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Transport and Receptor Activation
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ABSTRACT The photocycle of the photophobic receptor from Natronobacterium pharaonis, NpSRII, is studied by static and
time-resolved step-scan Fourier transform infrared spectroscopy. Both low-temperature static and time-resolved spectra resolve
a K-like intermediate, and the corresponding spectra show little difference within the noise of the time-resolved data. As
compared to intermediate K of bacteriorhodopsin, relatively large amide I bands indicate correspondingly larger distortions of
the protein backbone. The time-resolved spectra identify an intermediate L-like state with surprisingly small additional molecular
alterations. With the formation of intermediate M, the Schiff-base proton is transferred to the counterion Asp-75. This state is
characterized by larger amide bands indicating larger distortions of the protein. We can identify a second M state that differs
only in small-protein bands. Reisomerization of the chromophore to all-trans occurs with the formation of intermediate O. The
accelerated decay of intermediate M caused by azide results in another red-shifted intermediate with a protonated Schiff base.
The chromophore in this state, however, still has 13-cis geometry. Nevertheless, the reisomerization is still as slow as under the
conditions without azide. The results are discussed with respect to mechanisms of the observed proton pumping and the
possible roles of the intermediates in receptor activation.

INTRODUCTION

Archeabacterial phototaxis is mediated by the two photo-

receptors sensory rhodopsin I and II. These two pigments

enable bacteria like those of Halobacterium salinarum to

seek optimal light conditions above 500 nm and to avoid

harmful ultraviolet (UV) light as well as prevent photoox-

idative stress in case of high oxygen concentrations in bright

sunlight. This latter property is conferred by the photophobic

receptor sensory rhodopsin II (reviewed by Schäfer et al.,

1999 and Spudich et al., 2000). Generally, the signal trans-

duction chain is based on the two-component system that is

well characterized for the chemotactic signaling cascade in

e.g., Escherichia coli (Rudolph and Oesterhelt, 1996). After

the receptor is activated by light, the signal is transferred to its

cognate transducer, which in turn triggers the cytoplasmic

components that signal the chain and thereby switches the

flagellar motor.

Sensory rhodopsin II, originally identified in H. salina-
rum (HsSRII), has also been isolated from Natronobacte-
rium pharaonis (NpSRII; Imamoto et al., 1991; Scharf,

Pevec, et al., 1992). Because of its superior chemical stability

over HsSRII (Scharf, Pevec, et al., 1992), NpSRII has been

widely used in recent physiological and biophysical studies.

Its crystal structure has been determined to display a fold that

is similar to that of the light-activated proton pump bac-

teriorhodopsin (Luecke et al., 2001; Royant et al., 2001).

Differences are found in the cytoplasmic and extracellular

channels. The latter changes are mainly due to the

replacement of the Asp-96 that is present in bacteriorhodop-

sin by Phe-86, which is located at a homologous position in

NpSRII.

The light-activated photocycle of NpSRII has been studied

in great detail (Hirayama et al., 1992; Chizhov et al., 1998).

The general mechanism is quite similar to that of

bacteriorhodopsin, including the archetypical spectral states

KNpSRII, LNpSRII, MNpSRII, NNpSRII, and ONpSRII. Noteworthy

is the observation of two MNpSRII states (M1NpSRII and

M2NpSRII). M1NpSRII decays to M2NpSRII in ;2 ms. This

transition, which represents in respect to the UV-visible

(UV-vis) spectral range a truly spectrally silent transition, is

probably the switch between the ground state and the

signaling state. Recent experiments using electron-spin

resonance spectroscopy revealed that helix F in a outwardly

directed flaplike motion changes the mobility of residues on

the cytoplasmic side during the lifetime of MNpSRII (Wegener

et al., 2000), which could be later correlated with the

M1NpSRII ! M2NpSRII transition (H. J. Steinhoff and M.

Engelhard, unpublished observation).

Further insight into the molecular events that occur during

the photocycle have been obtained by static Fourier trans-

form infrared (FTIR) spectroscopy experiments. It can be

shown that the proton from the Schiff base has already been

transferred to Asp-75 in the M intermediate, which indicates

that this neutralization of the Schiff base takes place during

the LNpSRII ! MNpSRII transition (Scharf, Englehard, and

Siebert, 1992; Engelhard et al., 1996). For HsSRII, this

reaction was also confirmed by an analysis using the cor-

responding Asp/Asn mutant (Bergo et al., 2000). The retinal

chromophore adopts an all-trans configuration in the ground
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state. A light-dark adaptation cannot occur, because the

13-cis isomer of retinal is not bound by the protein (Hirayma

et al., 1995). In the KNpSRII state, retinal has isomerized to

the 13-cis configuration (Kandori et al., 2001). It is not yet

known at what time the back-isomerization takes place.

For the ion pumps bacteriorhodopsin and halorhodopsin,

static time-resolved FTIR spectroscopy has contributed

considerably to the understanding of the pumping mecha-

nism (Maeda, 1995; Hackmann et al., 2001). Because it is

sensitive to structural changes of both the chromophore and

the protein, it is especially suitable for addressing questions

about the isomeric state of the chromophore and protein

structural changes during the photocycle of NpSRII. By

incorporating isotopic labels at specific sites of the protein

backbone of bacteriorhodopsin, we provide evidence that in

the FTIR difference spectra, the amide I bands reflect local

distortions (Hauser et al., 2002). Previously, using time-

resolved step-scan FTIR spectroscopy, we unequivocally

identified small-protein structural changes during the spec-

trally silent transitions of bacteriorhodopsin (Rödig et al.,

1999) and N. pharaonis halorhodopsin (Hackmann et al.,

2001) thereby reflecting such backbone distortions, and we

also determined the chromophore geometry in the O state of

the latter pigment to all-trans.
In the present paper, the complete photocycle is analyzed

using step-scan FTIR spectroscopy. The data reveal the

molecular nature of the M1NpSRII ! M2NpSRII transition and

the isomeric state of retinal in the ONpSRII intermediate

without and in the presence of azide. The latter information

provides an explanation for a postulated two-photon process

under steady-state illumination (Schmies et al., 2000).

MATERIALS AND METHODS

NpSRII was expressed in E. coli and purified as described (Shimono et al.,

1997; Hohenfeld et al., 1999). The solubilized photoreceptor was recon-

stituted into purple membrane lipids in accordance with standard procedures

(Wegener et al., 2000). These samples did not contain the transducer.

In all infrared measurements, hydrated film samples of NpSRII re-

constituted into purple membrane lipids were used. A suspension containing

;100 mg of protein and 500 nM phosphate buffer, pH 8, was dried onto

a BaF2 window, and the film was rehydrated via the water-vapor phase. For

the measurements with azide, the molar ratio of azide to NpSRII was 3.3,

and the buffer was adjusted to pH 6.5. For measurements in 2H2O, the films

were completely dried, and 5 ml of 2H2O was deposited via the vapor

phase in the sealed sample cuvette. This process was repeated five times,

after which the final hydration was adjusted.

The low-temperature (103 K) FTIR measurements were performed as

described previously (Hackmann et al., 2001) using light of wavelengths

between 450 and 500 nm for irradiation. The methods for obtaining time-

resolved step-scan infrared spectra were essentially as used before (Rödig

et al., 1999; Hackmann et al., 2001). For the largest part of our studies, we

used our slower detection system (effective rise time, ;600 ns). Because

the photocycle is slow even at 378C, the repetition rate for signal averaging

was 0.5 Hz. To avoid overly long measuring times for a single step-scan

run, only four signals were averaged at each sampling position of the in-

terferogram. To achieve a sufficient signal-to-noise ratio, several measure-

ments (16–20) were averaged, which corresponds to 64–80 averages per

sampling position. To obtain information about earlier intermediates, we

also performed measurements with our fast-detection system (effective rise

time, ;30 ns). Because the noise was very large in the early time range of

the corresponding time-resolved spectra, a reliable kinetic analysis could not

be performed; instead, the spectra of several time-slices were averaged. For

sample excitation, the output of an optical parametric oscillator (OPO;

Lambda Physik, Göttingen) pumped by the tripled output of a Nd:YAG laser

(Brilliant, Quantel) was tuned to 490 nm. Pulse duration was 4 ns. Using

neutral-density filters, the pulse energy was reduced to ;1.5 mJ at the

sample position. Spectral resolution for the static FTIR measurements was

4 cm�1 and for the step-scan measurements was 8 cm�1.

The time-resolved spectra obtained with the slower instrumentation were

fitted to a sum of exponentials as described earlier (Rödig et al., 1999;

Hackmann et al., 2001). To avoid distortions from the detection rise time, the

fit was started 1 ms after the laser flash. The amplitude spectra were further

evaluated using the unidirectional reaction scheme without back-reaction as

described recently (Rödig et al., 1999; Hackmann et al., 2001). This scheme,

which describes transitions between possible fast equilibria of pure states,

was used here only as a suitable and direct means of describing the

molecular events. For a consistent description, it was necessary to order the

reaction sequence according to the increasing time constants derived from

the global fit.

RESULTS

General description of the intermediate spectra

Because the cycling time of the NpSRII photoreaction was

quite slow, measurements were performed at 378C, which

allowed for a repetition rate of 0.5 Hz for signal averaging

during the step-scan measurements. In addition, the transient

concentration of ONpSRII increased, which probably played

an important role in determining the duration of the pho-

tocycle (Chizhov et al., 1998). Although the repetition rate

could be enhanced, it was still quite low as compared to

that used in our step-scan FTIR measurements of bacterio-

rhodopsin (Rödig et al., 1999) or halorhodopsin (Hackmann

et al., 2001), which made the measurements more difficult

and caused a poorer signal-to-noise ratio. This must be taken

into account in the analysis of the step-scan data.

Fig. 1 A shows the intermediate spectra correlated to the

four half-times derived from the global fit, i.e., 7 ms and 1.2,

19, and 101 ms (for evaluation of the data, see Materials and

Methods). The corresponding amplitude spectra are shown

in Fig. 1 B. According to recent time-resolved UV-vis ex-

periments (Chizhov et al., 1998), the photocycle at 378C is

characterized by half-times of 150 ns (extrapolated), 4.5 and

13 ms, and 1, 33, 80, 150, and 350 ms, and we used these

data as a reference. The smaller number of exponentials ob-

tained from the time-resolved infrared spectra is due to the

larger noise in the infrared data. Comparing the two data sets,

it is likely that the 7-ms (FTIR) half-time represents an

average of the transitions with half-times of 4.5 and 13 ms

that were observed in the UV-vis range, with the larger noise

smearing out the two time constants.

The first intermediate identified with the time resolution of

700 ns has to be assigned to the LNpSRII state (Fig. 1 A(a)).

The next intermediate that appeared with a half-time of 7 ms

consisted, according to the UV-vis data, of a mixture of

mainly MNpSRII and a small amount of LNpSRII, the latter
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decreasing with higher temperature. Only the next in-

termediate, which appeared with 13 ms, represents a pure

MNpSRII state. However, at 378C, the amount of LNpSRII was

very small, and it is plausible that we were unable to detect

the transition with a half-time of 13 ms. Thus, we conclude

that the second spectrum (Fig. 1 A (b)) already represented

a pure MNpSRII state. Its signatures are the positive band at

1764 cm�1 and the lack of a positive band at 1189 cm�1. The

former band represents the protonation of the counterion

Asp-75 with the deprotonation of the Schiff base (Scharf,

Englehard, and Siebert, 1992; Engelhard et al., 1996), where-

as the latter indicates the deprotonation of the Schiff base,

which caused a drastic reduction of the intensity of the finger-

print bands of the chromophore (Siebert and Mäntele, 1980).

The next transition, with a half-time of 1.2 ms, was also

observed in the UV-vis data (1 ms). Its infrared spectrum

(Fig. 1 A (c)) was very similar to that of the previous one.

However, subtle differences became evident in the corre-

sponding amplitude spectrum (Fig. 1 B, labeled 1.2 ms),

which essentially describes the spectral changes between the

two intermediates. Only bands in the amide I/II spectral

range showed up, which indicates that the protein underwent

small distortions of the backbone, but that the chromophore

binding pocket was not altered. This observation is in

agreement with the UV-vis data, from which a spectrally

silent transition was deduced. Obviously, the characteriza-

tion of this transition as spectrally silent holds true only for

the UV-vis spectral range.

Beyond 1 ms, the comparison of the decay times of the

infrared vs. the UV-vis measurements reveals larger devi-

ations. Nevertheless, the half-time of 19 ms probably corre-

sponds to that of 30 ms, which characterizes the transition

to a mixture of MNpSRII and ONpSRII. From the infrared

spectrum of this intermediate (Fig. 1 A (d )), the contribution

of ONpSRII is not directly obvious, although the high tem-

perature should have increased its yield. We also provide

evidence that the infrared data indicate a contribution of

ONpSRII (see M intermediates), although it is smaller than

expected based on the UV-vis measurements. In our data, the

half-time of 100 ms describes the transition back to the initial

state. However, the half-time of 80 ms observed in the UV-

vis experiments describes a transition from the MNpSRII/

ONpSRII mixture to an MNpSRII/NNpSRII/ONpSRII equilibrium.

Therefore, the process with the half-time of 150 ms, which

describes to a large extent the back-reaction to the initial

state, better agrees with the last transition that we observed.

On the other hand, the last process observed in the UV-vis

measurements has no correspondence in the infrared data.

Because the amplitude was rather small, this might be due to

the larger noise in the infrared data. Later (see Discussion),

we discuss possible causes for the deviations in the photo-

cycles if measured using infrared or UV-vis.

The intermediate and amplitude spectra of samples in the

presence of 2H2O are shown in Fig. 2, A and B, respectively.

Although the half-times partly differ from the values

obtained for samples hydrated with H2O, the spectra

FIGURE 1 (A) Intermediate spectra of NpSRII obtained at 378C with H2O. Spectra are labeled with the decay half-times of the intermediates: (a) 7.07 ms;

(b) 1.23 ms; (c) 19.3 ms; (d) 101 ms. Spectral resolution, 8 cm�1. (B) Amplitude spectra of NpSRII obtained at 378C with H2O from the time-resolved infrared

spectra by global fitting to a sum of exponentials. The spectra are labeled with the respective half-times of the exponentials. Spectral resolution, 8 cm�1.

Method used to derive the intermediate spectra (A) from the amplitude spectra (B) is described in Materials and Methods.
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demonstrate that they describe the same transitions (see

below).

Description of the intermediates

KNpSRII and LNpSRII states

We also measured the photocycle with our faster detection

system, which enabled a time resolution of 30 ns (Rödig

et al., 1999). However, because of the large size of noise in

the data, we were unable to reliably deduce half-times \1

ms. To still be able to deduce an approximate spectrum of

KNpSRII, we averaged the spectra that were obtained with

high time resolutions over the range from 30 to 100 ns for

measurements in H2O (Fig. 3 (b)) and 2H2O (Fig. 3 (c)).

These averaged spectra are very similar to the first inter-

mediate spectra that we identified (Figs. 1 A (a) and 2 A (a)).

The main differences are the shift of the positive band at

1527 cm�1 in the LNpSRII spectra to 1530 cm�1 in the spectra

of KNpSRII and the larger size of the bands at 1674 and 1640

cm�1 in LNpSRII, which both probably represent alterations

of amide I bands, because they are little influenced by H/2H

exchange. Because 2H2O shifts the C555N stretch of the

protonated Schiff base of the initial state from 1657 to 1633

cm�1, the remaining bands between 1680 and 1640 cm�1 in

the 2H2O spectrum can be assigned to amide I spectral

changes. These bands are considerably more pronounced

FIGURE 2 (A) Intermediate spectra of NpSRII obtained at 378C with 2H2O. Spectra are labeled with the decay half-times of the intermediates: (a) 9.4 ms; (b)

0.645 ms; (c) 21.9 ms; (d) 183 ms. Spectral resolution, 8 cm�1. (B) Amplitude spectra of NpSRII obtained at 378C with 2H2O from the time-resolved infrared

spectra by global fitting to a sum of exponentials. The spectra are labeled with the respective half-times of the exponentials. Spectral resolution, 8 cm�1.

Method used to derive the intermediate spectra (A) from the amplitude spectra (B) is described in Materials and Methods.

FIGURE 3 Comparison of (a) the low-temperature KNpSRII spectrum

obtained at 103 K with H2O, and the time-resolved KNpSRII spectra obtained

at 378C, averaged over 30–100 ns with (b) H2O or (c) 2H2O. Spectral

resolution, 4 cm�1 (a) or 8 cm�1 (b) and (c). Owing to the large noise below

1100 cm�1, this spectral range was omitted in (b) and (c).
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than those in intermediate K of bacteriorhodopsin, which

indicates larger changes of the protein backbone.

The low-temperature KNpSRII spectrum obtained at 103 K

(Fig. 3 (a)) and the time-resolved KNpSRII spectrum are,

within the signal-to-noise ratio of the latter, very similar. In

the low-temperature spectrum, the small size of the ethylenic

difference band 1552 (�)/1542 (þ) as compared to the

fingerprint bands between 1270 and 1150 cm�1 shows that

the ethylenic bands largely overlap and thus the absorption

maximum is only slightly red-shifted (Ottolenghi, 1980).

This is in agreement with the time-resolved UV-vis data,

from which a red-shift of only 11 nm has been deduced

(Chizhov et al., 1998), resulting in a shift of the ethylenic

mode of only 3 cm�1 (see Ottolenghi, 1980 for a correlation

of the ethylenic frequencies and absorption maxima).

Therefore, the separation of the peaks of the difference band

is essentially determined by the half-width of the two

ethylenic bands. In contrast to this observation, the time-

resolved spectrum exhibits a large negative band at 1544

cm�1 and a small positive band at 1530 cm�1. We concluded

that the large negative band cannot be assigned to the

ethylenic mode of the dark state. Resonance Raman experi-

ments locate this mode at 1548 cm �1 (Gellini et al., 2000),

which is in agreement with the absorption maximum at 500

nm. Probably an amide II band superimposes at a slightly

lower position. This would also reduce the size of the

positive ethylenic mode and shift it to lower frequencies, as

observed. A further difference between the two spectra

(Fig. 3, a and b) can be seen in the amide I region: the band at

1626 cm�1 has considerably lower intensity in the low-

temperature spectrum. Thus, both differences are indications

for larger distortions of the protein backbone in the time-

resolved KNpSRII state which were taken at 378C. In both

KNpSRII states, the amide I bands at 1674 and 1640 cm�1 are

smaller than those in LNpSRII, which demonstrates that during

the KNpSRII ! LNpSRII transition, the protein undergoes

additional structural changes. The positive band at 1527

cm�1 in LNpSRII cannot be assigned to the ethylenic stretch,

because the absorption maximum is at 500 nm. Therefore,

we assign it to protein changes (e.g., amide II or tyrosine). It

appears plausible that in KNpSRII the band at 1530 cm�1

results from a superposition of the ethylenic stretch and this

protein band. It should be noted that a low-temperature

KNpSRII spectrum that agrees well with the spectrum shown

here has been published before (Kandori et al., 2001). In

agreement with those studies, we were unable to stabilize

LNpSRII at low temperature.

Surprisingly, in the spectrum of the low-temperature K

state, the main hydrogen out-of-plane (HOOP) mode at 997

cm�1 is not altered in the L state (although the larger noise in

the time-resolved KNpSRII spectrum impedes a reliable

identification of this mode, it can be tentatively assigned to

a band at the same position; data not shown). This is in

contrast to the corresponding K intermediates in bacterio-

rhodopsin (Weidlich and Siebert, 1993), where the modes of

the low-temperature state differ considerably from those of

time-resolved KL and L states, and it has been concluded

that the chromophore geometries differ considerably. In the

latter two states, the twist is confined to the Schiff-base

region (Rödig et al., 1999). Because the band in the LNpSRII

intermediate is shifted down to 984 cm�1 by Schiff-base

deuteration (Fig. 2 A (a)), we assigned it to the 15-HOOP

mode. Thus it can be concluded that as in the L state of

bacteriorhodopsin, the chromophore in LNpSRII is twisted

around the C14–C15 single bond.

It was found recently that the HOOP modes of the low-

temperature K state of bacteriorhodopsin could also be

induced in KNpSRII if the amino acids of the retinal binding

pocket were changed to those of bacteriorhodopsin (Shimo-

no et al., 2002). This shows that it is mainly the reduced

steric hindrance that allows the chromophore to adopt a more

relaxed conformation in the KNpSRII intermediate of wild-

type NpSRII.

Measurements after H/2H exchange often allow an

assignment of the C555N stretching mode of the protonated

Schiff base, which is shifted down by deuteration. In the

spectrum of the LNpSRII intermediate (Fig. 1 A), a negative

band at 1657 cm�1 lost intensity upon deuteration, and

instead, a negative band at 1630 cm�1 gained intensity (Fig.

2 A). Thus we assigned these bands to the C555N stretch of

the protonated and deuterated Schiff base of the initial state.

In the later intermediates, this shift could still be discerned,

although the band at 1657 cm�1 was superimposed by

another negative band that resulted in a negative band at

1663 cm�1 and a positive band at 1643 cm�1. These addi-

tional bands were assigned to amide I changes because they

were also observed in the presence of 2H2O (Fig. 2 A). In

low-temperature spectra of the KNpSRII intermediate, the

band of the deuterated Schiff base was found at 1633 cm�1

(data not shown, and see Kandori et al., 2001) within the

spectral resolution, which is in agreement with the time-

resolved data and also approximately in agreement with

resonance Raman spectra (Gellini et al., 2000). However, it

was more difficult to assign the corresponding modes to

bands of LNpSRII. H/2H exchange caused pronounced

alterations of the positive bands between 1623 and 1600

cm�1, and it was tempting to assign this positive feature to

the C555N stretch of LNpSRII. However, these H/2H-induced

changes persisted in the MNpSRII intermediate (the first

amplitude spectrum was little influenced by H/2H exchange

(Fig. 1 B vs. Fig. 2 B)), and the positive bands were already

present in KNpSRII (H2O). Thus the C555N stretch of LNpSRII

cannot be assigned, and its intensity must be very low.

M intermediates

In the transition from LNpSRII to MNpSRII, besides the

characteristic features of the MNpSRII state discussed already,

additional molecular changes took place. A band at 1643

cm�1 gained intensity overcompensating the negative band
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at 1657 cm�1 (C555N stretch), and the LNpSRII band at 1674

cm�1 lost intensity. Probably these bands represented alter-

ations of amide I modes and indicated distortions of the

protein backbone. The LNpSRII band at 1600 cm�1 dis-

appeared, and instead, a broad negative band appeared. This

is the largest spectral feature of the LNpSRII ! MNpSRII

transition. In this spectral range, the antisymmetric CO2
�

stretch of deprotonated carboxyl groups contributes. Because

Asp-75 becomes protonated in the M intermediate, the sign

of the spectral changes would be in agreement with such

a process. However, the observed spectral changes appear to

be far too large to represent only this single protonation step.

The largest part, i.e., the positive band at 1600 cm�1 in

LNpSRII disappearing in MNpSRII, must be caused by

additional, yet-unidentified molecular changes. On the other

hand, the spectral change around 1360 cm�1 that is especially

evident in the first amplitude spectrum as a positive band

(Fig. 1 B) could be caused by the symmetric CO2
� stretch of

deprotonated Asp-75 disappearing in the transition to

MNpSRII. This is corroborated by the measurements in 2H2O

(Fig. 2 B). Further changes were observed at 1567 cm�1

(positive), which probably represent larger amide II spectral

changes in MNpSRII. However, the ethylenic mode of the

deprotonated Schiff base chromophore could also contribute.

On the other hand, the band at 1527 cm�1 of LNpSRII,

tentatively assigned to amide II spectral changes, had reduced

intensity in MNpSRII. A further large change in the LNpSRII !
MNpSRII transition involved the ethylenic mode: in the

MNpSRII spectrum, the negative band at 1542 cm�1 gained

intensity. This indicates that a band absorbing in this region

disappeared and confirms our earlier conclusion that the

ethylenic modes of the initial state and LNpSRII exhibited

considerable overlap. (With the formation of the M in-

termediate, i.e., deprotonation of the Schiff base, there is

a large upshift and intensity loss of the ethylenic mode that

relieves the overlap between the ground and photoproduct

states.) All the spectral features of the LNpSRII ! MNpSRII

transition were especially evident in the amplitude spectrum,

where the positive bands represented the LNpSRII state and the

negative ones the MNpSRII state. It is noteworthy that this

amplitude spectrum was little influenced by H/2H exchange

(Fig. 1 B vs. Fig. 2 B). This shows that the involved modes

coupled only little, if at all, to exchangeable hydrogens.

As already discussed in the general description of the

spectra, the transition to the next intermediate involved only

small-protein structural changes. Thus this state also had all

the characteristics of an M state. The earlier state is called

M1NpSRII; this later one is termed M2NpSRII. Unfortunately, it

is presently impossible to interpret these spectral changes in

precise molecular terms. Because amide bands show up, we

can conclude that the protein backbone undergoes small

distortions.

In the subsequent transition, larger spectral changes

occurred. We now provide evidence that the ONpSRII state

was formed. ONpSRII has an absorption maximum at 535 nm

(Chizhov et al., 1998), and thus an ethylenic mode of the

chromophore around 1534 cm�1 is expected (Ottolenghi,

1980). Indeed, in the corresponding intermediate spectrum,

the increase in absorbance at 1529 cm�1 could be caused

by such a band. But better evidence was obtained from the

amplitude spectrum, where the negative band at 1535 cm�1

was clearly visible (formation of ONpSRII). The comparison

of the last two intermediate spectra shows that the con-

tribution of ONpSRII was small. Therefore, the involved

spectral features are better discussed with regard to the

amplitude spectrum. Further large changes could be seen

around 1597 cm�1 and in the amide I spectral range. A

peculiar band of the ONpSRII state rose around 1757 cm�1

(broad negative band). In the presence of 2H2O, this band

was shifted to 1744 cm�1 (Fig. 2 B), which is typical for the

C¼O stretch of a protonated carboxyl group. Because in

both amplitude spectra no corresponding positive band was

observed, we assigned the negative band to the protonation

of a carboxyl group. Especially, a shift of the band caused by

Asp-75 to lower frequencies can be excluded. Thus the

positive band observed at 1597 cm�1 in the presence of H2O

and 2H2O could represent the disappearance of the cor-

responding antisymmetric CO2
� stretching mode of depro-

tonated carboxyl groups. (Evidence for the disappearance of

the corresponding symmetric one is obtained from Fig. 2 B
(22 ms) at 1376 cm�1. However, because this is not so

clearly observed in Fig. 1 B (19 ms), the assignment is only

tentative.) The lack of a clear positive band around 1567

cm�1 demonstrates that the corresponding band that rose

with the formation of MNpSRII (Fig. 1 A (b)) cannot represent

the ethylenic stretch of the deprotonated Schiff base, but

probably must be ascribed to amide II spectral changes. The

isomeric state of the chromophore in ONpSRII can be deduced

from the fingerprint modes in this amplitude spectrum. The

three negative bands at 1164, (shoulder) 1186, and 1205

cm�1 are similar to corresponding bands observed at 1168,

1185, and around 1210 cm�1 in the transition from N to O in

bacteriorhodopsin (Hessling et al., 1993; Rödig et al., 1999).

One has to recall that the amplitude spectrum described here

reflects the transition from M2NpSRII to ONpSRII, i.e., from an

unprotonated Schiff base to a protonated one. Therefore, the

negative fingerprint bands essentially represent those of the

protonated Schiff base. Because this pattern of fingerprint

bands is characteristic of an all-trans chromophore, we can

conclude that, like in the O intermediate of bacteriorhodop-

sin and halorhodopsin (Smith et al., 1983; Hackmann et al.,

2001), the chromophore is also in this geometry in ONpSRII.

In Fig. 2 B, these three bands cannot be seen. This is

probably due to the larger noise in this spectral region caused

by the strong absorbance of 2H2O.

Measurements in the presence of azide

Because azide considerably increases the steady-state

electric current, which is interpreted as a steady-state proton

Time-Resolved FTIR of Sensory Rhodopsin II 1213

Biophysical Journal 84(2) 1208–1217



translocation (Schmies et al., 2000), we studied the

photoreaction in the presence of azide. It has been reported

that azide accelerates the reprotonation of the Schiff base

(Takao et al., 1998), but without shortening of the photo-

cycle (Schmies et al., 2000). It was concluded that the

increase of the proton-pumping rate cannot be explained by

the acceleration of the slow photocycle. The pH dependence

of the azide effect showed that it is the protonated form of

azide that is involved in proton translocation.

In performing the measurements, we faced the problem

that to obtain unequivocal spectra, the molar amount of azide

should be larger than the molar amount of NpSRII. Owing to

the low water content of the infrared samples, this led to an

azide concentration exceeding the 1 M level, and according

to the time-resolved UV-vis measurements, to a very fast

reprotonation of the Schiff base. In addition, the high salt

concentration caused a low infrared transmission of the

sample and therefore increased the noise in the spectra. It

turned out that the spectra showed only small changes in

time. The high azide concentration caused such a fast

reprotonation of the Schiff base that the MNpSRII intermediate

did not accumulate. Together with the larger noise, this made

the global fitting procedure of the time-resolved spectra to

a sum of exponentials unreliable. To still be able to deduce

the main temporal variations, we formed time-averaged

spectra whereby the corresponding time ranges were selected

from the half-times obtained by the approximate global fit.

The last half-time, which described the reformation of the

initial state, was reliably determined to 120 ms at 378C,

thereby confirming the observation that azide does not

accelerate the photocycle. The results are shown in Fig. 4.

The first spectrum (Fig. 4 (a)), which was averaged over

the period from 100 to 1040 ns, was very similar to the

LNpSRII spectrum shown in Fig. 1 A (a). The deviations,

especially in the amide I spectral range and between 1100

and 1000 cm�1, can be explained by the larger noise.

However, the larger intensities of the bands between 1530

and 1500 cm�1 represent real spectral differences. Whether

they are caused by larger amide II alterations or by a

downshifted and increased ethylenic stretching mode is

difficult to decide. However, it should be noted that this

feature even persisted at later times when Asp-75 became

protonated. The fingerprint band characteristic of the 13-cis
configuration at 1189 cm�1 is evident. Although the noise

was quite large in the spectral range between 1100 and 1020

cm�1 and below 930 cm�1, the HOOP mode at 996 cm�1

was by far above the noise level.

The next spectrum, which was averaged between 25 and

61 ms, showed (as expected) the band due to protonation of

Asp-75 at 1767 cm�1 (Fig. 4 (b)). However, in contrast to the

MNpSRII spectrum of Fig. 1 A (b), the positive fingerprint

band, although slightly shifted to 1187 cm�1, was still

present. This clearly shows that the Schiff base is protonated.

This is corroborated by the increase of the band at 1531

cm�1, which was caused by the rise of the corresponding

ethylenic stretching mode. The corresponding absorption

maximum must therefore be similar to that of the ONpSRII

intermediate, which is in agreement with earlier studies of

the influence of azide on the photoreaction (Schmies et al.,

2000). The spectra between 1 and 25 ms only show the direct

transition from the earlier spectrum (Fig. 4 (a)) to this one,

without a transient intensity loss of the fingerprint band

around 1187 cm�1. Because the time range for protonation

of Asp-75 is similar to that observed without azide, we must

conclude that immediately after proton transfer from the

Schiff base to Asp-75, the Schiff base becomes protonated

via protonated azide. Therefore, the species with an un-

protonated Schiff base cannot accumulate. The amide I

bands indicate that the distortions of the protein backbone are

similar to those of MNpSRII (Fig. 1 A (b)). In contrast to the

all-trans chromophore geometry in ONpSRII, in this species,

the chromophore was still 13-cis as indicated by the positive

fingerprint band at 1187 cm�1. Therefore, we will call this

species MONpSRII, similar to the NO state identified for muta-

tions of Leu-93 in bacteriorhodopsin (Subramaniam et al.,

1991). It is remarkable that the HOOP mode at 996 cm�1

was still present in this intermediate, i.e., the chromophore

was similarly twisted as in the precursor intermediate and as

in LNpSRII in the measurements without azide.

It is tempting to also assign in the first spectrum the larger

intensity of the band at 1530 cm�1 to the ethylenic mode.

FIGURE 4 Time-resolved difference spectra obtained in the presence of

azide at 378C. Molar ratio of azide to NpSRII was 3.3:1. (a) Spectrum

averaged between 100 and 1040 ns; (b) spectrum averaged between 25 and

61 ms; (c) spectrum averaged between 40 and 100 ms; (d): weighted

difference between (b) and (c), using the negative band at 1240 cm�1 for

normalization. Spectral resolution, 8 cm�1.
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This would indicate that in the presence of azide, the

precursor of MNpSRII (or MONpSRII) has a red-shifted ab-

sorption maximum. However, earlier studies on the influence

of azide provide no evidence for this, at least up to a 1 M

azide concentration. But it appears possible that in our

infrared samples, azide was already bound to the cytoplas-

matic channel, close to the Schiff base, which would enable

its very fast reprotonation. This could cause a red-shift of

the absorption maximum of LNpSRII or even bypass its

formation.

The analysis of the time-resolved spectra showed that

further spectral changes occurred in the 0.1–20-ms time

range. Therefore, the last spectrum was averaged over

a period from 50 to 100 ms (Fig. 4 (c)). The smaller size of

the bands is explained by the partial decay to the initial state.

The changes with respect to the earlier spectrum can be best

estimated by forming the difference between the two spectra

using the negative band at 1240 cm�1 for normalization.

This is shown in Fig. 4 (d ). It resembles the last amplitude

spectrum shown in Fig. 1 B (101 ms). The negative bands in

the fingerprint region (1205 and 1165 cm�1) show that the

chromophore underwent reisomerization to all-trans. Here,

one must consider that this difference spectrum reflects the

transition from MONpSRII to ONpSRII. Therefore, the strong

fingerprint band of MONpSRII at 1187 cm�1 showed up as

a positive band around 1190 cm�1. The band at 1757 cm�1

indicates that an additional carboxyl group became pro-

tonated. Thus, the spectral changes reflect the transition to

the ONpSRII intermediate. Interestingly, the ethylenic mode

was probably upshifted to 1539 cm�1, indicating that

ONpSRII was slightly blue-shifted as compared to MONpSRII.

The larger ethylenic band indicates that considerably more

ONpSRII was formed as compared with the measurements

without azide (Fig. 1 A (d )). From our approximate fitting

procedure, we obtained a half-time for the MONpSRII decay

of ;25 ms at 378C. Thus the rate-limiting step of the

photocycle was not the back-isomerization of the chromo-

phore (although it was slower than in bacteriorhodopsin), but

the relaxation of the protein must control the reformation of

the initial state. The last intermediate still contained a large

fraction of MONpSRII, which indicates that the lifetime of

protein states that favor the 13-cis geometry of the

chromophore is rather long.

DISCUSSION

In the analysis of the time-resolved infrared spectra obtained

at 378C, we were able resolve four intermediates: LNpSRII,

M1NpSRII, M2NpSRII, and MONpSRII. The analysis of the

spectra obtained with 30-ns time resolution also provided

evidence for the existence of a KNpSRII state that is very

similar to the LNpSRII state, with the exception of small

alterations in the amide I/II spectral range. Up to several

milliseconds, the analysis was in good agreement with earlier

time-resolved UV-vis studies (Chizhov et al., 1998). The

deviations observed for the later times can probably be

explained by the low water content of the infrared samples.

Preliminary experiments with steady-state illumination using

a diamond-attenuated total-reflection cell or the sandwich-

sample technique (Vogel and Siebert, 2001), which both

guarantee a natural aqueous environment, showed that as

compared with the film samples, considerably more ONpSRII

accumulated as expected from the photocycle. Thus,

hydration sensitively influenced the photocycle after forma-

tion of the MNpSRII intermediates.

The time-resolved UV-vis spectra showed only a small

red-shift (11 nm) for KNpSRII (Chizhov et al., 1998). This is

in contrast to earlier published low-temperature spectra,

which indicated red-shifts of 25 and 35 nm for two KNpSRII

species (Hirayama et al., 1992). As discussed, the small size

of the ethylenic modes in the low-temperature infrared

spectrum presented here is in better agreement with the small

red-shift. It is not clear what caused the differences, but the

different sample preparations, namely, NpSRII reconstituted

into lipids vs. solubilized NpSRII, may have contributed.

The time-resolved spectra of KNpSRII of samples hydrated

with 2H2O where the C555N mode of the Schiff base was

shifted to 1630 cm�1 clearly reveal amide I bands between

1700 and 1640 cm�1 that are considerably larger than those

observed for the K intermediate of bacteriorhodopsin. This

indicates that in this early intermediate, the protein backbone

underwent correspondingly larger distortions. Interestingly,

photoacoustic measurements provided evidence for consid-

erable volume changes for KNpSRII, but a much smaller

change has been deduced for K of bacteriorhodopsin (Losi

et al., 1999).

We have clearly identified a transition (M1NpSRII !
M2NpSRII) that only involves changes of the protein that is in

agreement with the UV-vis studies describing a spectrally

silent transition (in the UV-vis) with the same half-time. A

similar transition has been described for halorhodopsin, and

the corresponding protein changes have been invoked as an

indication for the accessibility change of the anion from the

extracellular to the cytoplasmic side (Hackmann et al., 2001;

Chizhov and Engelhard, 2001). The functional role of this

transition in NpSRII is not yet clear. It could be that in view

of the influence of hydration on the millisecond part of the

photocycle, the differences between M1NpSRII and M2NpSRII

are actually larger if excess water is present. In view of these

data, it is noteworthy that recent electron paramagnetic

resonance experiments indicate an outward movement of

helix F during the M1NpSRII ! M2NpSRII transition (M.

Engelhard and J. Steinhoff, unpublished results). An un-

equivocal correlation of the amide-band changes and the

helix-F movement may be accomplished by using site-

specific isotope labeling of peptide bonds. Using bacterio-

rhodopsin as a model system, we recently showed by

selective incorporation of a 13C label into a single peptide

group (carbonyl position) that especially positions in the
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middle to extracellular part of helices 3 and 6 contribute to

the amide I changes in the N state (Hauser et al., 2002). This

has been interpreted by the assumption that at these

positions, the movements of these helices cause distortions

in the backbone.

The most striking observation is the identification of the

13-cis geometry of the chromophore in the MONpSRII state

accumulated in the presence of azide, whereas in the

subsequent ONpSRII intermediate the conformation was

turned to all-trans. This observation could explain the

increase in steady-state proton pumping in the presence of

azide, which has been explained by a two-photo process

(Schmies et al., 2000). Because the Schiff base was already

reprotonated, the long-lived MONpSRII intermediate could

easily absorb a second photon. This process probably caused

the cis-trans back-isomerization of the retinal chromophore

and thereby shortened the photocycle. The higher turnover

number would result in an increased photostationary current

as was actually observed.

At present, we cannot identify the second carboxyl group

that became protonated with the formation of ONpSRII. In the

case of bacteriorhodopsin, some evidence has been obtained

for protonation of Asp-212 with the formation of O. One

interpretation has been that the proton is transferred from

Asp-85 to Asp-212 (Dioumaev et al., 1999). Such a proton

exchange between two carboxyl groups can be excluded,

because in the corresponding amplitude spectrum (Fig. 1 B
(19 ms)) in the spectral range where protonated carboxyl

groups show up, we observed only a negative band. A proton

circulation involving an additional titratable group has been

proposed for Schiff-base reprotonation (Sasaki and Spudich,

1999). However, in this case, a deprotonation would have

been expected. The band position at 1758 cm�1 indicated

that the protonated carboxyl group was not strongly

hydrogen-bonded, thereby excluding a group exposed to

the aqueous phase. The only internal carboxyl group is Asp-

201, the equivalent of Asp-212 in bacteriorhodopsin. If the

band were caused by this residue, it would not pick up the

proton from Asp-75. The positive charge of the Schiff base

and the neutralization of Asp-75 and Asp-201 would

probably require a compensation of the positive charge of

Arg-72. Thus it could be that there is proton transfer from

this residue to Asp-201. Interestingly, the protonation state

of Arg-72 has been recently suggested as taking part in

controlling the pKa of the Schiff base in the dark state

(Iwamoto et al., 2002). Because Asp-201 is close to the

Schiff base, a proton transfer from Arg-72 to Asp-201

appears possible if the corresponding pKa values were

regulated by the protein environment. The trigger for this

proton transfer could be conformational changes that re-

locate either of these residues or both in a less-polar envir-

onment. However, it has to be emphasized that this

interpretation is speculative. The small size of the band is

probably due to the small amount of O formed in this

transition. A more thorough analysis of the molecular events

involved with the formation of O requires its considerably

larger accumulation. This can be achieved, as mentioned

above, at a much higher degree of hydration that is obtain-

able with sandwich samples. Such experiments are in

progress.

It is remarkable that the reprotonation of the Schiff base in

MONpSRII does not, as compared to M2NpSRII, accelerate the

reisomerization, in that the barrier of the 13,14 double bond

is reduced. This shows that it is the protein conformation that

determines the rate of back-isomerization. Furthermore,

because ONpSRII is in equilibrium with considerable amounts

of either MNpSRII or MONpSRII, the back-isomerization is

essentially controlled by the long lifetime of the state with M

conformation, which is thought to represent the signaling

state. This temporal stability may be important to convey the

information of light absorption by the receptor to the

interacting transducer.
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insights into color tuning and transducer interaction. Science 293:1499–

1503.

Maeda, A. 1995. Application of FTIR spectroscopy to the structural study

on the function of bacteriorhodopsin. Isr. J. Chem. 35:387–400.

Ottolenghi, M. 1980. The photochemistry of rhodopsin. In Advances in

Photochemistry, Vol. 12. J. N. Pitts, G. S. Hammond, K. Gollnik, and D.

Grosjean, editors. Wiley-Interscience, New York. 97–200.
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