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ABSTRACT The myosin motor protein generates force in muscle by hydrolyzing Adenosine 59-triphosphate (ATP) while
interacting transiently with actin. Structural evidence suggests the myosin globular head (subfragment 1 or S1) is articulated
with semi-rigid catalytic and lever-arm domains joined by a flexible converter domain. According to the prevailing hypothesis for
energy transduction, ATP binding and hydrolysis in the catalytic domain drives the relative movement of the lever arm. Actin
binding and reversal of the lever-arm movement (power stroke) applies force to actin. These domains interface at the reactive
lysine, Lys84, where trinitrophenylation (TNP-Lys84-S1) was observed in this work to block actin activation of myosin ATPase
and in vitro sliding of actin over myosin. TNP-Lys84-S1’s properties and interactions with actin were examined to determine how
trinitrophenylation causes these effects. Weak and strong actin binding, the rate of mantADP release from actomyosin, and
actomyosin dissociation by ATP were equivalent in TNP-Lys84-S1 and native S1. Molecular dynamics calculations indicate that
lever-arm movement inhibition during ATP hydrolysis and the power stroke is caused by steric clashes between TNP and the
converter or lever-arm domains. Together these findings suggest that TNP uncouples actin activation of myosin ATPase and
the power stroke from other steps in the contraction cycle by inhibiting the converter and lever-arm domain movements.

INTRODUCTION

Contraction of skeletal muscle is based on the interaction of

the myosin head (S1) with actin, and is powered by the

coupled hydrolysis of Adenosine 59-triphosphate (ATP).

According to the recent consensus, force generation and the

dynamic movements of S1 are best described by the rotating

cross-bridge model. This model is based on the results of

crystallography, electron microscopy, and solution studies

on actin and on the various transient forms of S1 existing

during the ATP hydrolysis. The cross-bridge cycle is de-

scribed by the following simplified scheme (Bagshaw and

Trentham, 1974).

M and A are myosin and actin, respectively, and M,

M* ÆATP, M** ÆADP Æ Pi, and M^ ÆADP, with and without

actin, represent conformational states of the actin-

myosin-nucleotide complexes with distinct structures. Crys-

tal structures of S1 revealed that there are three main

functional domains in the myosin head: the catalytic, the

converter, and the lever arm (Fisher et al., 1995; Dominguez

et al., 1998; Houdusse et al., 1999). The catalytic domain is

responsible for the binding and hydrolysis of ATP and for

the binding of actin, the converter domain (for the energy

transduction), and the lever arm (for the transport of the

load). The catalytic domain is attached to actin in a fixed

position during the power stroke of the cross-bridge cycle,

whereas the conformation of the converter region changes

significantly causing the swinging of the rigid lever arm

(Geeves and Holmes, 1999). The actin-myosin-nucleotide

transients in Scheme 1 are less well-characterized because

their structure is surmised by fitting S1 onto an F-actin

model. It is unclear, for example, how the conformation of

S1 is affected by its binding to actin, whether the power

stroke is directly coupled to the release of phosphate from

AÆM**ÆADPÆPi, to the isomerization of AÆM**ÆADPÆPi, to

the dissociation of Adenosine 59-diphosphate (ADP) from

AÆM^ÆADP, or all of the above (Geeves and Holmes, 1999).

These questions may be addressed by studying the effect

on the power stroke of mutated or chemically modified

strategically located residues in S1.

A residue that is appropriate for that task is the reactive

lysine, Lys84, in the chicken skeletal myosin structure.

Lys84 is located at the N-terminal segment of the myosin

head (Mornet et al., 1980; Hozumi and Muhlrad, 1981), on

an interface of the catalytic and lever-arm domains (Fig. 1),

not too close to the active site (Fisher et al., 1995). The rate

of its trinitrophenylation with trinitrobenzene sulfonate

(TNBS), resulting in the formation of TNP-Lys84-S1, is

three orders of magnitudes faster than that of other lysines on

S1 (Muhlrad and Takashi, 1981). This reaction is strongly
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inhibited by nucleotides (Tonomura et al., 1963). Trinitro-

phenylation of Lys84 causes an increase in Mg2þ- and

a decrease in Kþ-EDTA-ATPase activity of S1 (Kitagawa

et al., 1961; Fabian and Muhlrad, 1968) and renders the

M* ÆATP state the predominant intermediate of the ATPase

cycle (Muhlrad, 1983). Nucleotide dependent trinitrophenyl

(TNP) circular dichroism (CD) and absorption spectra

coupled with model calculations indicated the nucleotide

induced conformational changes taking place in skeletal S1

(Ajtai et al., 1999). These data suggested that the bulky TNP

group interferes with the normal trajectory of the lever arm

during the M* ÆATP!M** ÆADP Æ Pi transition, causing

both the acceleration of Mg2þ-ATPase and the inhibition of

Kþ-EDTA-ATPase of myosin. Much less is known about

the effect of Lys84 trinitrophenylation on the myosin-actin

interaction. It was reported that the actin activation of TNP-

Lys84-myosin is inhibited (Fabian and Muhlrad, 1968), and

it was surmised from CD and model calculations that the

TNP group attached to Lys84 clashes with the lever arm

during the A ÆM** ÆADP Æ Pi!A ÆM^ ÆADPþPi transition.

The latter was predicted to inhibit the power stroke

(Burghardt et al., 2001a).

In this work we show that actin does not activate the TNP-

Lys84-S1 ATPase activity and TNP-Lys84-HMM does not

power the sliding of actin filaments over myosin. To

understand the basis for the loss of these activities we

studied the effect of trinitrophenylation on the kinetics

and dynamical structure of the Scheme 1 transients. We find

that trinitrophenylation of Lys84 inhibits the power stroke

probably by the collision of the bulky TNP group with the

lever arm during the A ÆM** ÆADP ÆPi!A ÆMþADPþPi

transition. However, power stroke inhibition does not affect

the other aspects of the Scheme 1 cycle suggesting that tri-

nitrophenylation uncouples actin activation of Pi release and

the power stroke from other steps in the cross-bridge cycle.

MATERIALS AND METHODS

Myosin sequence numbering is from chicken pectoralis muscle (Maita

et al., 1991).

Chemicals

2,4,6-Trinitrobenzene sulfonate (TNBS), ATP, ADP, chymotrypsin, DTT,

HEPES, phenylmethane sulfonyl fluoride (PMSF), Tris-HCl were purchased

from Sigma (St. Louis, MO). Mant-ADP and rhodamine-phalloidin were

purchased from Molecular Probes (Eugene, OR). All other chemicals were

of reagent grade.

Proteins

Myosin and actin were prepared from rabbit back and leg muscles by the

methods of Tonomura et al. (1966) and Spudich and Watt (1971), re-

spectively. S1 and heavy meromyosin (HMM) were obtained by digestion

of myosin filaments with chymotrypsin following the procedures of Weeds

and Taylor (1975) and Margossian and Lowey (1982), respectively. Protein

concentrations were estimated from their absorption by using an A1% at

280 nm of 7.5 cm�1 and 6.5 cm�1 for S1 and HMM, respectively, and anA1%

at 290 nm of 6.3 cm�1 for actin. Whenever appropriate, light scattering

corrections were applied. Molecular masses were assumed to be 115, 350,

and 42.3 kDa for S1, HMM, and actin monomers, respectively.

Chemical modifications

S1 was trinitrophenylated as described earlier (Ajtai et al., 1999) by addition

of two- to fourfold molar excess TNBS to 60–80 mM S1 in 30 mM NaCl and

50 mM TrisHCl buffer, pH 8.0. After incubation at 258C for 10 min, the

reaction was terminated by addition of 2 mM DTT. The excess TNBS was

removed by dialysis against 100 vol of 25 mM MOPS buffer, pH 7.0 at 48C,

overnight. The number of TNP groups introduced was determined from

absorbance (e345 nm ¼ 14,500 M�1cm�1) according to Okuyama and Satake

(1960). Generally 1–1.3 mol TNP/mol S1 was introduced into the protein

by this procedure. Of the bound TNP groups, ;75% is attached to Lys84,

where the use of TrisHCl buffer pH 8 significantly improved selectivity

for Lys84 over other amino groups in S1 and HMM (Muhlrad and

Takashi, 1981). For protein concentration calculation in TNP-Lys84-S1 the

absorbance at 280 nm was corrected using: Corrected A280 nm ¼ A280 nm�
0.362(A345 nm).

HMM was trinitrophenylated by the following method. HMM (1.5–2.0

mM) prepared for the in vitro motility assay (Miller et al., 1996) was

dialyzed against 0.5 M KCl, 2 mM MgCl2, 1 mM K2EGTA, and 25 mM

TrisHCl, pH 8.0 at 48C overnight. After the dialysis the HMM was incubated

with 8- to 10-fold molar excess of TNBS at 228C for 10 min. The reaction

was terminated by 2 mM DTT and excess reagents removed by dialysis

overnight against 20 vol of 0.1 mM K2EGTA and 5 mM HEPES, pH 7.0

at 48C. TNP-HMM contained 1–1.3 mol TNP/mol myosin head. Control

HMM used for the in vitro motility assay was prepared in the same way, but

without addition of TNBS.

Kinetics of S1 modification

The time course of trinitrophenylation of Lys84 at 258C was followed

spectrophotometrically, essentially as described earlier (Ajtai et al., 1999).

TNBS (final concentration 100 mM) was added to 10 mM S1 in the presence

or absence of 0.2 mM ADP and/or 20 mM F-actin in 1 mM MgCl2, 10 mM

KCl, and 30 mM TrisHCl, pH 8.0. The number of TNP groups introduced

was calculated from the recorded absorbance change at 345 nm. In the fast

component, rapid trinitrophenylation of Lys84 and slow trinitrophenylation

of other S1 lysines takes place, whereas in the slow component only

trinitrophenylation of the other S1 lysines occurs (Muhlrad and Takashi,

1981). Under the conditions of our measurements, trinitrophenylation of

Lys84 is essentially finished during the first 10–15 min of the reaction. Initial

velocity of the modification of the slowly reacting lysines, v2, was calculated

from the reaction rate at 20 min after addition of TNBS by accounting for

changes in TNBS and unmodified lysine concentrations during the first 20

FIGURE 1 The skeletal myosin backbone crystal structure. Atoms cor-

responding to the DCD undergoing deformation during the simulation of

myosin dynamics in contraction are shown in black. The Trp510 side chain

is in the DCD. Other important side chains, Arg723 and Lys84 modified by

TNP, are shown in red.
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min of the reaction. Initial velocity of trinitrophenylation of Lys84 (v1) was

obtained by subtracting v2 from the initial velocity of the overall process (v).

Because the modification of Lys84 is a pseudo first-order reaction under

conditions of our experiment (10-fold molar excess of TNBS over S1), first-

order rate constants could be calculated from v1.

Actin-activated ATPase activity of S1

Actin-activated S1 ATPase activity (micromoles of phosphate per

micromole of S1 per second) was calculated from inorganic phosphate

produced as a function of time assayed by the Malachite green method

(Kodama et al., 1986). Reaction times (at 258C) were chosen so that no more

than 15% of the ATP was hydrolyzed. The assay contained 0.2 mM S1 and

2.5–80 mM F-actin in 2 mM MgCl2, 25 mM HEPES buffer, pH 7.0 and

2 mM ATP. The ATPase data were fitted to the Michaelis-Menten equation

to obtain KM and Vmax.

Cosedimentation assays

Assays of the weak binding of 0.8 mM S1 to 5–30 mM F-actin were carried

out at 208C in 2 mM MgCl2, 4 mM ATP, and 25 mM HEPES buffer, pH 7.0.

After incubating the proteins for 10 min, ATP was added immediately before

the centrifugation. The samples were centrifuged at 208C in the TL 100.2

rotor of a small Beckman preparative ultracentrifuge at 22,5000 g for 20

min. Strong binding of 0.8 mM S1 to 1–5 mM F-actin (with equimolar

concentration of phalloidin added to stabilize the actin filaments) was

performed in 2 mM MgCl2, 2 mM ADP, 25 mM HEPES buffer, at pH 7.0,

and 100 mM NaCl to reduce the strong binding of S1 to F-actin. Under these

conditions S1 remained in the supernatant in the absence of actin.

Supernatants of each sample were analyzed by SDS-PAGE. The Coomassie

Blue stained gel bands were quantified by a Bio Imaging System

densitometer to determine the percent of S1 bound to actin. The binding

values were fitted to binding curves to yield the dissociation constants.

Circular dichroism

CD spectra were recorded between 300 and 500 nm in a JASCO J720

spectropolarimeter following the procedure described previously (Burghardt

et al., 2001b). The measurements were carried out in a 20-mm thermostated

cell at 208C. TNP-Lys84-S1 (4 mM) and G-actin (8 mM) were mixed in

a buffer of 0.2 mM DTT, 0.1 mM PMSF, and 5 mM HEPES, pH 8.0. The

samples were preincubated for 5 min at 208C before the measurement to

complete the actin polymerization. The effect of ADP was tested after the

addition of 0.5 mM MgCl2 and 0.5 mM ADP. The spectrum of unlabeled

actoS1 was also recorded in this buffer. The CD data for each wavelength

were expressed as molar ellipticity, [Q(l)], where,

½QðlÞ� ¼ uðlÞ
10Cl

ðdeg3 cm2 3 decimole�1Þ (1)

u(l) the ellipticity in millidegrees, l the optical path length in cm, and C the

molar concentration of TNP.

Fluorescence measurements

The binding of mantADP to S1 and TNP-Lys84-S1 was assayed by titration

of S1 with mantADP in a Spex Fluorolog spectrofluorometer (Spex

Industries, Edison, NJ) at 228C. The maximum of the fluorescence excitation

spectrum of unbound mantADP is at 362 nm. Because the excitation at 290

nm of free mantADP is near zero we used this wavelength for excitation to

get maximal difference between the fluorescence of S1-bound and free

nucleotide. Emission wavelength was set at 440 nm. The fluorescence of free

mantADP, which was present in the solution, was subtracted from the

titration data.

Stopped flow measurements

Measurements at 258C were carried out with an Applied Photophysics

SX.18MV (Leatherhead, UK) stopped flow. For the fluorescence measure-

ments in the presence of mantADP, excitation and emission wavelength

were set at 290 and 440 nm, respectively. For light scattering measurements

both monochromators were set at 380 nm. All measurements were carried

out in 25 mM KCl, 2 mM MgCl2, and 25 mM MOPS buffer at pH 7.4. Data

were fitted with a nonlinear least-square procedure to either a single

or double exponential expression, from which the rate constants were

calculated.

In vitro actin motility assay

The assay was performed at 258C as described previously (Miller et al.,

1996). HMM and TNP-Lys84-HMM were adsorbed to the nitrocellulose-

coated cover slips. ATP-desensitized HMM and TNP-Lys84-HMM were

removed from the stock solution by pelleting HMM and TNP-Lys84-HMM

in the presence of actin and ATP. Assay solution was composed of 25 mM

MOPS, pH 7.4, 25 mM KCl, 2.0 mM MgCl2, 2 mM EGTA, 1.0 mM ATP,

and the glucose-oxidase-catalase system (to slow photobleaching of rhoda-

mine fluorescence). Methylcellulose (0.4%) was present in all solutions.

Actin filaments were labeled by rhodamine phalloidin as described by

Miller et al. (1996). Sliding speeds of actin filaments were determined

using the Expertvision System (Motion Analysis, Santa Rosa, CA).

Molecular modeling of energy transduction

A new methodology described in the Appendix introduces molecular

dynamics to the study of myosin conformation during the contraction cycle.

The new procedures model dynamical processes on the ;100 ms time scale,

as appropriate for myosin enzyme kinetics, far surpassing the 10–100 ns

time scale limiting conventional molecular dynamics procedures.

RESULTS

Effect of actin on the kinetics of
trinitrophenylation of Lys84

S1 alone and in the presence of actin and ADP was

trinitrophenylated with TNBS. Actin alone was also

trinitrophenylated as a control. The reaction was followed

by monitoring the increase in absorbance at 345 nm as

a function of reaction time (Fig. 2) and the rate constants for

Lys84 labeling were calculated from the optical density

traces (Table 1) as detailed in Materials and Methods. The

rapid reaction phase absent in the trinitrophenylation of actin

reveals that it does not have a fast reacting lysyl residue

under the experimental conditions. By comparing the optical

density trace obtained for actoS1 with that from the sum of

actin and S1 traces (Actin þ S1 in Fig. 2) it is clear that both

phases of the reaction are inhibited in the actoS1 complex.

The inhibition of the rapid phase (Table 1) is caused mainly

by the reduced rate of Lys84 modification. The inhibition of

the slower phase may be due to the reduced accessibility of

lysines on both S1 and actin caused by a mutual steric

hindrance. The actin inhibition of Lys84 modification was

probably not caused by steric hindrance because this residue

is located at the catalytic/lever-arm domain interface, far

from the actin-binding site (Fig. 1).
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The effect of actin and ADP on the trinitrophenylation on

Lys84 can be evaluated from the rate constants in Table 1.

Both actin and, to a greater extent, ADP (Ajtai et al., 1999;

Muhlrad and Fabian, 1970) inhibited the rate of the reaction.

ADP inhibited also the modification of Lys84 in the presence

of actin. The effect of actin on the rate of trinitrophenylation

of Lys84 indicates that the conformation of this site changes

upon formation of the strongly bound actoS1 complexes in

the presence and absence of ADP.

Effect of F-actin on the CD spectrum of
TNP-Lys84-S1

Fig. 3 shows the CD spectra of TNP-Lys84-S1 in the

presence and absence of F-actin and ADP in the range of

300–500 nm. As a control, the trace for the unmodified

S1 with F-actin is also presented. F-actin binding to TNP-

Lys84-S1 produced a small effect on TNP ellipticity that

could be due to a small fraction of actin free TNP-Lys84-S1.

F-actin binding to the TNP-Lys84-S1 ÆADP complex in-

duced only a slight change in the TNP signal, whereas ADP

binding to TNP-Lys84-S1 in the absence of actin produces

a large change in the TNP CD. Both results indicate that F-

actin is unable to alter the conformation of the Lys84 site in

TNP-Lys84-S1. In contrast, F-actin and ADP both strongly

inhibit modification of Lys84 in native S1. These results

show that TNP modification of Lys84 impedes the effect of

F-actin on S1 structure.

Actin activation of the MgATPase of TNP-Lys84-S1

Actin-activated myosin MgATPase activities were fitted to

the Michaelis-Menten equation to obtain Vmax (Table 2).

Actin essentially did not activate the ATPase activity of

TNP-Lys84-S1; the twofold increase in Vmax (to 0.52 s�1)

was probably due to a small fraction of unmodified S1. Thus,

the KM value for this ATPase reaction is not considered

meaningful and is not reported. The MgATPase activity of

TNP-Lys84-HMM was also not activated by actin. The basic

MgATPase activity of TNP-Lys84-S1, 0.275 s�1, was much

higher than that of unmodified S1, 0.05 s�1 (Table 2), in

accordance with the earlier findings (Muhlrad and Takashi,

1981; Ajtai et al., 1999).

Effect of modification of Lys84 on the sliding of
actin filaments in the in vitro motility assay

TNP-Lys84-HMM does not power the sliding of actin

filaments in the in vitro motility assay (Table 2), as expected

FIGURE 2 Effect of F-actin on the trinitrophenylation of S1. Actin þ S1

is the sum of S1 and actin plots; ActoS1 is the plot of the mixture of the two

proteins. Conditions for trinitrophenylation and calculations are given in

Materials and Methods.

FIGURE 3 Effect of F-actin and MgADP on the CD spectrum of

TNPLys84-S1: CD spectra were recorded at 208C in a 2-cm cell. The

spectral data are presented as molar ellipticity (deg3 cm23 decimol�1). For

conditions see Materials and Methods. Symbols: actoS1 (—); TNP-Lys84-

S1 (m); TNP-Lys84-S1 þ ADP (�); actoTNP-Lys84-S1 (n); actoTNP-

Lys84-S1 þ ADP (h).

TABLE 1 Pseudo first-order rate constants fortrinitrophenyla-

tion of Lys84 in the presence and absence of F-actin and ADP

Addition to S1 Rate constant6SE 3 103 (s�1)* Inhibition (%)

None 6.03 6 0.101 0

F-actin (20 mM) 4.30 6 0.095 28.7

ADP (1 mM) 2.91 6 0.211 51.7

F-actin (20 mM) þ
ADP (1 mM)

2.37 6 0.058 60.7

*Mean 6 SE of five independent experiments.

Experimental conditions and calculations are given in Materials and

Methods.
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from the lack of actin activation of its ATPase activity.

Moreover, when TNP-Lys84-HMM was applied to the assay

together with unmodified HMM, the modified HMM

inhibited the actin filament sliding (data not shown). We

also examined actin motility as a function of the fractional

concentration of TNP-Lys84-HMM (Fig. 4). This approach,

originally developed by Cuda et al. (1997), distinguishes

slowly cycling from noncycling myosins. Slowly cycling or

noncycling myosin load actin in the strongly or weakly

bound state, respectively, producing distinguishable changes

in sliding speed versus myosin fractional concentration. The

data shown in Fig. 4 for TNP-Lys84-S1 is similar to that

obtained for a mixture of actively cycling skeletal muscle

and noncycling platelet myosin (see Fig. 10 in Cuda et al.

(1997)) suggesting that TNP-Lys84-S1 mimics a noncycling

myosin.

Effect of S1 trinitrophenylation on cross-bridge
cycle kinetics influencing motility

We examined the rates of ADP dissociation from

A ÆM^ ÆADP (k5 in Scheme 1) and of the subsequent

dissociation of A ÆM by ATP (K1 and k2 in Scheme 1).

Changes in the rates of these steps in the cross-bridge cycle

could influence the motility of the actomyosin motor

(Woodward et al., 1991). ADP dissociation from actoS1

can be determined by measuring the limiting rate of ATP-

induced dissociation of S1 from actin at high ATP

concentrations with light scattering (Woodward et al.,

1991). We employed mantADP instead of ADP in these

observations because the rate of ADP dissociation from

actoS1 is too fast ([900 s�1 at 48C) for reliable comparison

(Woodward et al., 1991). Stopped flow measurements in

which 5 mM ATP was mixed with 5 mM actoS1 or actoTNP-

Lys84-S1 in the presence of 100 mM mantADP (i.e., enough

to saturate both actoS1 and actoTNP-Lys84-S1, data not

shown) yield actoS1 and actoTNP-Lys84-S1 dissociation

rates of 447 6 5.3 s�1 and 499 6 7.0 s�1, respectively (Table

2). Higher ATP concentration does not affect the observed

rate implying the rate is limited by mantADP dissociation.

The rate of mantADP dissociation from actoS1 is not

changed meaningfully upon modification of Lys84. The rate

of mantADP dissociation from S1 ÆmantADP was measured

by ATP chase. The biexponential dissociation was not influ-

enced significantly by trinitrophenylation of Lys84 (Table 2).

Our results show that actin accelerates mantADP dissocia-

tion from both the native and modified S1 ÆmantADP by

;500-fold.

The ATP-induced dissociation of actoS1 and actoTNP-

Lys84-S1 is described in Scheme 1 with K1, the equilibrium

constant for A ÆM binding ATP and, k2, the rate constant for

actin dissociation from the complex. ATP-induced disso-

ciation is rate limited by isomerization of the ternary

A ÆM ÆATP complex suggesting the rate constant for ATP-

induced dissociation is (Furch et al., 1998),

kobs ¼ K1k2½ATP�=ð1þK1½ATP�Þ (2)

For K1½ATP� � 1; kobs � K1k2½ATP� indicating a linear

relationship between kobs and [ATP]. ATP-induced dissoci-

ation was measured at 208C by monitoring the decrease in

light scattering, after mixing ATP with the complex by

stopped flow (data not shown). The light scattering changes

were fitted to a single exponential expression to yield the

observed rate constant that showed a linear dependence on

ATP concentration between 10 and 50 mM ATP, irrespective

of S1 modification. From kobs and Eq. 2 the apparent second-

TABLE 2 Parameters of S1 and TNP-Lys84-S1 interactions

with F-actin and nucleotides

S1* TNP-Lys84-S1*

Vmax (s�1) of actin activated

MgATPase

21.15 6 0.62 0.52 6 0.04

Basic MgATPase (s�1) 0.05 6 0.008 0.275 6 0.022

Sliding speed (mm/s) 5.15 6 0.69 0.15 6 0.12

Rate of mantADP dissociation

from actoS1 (s�1)

447 6 5.3 499 6 7.0

Rate of mantADP dissociation

from S1 (s�1)

0.98 6 0.173

(fast)

1.01 6 0.124

(fast)

0.13 6 0.027

(slow)

0.22 6 0.005

(slow)

Rate of dissociation of actoS1 by

ATP (106 3 M�1 s�1)

2.39 6 0.034 1.85 6 0.029

ADP binding to actoS1, Kd (mM) 351 6 24.9 391 6 24.4

ADP binding to S1, Kd (mM) 1.60 6 0.33 1.51 6 0.23

Strong S1 binding to F-actin,

Kd (mM)

1.16 6 0.17 0.52 6 0.09

Weak S1 binding to F-actin,

Kd (mM)

20.2 6 2.5 32.4 6 5.7

*Mean 6 SD of three to six independent measurements.

Experimental conditions and calculations are given in the text and Materials

and Methods.

FIGURE 4 Effect of TNP-Lys84-HMM on the sliding speed of actin

filaments. Unmodified HMM and TNP-Lys84-HMM were mixed, keeping

the total concentration constant at 300mg/ml, and absorbed to nitrocellulose-

coated cover slips. Motility assay was performed as described in Materials

and Methods. The mean speed of filaments was plotted against the fraction

of TNP-Lys84-HMM. The bars indicate standard deviations. Between 100

and 200 actin filaments were analyzed for each sample.
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order binding constants K1k2 are 2.396 0.034 and 1.85 6

0.029 3 106 M�1 s�1 (Table 2) for actoS1 and actoTNP-

Lys84-S1, respectively. This shows that trinitrophenylation

of S1 does not perturb significantly actoS1 dissociation by

ATP and the coupling between the ATP and actin sites on S1.

Binding of ADP to actoS1 and actoTNP-Lys84-S1

The affinity of ADP to actoS1 can be assessed by monitoring

the ADP inhibition of actoS1 dissociation by ATP, which

takes place according to Scheme 2.

The binding of ATP to actoS1 is diffusion limited and is

omitted from Scheme 2. The reverse rate of the last step

(ATP dissociation) is negligible. Thus, the rate of actoS1

dissociation can be described by Eq. 3 according to

Woodward et al. (1991).

kobs ¼ K1k2½ATP�=ð1 þ ½ADP�=KdÞ; (3)

where Kd is the dissociation constant of ADP from actoS1.

We monitored stopped flow light scattering changes upon

actoS1 dissociation after rapid mixing of 4 mM actoS1 or

actoTNP-Lys84-S1 in the presence of 0–1 mM ADP with 50

mM ATP (data not shown). The data was fitted with a single

exponential to obtain the first-order rate constant, kobs. The

observed rate constants showed hyperbolic dependence on

ADP concentration and were fitted using Eq. 3 to yield Kd

(Table 2). The results show that the affinity of ADP for

actoTNP-Lys84-S1 is not significantly different from that of

actoS1.

We measured also the binding of mantADP to S1 and

TNP-Lys84-S1 by fluorescence titration taking advantage of

the significant energy transfer from S1 tryptophans to the S1

bound mantADP (see Materials and Methods). The data (not

shown) were fitted to a hyperbola from which the dis-

sociation constants for ADP binding were calculated. Almost

identical binding constants were obtained for S1 and TNP-

Lys84-S1, respectively (Table 2). These results show that the

affinity of mantADP to both modified and native S1 is more

than two orders of magnitude higher than that to actoS1 and

actoTNP-Lys84-S1.

Binding of S1 and TNP-Lys84-S1 to F-actin

The strong (in the presence of ADP) and weak binding (in

the presence of ATP) of native and trinitrophenylated S1

to F-actin were measured in cosedimentation assays, as

described in Materials and Methods. Trinitrophenylation of

S1 increased the strong binding to actin; the Kd values for S1

and TNP-Lys84-S1 were 1.16 6 0.17 and 0.52 6 0.09 mM,

respectively (Table 2). On the other hand, weak binding of

S1 to actin was somewhat reduced after the modification;

the Kd values for S1 and TNP-Lys84-S1 were 20 6 2.5 and

32.4 6 5.7 mM, respectively. These mild perturbations do

not explain the loss of actin activation of the S1 ATPase acti-

vity and the inability of TNP-Lys84-HMM to move actin

filaments.

Evidence of the TNP-Lys84/lever-arm collision

Molecular modeling using the protocol described in the

Appendix provides the logarithm of the total configuration

energy of S1 (n) or TNP-Lys84-S1 (h), and, the side-chain

configuration energy of Lys84 in native S1 (m) or TNP-

Lys84 in TNP-Lys84-S1 (n) for one M!M** transition

simulation (Fig. 5). In the native S1 the transition was com-

pleted in ;13 ms whereas in TNP-Lys84-S1 the transi-

tion finished in ;22 ms. Total configuration energy for

native S1 increases gradually over the course of its tra-

jectory and makes a steep increase near the final skeletal

M** configuration. The skeletal M** configuration energy

has not been optimized by allowing bond angles and lengths

to relax subject to the smooth muscle M** structural con-

straints. Until this optimization is carried out, the last few

milliseconds of the trajectory remains uncertain. This

anomaly has no impact on the results or conclusions dis-

cussed here. Total configuration energy for TNP-Lys84-S1 is

like that for the native protein except that the trajectory is

spread out over a longer time. Collisions of Lys84 or TNP-

Lys84 with other residues in the protein are indicated when

SCHEME 2

FIGURE 5 The logarithm of the total configuration energy of S1 (n) or

TNP-Lys84-S1 (h), and the side-chain configuration energy of Lys84 in

native S1 (m) or TNP-Lys84 in TNP-Lys84-S1 (n) for one M!M**

transition simulation. Collisions of Lys84 or TNP-Lys84 with other residues

in the protein are indicated when their configuration energy makes a sharp

increase. Residues indicated in bold italic are for TNP-Lys84-S1. Collisions

with Gln757 occurring at the end of the trajectory where configuration

energy is anomalously large might be unreliable.
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their configuration energy makes a sharp increase. Collisions

with Gln757 occurring at or near the end of the trajectory

where configuration energy is anomalously large might be

unreliable.

Fig. 6 shows the closing of the active site back door (top)

and the swinging of the lever arm (bottom) during the

M!M** transition for S1 (n) or TNP-Lys84-S1 (h). The

distance between Cb’s in the back-door residues Arg245 and

Glu468 is the length versus time plotted in the top figure. The

change in the projection of the S1 C-terminus onto the actin

filament is the lever-arm displacement plotted in the bottom

figure. These trajectories are the average of 10 M!M**

transition simulations. Converter or lever-arm domain

collisions with the TNP in TNP-Lys84-S1 inhibit progress

in these critical trajectories such that the average TNP-

Lys84-S1 trajectories shown do not reach the final values in

the M** conformation within 40 ms.

The closing of the back door appears to be essential for

hydrolysis to proceed (Geeves and Holmes, 1999) such that

the 1/e relaxation time for its closure is a measure of the ATP

hydrolysis rate. Our simulation suggests ;4 and ;20 ms

average relaxation times for ATP hydrolysis in the native S1

and TNP-Lys84-S1, respectively. For saturating ATP con-

centrations, (Scheme 1) ATP hydrolysis (MþATP$M* Æ

ATP$M** ÆADP Æ Pi) at pH 8 and room temperature has

;8 and ;17 ms relaxation times for the unmodified

(Trentham et al., 1976) and TNP-Lys84-S1 (Bagshaw and

Trentham, 1974; Miyanishi et al., 1979), respectively. This

agreement is adequate considering it follows from the rough

assumptions made for estimating how long the protein

searches for its path at each elementary step (see Appendix).

Movement of the lever arm in the M!M** transition has

two apparent phases, an initial passage to an extended

conformation displacing the lever arm C-terminus when

projected on the actin filament in the positive direction by

;30 Å, followed by a second passage to the compact M**

conformation displacing the C-terminus in the opposite

direction through a distance of ;150 Å.

DISCUSSION

Lys84 trinitrophenylation in myosin S1 or HMM was

observed to cause a dramatic change in myosin functionality

such that actin activation of myosin ATPase is lost as is

the ability of HMM to power actin filament sliding in the

motility assay. Contrasting with this are other findings in-

dicating the actomyosin affinity, and catalytic steps in-

volved in ATP hydrolysis and ADP release are unchanged by

trinitrophenylation. It appears that TNP-Lys84 can simul-

taneously inhibit actin-accelerated Pi release and the move-

ment of the lever arm essential for motility while otherwise

allowing the normal ATPase cycle. Careful investigation of

Lys84 trinitrophenylation effects on multiple facets of the

contraction cycle provides the mechanism of TNP action

and elucidates structural aspects of the native energy trans-

duction mechanism.

The actin activation of S1 ATPase is completely lost in

TNP-Lys84-S1 even at saturating actin concentrations. Thus,

actin cannot induce the back door at the nucleotide-binding

site of TNP-Lys84-S1 to open and accelerate Pi release.

TNP-Lys84-HMM does not power the sliding of actin

filaments in the motility assay. Trinitrophenylation caused

little change in actoS1 weak or strong binding affinities

ruling out their perturbation as a possible cause for loss of

myosin motility. The weak load produced by TNP-Lys84-

HMM in the motility assay indicates that it is weakly bound

to actin during most of the cross-bridge cycle and similar to

a noncycling myosin by the analysis of Cuda et al. (1997).

The dissociation rates of mantADP from S1 ÆmantADP

and actoS1 ÆmantADP, and of actoS1 by ATP, were virtually

unchanged by trinitrophenylation suggesting that motor

function inhibition is not related to these steps. According to

the measured rates (Table 2), actin accelerates ;500-fold

ADP release from the modified and unmodified S1. Also the

labeling almost did not influence the binding equilibrium of

ADP and mantADP with actoS1 and S1 (Table 2). These

results indicate that Lys84 trinitrophenylation does not affect

the opening by actin of the ‘‘main entrance’’ of the nu-

cleotide cleft, where ADP leaves.

FIGURE 6 The closing of the active site back door (top) and lever-arm

displacement (bottom) during the M!M** transition for S1 (n) or TNP-

Lys84-S1 (h). The distance between Cb’s in the back-door residues Arg245

and Glu468 is the length versus time plotted in the top figure. The change in

the projection of the S1 C-terminus onto the actin filament is the lever-arm

displacement plotted in the bottom figure. These trajectories are the average

of 10 M!M** transition simulations.
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Perturbation of the Lys84 site by actin is suggested by

the slower rates of TNP modification both in the presence

and absence of ADP (Table 1). As Lys84 is located at the

catalytic/lever-arm domain interface, the conformational

changes in the vicinity of this residue may be caused by

lever-arm movements, which are essential for the power

stoke (Ajtai et al., 1999). Moreover, in accordance with the

observed loss of the power stroke indicating impaired lever-

arm movement, CD from TNP-Lys84 is not affected by actin

binding in the presence or absence of MgADP (Fig. 3).

S1 and TNP-Lys84-S1 molecular dynamics simulating

hydrolysis and force production clarifies the structural basis

for the observed effects of Lys84 trinitrophenylation. A

biased random walk in the Ramachandran angles making

up a significant part of the converter domain peptide, the

deformable converter domain (DCD) peptide spanning res-

iduesIle464-Ile523andArg696-Lys716,simulates themyosin

dynamics accompanying ATP hydrolysis. Native S1 simu-

lated dynamics reproduces the observed ATP hydrolysis

kinetics when the hydrolysis rate is equated with the rate

for closing the back door for Pi release. Lever-arm domain

movement accompanying ATP hydrolysis follows a two-

step trajectory in which myosin first assumes an extended

conformation followed by the compact conformation ex-

pected for M**. The extended S1 conformation resembles

the scallop myosin crystal structure with bound MgADP

(Houdusse et al., 1999; Houdusse et al., 2000) and we ten-

tatively identify it with the M* intermediate between M
and M** in Scheme 1 (Fig. 6). Our transduction model

located this intermediate in the overall transition suggest-

ing the constraints from DCD interactions with the intact

catalytic and lever-arm domains define a transition pathway

similar to that suggested by the S1 crystal structures

of the M, M*, and M** intermediates. Other work has

suggested that the M* conformation is nearly identical to

M** (Dominguez et al., 1998) or that it maintains the bent

conformation assumed in M** (Maruta et al., 1999). If

true, the extended conformation must represent a different

intermediate.

TNP-Lys84-S1 simulated dynamics during ATP hydroly-

sis reproduced the characteristic loss of the phosphate burst

observed for this system. The hydrolysis rate reduction is

from the energetic collision of the TNP moiety with residues

in the converter and lever-arm domains inhibiting back-door

closure. Associating the power stroke with the reversal of the

structural changes accompanying hydrolysis, the energetic

collision of the TNP moiety with residues in the converter

and lever-arm domains inhibits lever-arm movement and

the weak-to-strong actin binding transition necessary for

motility. The latter effect, like the data in Fig. 4, suggests the

TNP-Lys84-S1 is noncycling. As the principal effects of

Lys84 trinitrophenylation on the cross-bridge cycle are

perturbation of lever-arm movements and inhibition of

actin’s acceleration of Pi release, it seems that back-door

opening and closing is coupled to lever-arm movement.

In summary, trinitrophenylation of Lys84 in S1 eliminates

actin-activated ATPase and the power stroke from the

enzymatic cycle of actoTNP-Lys84-S1. These effects are not

associated with perturbation of either the weak or strong

actin binding to TNP-Lys84-S1, with the release of ADP

from the active site, or with the dissociation of actomyo-

sin by ATP. Molecular dynamics simulation of lever-arm

movement in S1 and TNP-Lys84-S1 indicates the principal

structural effect of Lys84 trinitrophenylation on the cross-

bridge cycle is perturbation of the lever-arm movement due

to collision of TNP with the converter and lever-arm

domains. Our findings suggest TNP at Lys84 uncouples

ATP hydrolysis from lever-arm movement during the cross-

bridge cycle.

APPENDIX: THE MOLECULAR MODELING
OF ENERGY TRANSDUCTION

The hydrolysis step structures

The M!M** transition is the combination of the isomerization (k6) and the

hydrolysis (k7) steps in Scheme 1 and its reversal is associated with the

power stroke. We investigate the M!M** transition in Scheme 1 using

skeletal S1 atomic coordinates to address the feasibility of a TNP/lever-arm

collision during hydrolysis and force generation. This choice bypasses M*,

but we elected to combine the two steps into one for our purpose here. The

M!M** transition has endpoints for which there are atomic resolution

structures, however, only M has a skeletal crystal structure (Rayment et al.,

1993). The M** structure was solved for smooth muscle S1 (Dominguez et

al., 1998). Skeletal and smooth muscle structures are very similar with

;50% sequence identity facilitating their detailed comparison. We modify

the skeletal M to approximate a skeletal M** by merging skeletal with

smooth muscle structures using the energy transduction model described

next.

Approximating a skeletal M** structure based on
the smooth M** crystal structure

Aligned skeletal M and smooth M** structures reveal the notion that during

ATP hydrolysis the catalytic and lever-arm domains remain intact whereas

conformation change occurs in the joining converter domain (Dominguez

et al., 1998). Geeves and Holmes listed Ramachandran angles from 47

converter domain residues largely responsible for the different conforma-

tions in skeletal M and smooth M** (Geeves and Holmes, 1999). These

residues and 31 more to include Glu468 from the back door of the active site

through which inorganic phosphate escapes after hydrolysis (Yount, 1997)

define a deformable converter domain (DCD) peptide spanning residues

Ile464-Ile523 and Arg696-Lys716. After replacing the skeletal M

Ramachandran angles with those from smooth M** in the 78 residues of

the DCD, skeletal coordinates in these residues were compared with the

corresponding smooth M** coordinates and overlap maximized by iterative

refinement of the skeletal Ramachandran angles. We paid no attention to

side chains and did not attempt to minimize configuration energy by

allowing relaxation in bond angles and lengths. The skeletal M** structure

presented here is an approximation to the true skeletal M** structure that

will be refined in the future. Fig. 7 overlays smooth M** (red) and the

approximate skeletal M** (blue) structures. Their aligned catalytic domains

are shown looking down the switch-2 helix (AA 475-509) with the lever arm

in the foreground. F-actin binds on the right side with vertical filament axis.

The structures appear similar and their principal inertial frames, a measure of

their mass distribution in space, are indistinguishable.
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The dynamical model

Brant, Miller, and Flory (Brant et al., 1967) computed the classical

configuration energy of polyalanine. Atom positions within the peptide

bond, the Cb atoms, and the protons were fixed at nominal values whereas

Ramachandran angles (f,c) were adjustable parameters. Included atomic

interactions were between nonbonded atoms with Coulomb and van der

Waals potentials. A Ramachandran angle torsion potential restricts their free

rotary movement. The configuration energy predicts the stability of the

a-helix and b-sheet secondary structures. The remarkable similarity between

the stable configuration energy regions in (f,c) computed with this simple

model, and the Ramachandran plots from real proteins (Smith and Rayment,

1996) suggest that these interactions govern Scheme 1 transitions involving

significant secondary structure change. This simple approach minimizes the

number of free parameters in the system making computations connect-

ing the state transitions in Scheme 1 tractable. S1 remodeling during the

M!M** transition is represented as elementary step transitions in the

Ramachandran angles taking place in a sequence. We begin the dynamics

calculation with skeletal M because it is a solved skeletal structure and has

a minimal configuration energy.

Configuration energy, EC, is the sum of torsion, Coulomb, and van der

Waals contributions given by,

EC ¼ ETor þ+
j\k

qjqk

erj;k

þ+
j\k

Aj;k

r12
j;k

� Bj;k

r6
j;k

 !
; (4)

where sums in j and k are over nonbonded atoms whose separation distance

depends on the peptide Ramachandran angles, qj is the charge on atom j, rj,k
is the distance between atoms j and k, and e is the dielectric constant of the

medium. Formulae for Aj,k and Bj,k are from the Slater-Kirkwood equations

(Pitzer, 1959) with constants from Brant et al. (1967). Coulomb and van der

Waals interactions were ignored for rj,k [ 14 Å. Torsion potential ETor ¼
(Vv/2)(1 þ cos[3(v�2p/3)] for v representing either of the Ramachandran

angles and barrier height Vv ¼ 1 kcal/mol.

The algorithm representing S1 dynamics is a biased random walk in the

Ramachandran (f, c) angles of the DCD. In a program cycle a particular

Ramachandran angle, for instance fi, undergoes step translation fi!fi þ
di and configuration energy of the new structure is computed. The

probability for choosing fi, p(fi), is proportional to the minimum number

of steps between fi’s present and final values. This procedure ensures p

governs step order and that angles further from their final values are chosen

more frequently. Step size, d, is chosen randomly.

One step translation through ;58 takes ;10 ns in S1 based loosely on

polarization anisotropy amplitude and relaxation during contraction

(Burghardt and Ajtai, 1985). The full lever-arm swing takes ;10 ms

(Trentham et al., 1976) suggesting there are ;106 attempted steps/swing.

For a minimal step size of 2–38 there are ;2000 correct steps/swing (correct

steps head toward the goal of the final conformation, incorrect steps head

away from the goal) suggesting each step samples an average of ;500

possibilities before committing to a path. The number of average sampled

possibilities would be less if some of the steps are incorrect. The algorithm

samples up to 500 elementary transitions until it finds one that lowers or

maintains the configuration energy. Conformations that increase energy are

accepted if their Boltzmann factor is larger than a randomly chosen number

between zero and one. If either direction of a step transition is equally likely

then the random walk is unbiased. The unbiased walk did not noticeably

converge to the final structure within 107 steps convincing us that the protein

machinery must actively direct the steps. The algorithm directs steps by

biasing the random walk. Step direction takes the present to the final

structure with the fewest steps except in the following circumstances. (1)

When the absolute difference between the present and final angle un-

dergoing transition is [1208 and the true path could reasonably require

reversal of the assigned step direction, and (2) when completion of a step

following the sampling of elementary transitions requires a configuration

energy increase beyond a certain empirically determined increment.

Circumstance (1) was met for particular angles. They made unbiased walks

until they converged to\1208 of their final value. Circumstance (2) caused

another sampling of elementary transitions but where steps direction is

unbiased. The occasional insertion of the unbiased walks relaxed potential

energy built up in the structure. If no suitable path could be found the

allowed configuration energy limit was increased and the process started

again.
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