have focused on the cooperativity in the

attachment of S1 myosin to native or reconstituted thin

filaments. The initial work in this area was by Hill et al.

(1980) who laid the framework and methodologies to

incorporate nearest-neighbor interactions like those in this

study. In these studies, the concentration of S1 myosin heads

is varied while monitoring the binding to regulated thin

filaments. The S1 binding curves show cooperative behav-

ior that is undoubtedly related to the cooperativity seen in

F-pCa relations. However, these are critically different

phenomena, and direct comparison of model results is not

possible.

Many previously published models fail to reproduce

F-pCa relationships that show high apparent cooperativity

throughout the whole range from 0 to maximum force. This

failure is likely inherent to the model construction in which

the cooperative effects are computed using a mean field

approximation instead of considering the explicit spatial

distribution of states as done in this study. For example, the

model here sets transition rates as a function of n, the number

of permissive neighbors. Assume instead that n is a function

of the mean number of permissive units in the ensemble and

is applied to the transition rates of all units. In this case, only

the total number of permissive units is considered and not the

spatial location of the units on the one-dimensional array.

With this mean field approximation, the system can be

represented by four states instead of 426 states, a tremendous

reduction. However, the apparent cooperativity is critically

altered. Now cooperative interactions are generated as a

function of the mean number of permissive units, so local

effects are not considered. The net effect is that at low [Ca],

the mean number of permissive units is low, so cooperative

effects are also low in this regime. As the [Ca] rises near

Ca50, the mean number of permissive units changes most

rapidly so cooperative effects tend to be strongest here. At

the higher [Ca], most all units are already permissive, so

cooperative effects are also low in this regime. The net effect

is simulated F-pCa relations that show high apparent

cooperativity around Ca50, but noticeably reduced cooper-

ativity at high and low [Ca] (see Razumova et al., 2000; Rice

et al., 1999).

Other modeling approaches have not used the mean field

approximation and have generally met with better success in

reproducing F-pCa relations. For example, a Monte Carlo

model incorporating end-to-end and other cooperative

mechanisms (Zou and Phillips, 1994) can simulate steep

F-pCa relations. Hunter et al. (2000) recently reported on

a myofilament model based on the work of Hill and co-

workers using a statistical weight matrix approach (similar to

the Ising model approach given here). The focus of this study

was simulating the effect of sarcomere length on Ca

sensitivity, an important effect not considered here. The

published work most similar to the current study is from

Dobrunz et al. (1995) that considered a model with a nearest-

neighbor cooperativity very similar to that in Fig. 2.

However, instead of using an Ising approach, the simulations

were carried out by assuming nine T/T units in a continuously

wrapped chain and tracking the occupancy of all 49 possible

conformations. Although this approach does reproduce F-

pCa relations similar to experimental data, the results did not

provide closed form solutions or parameter variation studies.

Our preliminary work with this model suggested another

potential problem. When recasting the model in the format of

Fig. 2, Dobrunz and co-workers has m set to 1000. Such

a large value can inhibit proper relaxation under dynamic

simulations such as twitches. Once a T/T unit becomes

activated, Ca is tightly bound and is very slow to come off so

that relaxation is impaired (unpublished result).

Future Directions

The model presented shows tremendous promise in sim-

ulating cooperative myofilament responses although this

study is restricted to steady-state responses. Unlike other

models, F-pCa relations can be reproduced with a relatively

simple formulation based on a biophysical foundation.

Continuing in the realm of steady-state responses, additional

studies could consider the effects of sarcomere length that

are known to strongly affect F-pCa relations by a mechanism

that is still unresolved. Such a modeling effort would likely

require additional parameters to consider the sarcomere

geometry and perhaps explicit cross-bridge dynamics. With

such changes, future work could also consider dynamic

responses as well. The cooperative mechanisms thought to

play a role in steep F-pCa relations are presumably critical

for shaping twitch dynamics. As found in previous modeling

studies, consideration of dynamic responses may provide

important clues to the cooperative mechanisms that shape

myofilament responses (Razumova et al., 2000; Rice et al.,

1999).
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