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An Empirical Correlation between Secondary Structure Content
and Averaged Chemical Shifts in Proteins

Anaika B. Sibley, Monique Cosman, and V. V. Krishnan
Molecular Biophysics Group, L-448 Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory,
Livermore, California 94551 USA

ABSTRACT It is shown that the averaged chemical shift (ACS) of a particular nucleus in the protein backbone empirically
correlates well to its secondary structure content (SSC). Chemical shift values of more than 200 proteins obtained from the
Biological Magnetic Resonance Bank are used to calculate ACS values, and the SSC is estimated from the corresponding
three-dimensional coordinates obtained from the Protein Data Bank. ACS values of 1Ha show the highest correlation to helical
and sheet structure content (correlation coefficient of 0.80 and 0.75, respectively); 1HN exhibits less reliability (0.65 for both
sheet and helix), whereas such correlations are poor for the heteronuclei. SSC estimated using this correlation shows a good
agreement with the conventional chemical shift index-based approach for a set of proteins that only have chemical shift
information but no NMR or x-ray determined three-dimensional structure. These results suggest that even chemical shifts
averaged over the entire protein retain significant information about the secondary structure. Thus, the correlation between ACS
and SSC can be used to estimate secondary structure content and to monitor large-scale secondary structural changes in
protein, as in folding studies.

INTRODUCTION

Since the first observation of the chemical shift in NMR

spectra in 1957 by Gutowsky et al., it has been used as a

powerful indicator of the type of secondary structure that

a biopolymer can adopt. Thus, most development of modern

experimental methods is driven by the goal to increase the

resolution and sensitivity by which the chemical shift of

a nucleus can be measured. In addition to structural

information (Dalgarno et al., 1983; Pastore and Saudek,

1990; Williamson, 1990; Wishart et al., 1991a; Laws et al.,

1993; Oldfield, 1995; Cornilescu et al., 1999), chemical

shifts provide detailed information about the nature of

hydrogen exchange dynamics, ionization and oxidation

states, ring current influence of aromatic residues, and

hydrogen bonding interactions (Szilagyi, 1995). Several

recent and excellent review articles describe a variety of

experimental and computational methods to correlate

chemical shifts to protein three-dimensional structural

information (Szilagyi, 1995; Case et al., 1994; Wishart and

Nip, 1998; Ando et al., 2001; Wishart and Case, 2001).

Here, we would like to explore whether any meaningful

structural information could still be obtained from chemical

shifts before completion of resonance assignments. Thus, the

extensive information found in the Biological Magnetic

Resonance Bank and Protein Data Bank was used to

determine whether there is a correlation between protein

secondary structure content (SSC) and the average chemical

shift (ACS) value for a particular type of nucleus. We have

determined that the highest correlation with secondary

structure content is found with the 1Ha ACS value, followed

by 1HN ACS. No reliable correlations could be determined

for backbone heteronuclei 13Ca and 15N. The correlation

between 1Ha and 1HN ACS values and SSC was used to

estimate the percentage of helical and sheet content for a set

of proteins that have complete chemical shift information

available in the BMRB, but the NMR or x-ray determined

three-dimensional structures of which are not yet available.

The estimates are then compared with estimates calculated

using a more conventional method, the chemical shift index

(CSI), which uses the individual chemical shifts of each

resonance instead of an average. The results show a good

agreement for the helical content between the two estimates,

whereas the agreement is only moderate for the sheet

content. Though determination of CSI values is superior in

obtaining SSC estimates in cases where the resonances can

be readily assigned, estimates of SSC could be obtained from

a simple ACS value as well, especially in cases where

assignments would be difficult if not impossible to obtain

(e.g., under denaturing conditions). Though circular di-

chroism also be used to estimate SSC, and requires less

sample and experimental time, circular dichroism cannot be

used in cases where the signal is masked by the solvent

signal, such as when high concentrations of urea are used.

METHODS

Chemical shift values corresponding to the protein backbone atoms (1HN,
15N, 1Ha, and 13Ca) were obtained from the Biological Magnetic Resonance

Bank (BMRB, http://www.bmrb.wisc.edu/) star files (Seavey et al., 1991). If

the information on the structure of the protein was also present in the star file,

it was extracted, as was the information on the amino acid sequence.

Structure files obtained from the Rutgers Center for Structural Biology (PDB

format, http://www.rcsb.org/pdb/) (Berman et al., 2000) were cross-checked
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against the corresponding BMRB star file manually to ensure a correct

match. NMR determined structures were used whenever possible, but if they

were not available, the corresponding x-ray structure was used instead. Only

proteins with more than 50 amino acid residues were considered, inasmuch

as these were expected to contain a significant amount of secondary

structure.

The averaged chemical shift (ACS) of a nucleus ‘‘i’’ is defined by:

ACSðiÞ ¼ ð1=NÞ +
k¼1;N

vk; (1)

where N is the total number of observed crosspeaks (typically in a sin-

gle bond correlated spectrum, such as a heteronuclear single quantum

correlation (HSQC)) and vk is the corresponding chemical shift of the kth

resonance (referenced using recommended procedures (Wishart et al., 1995)).

To evaluate the secondary structure content for the set of proteins, the

program probability-based protein secondary structure identification (PSSI)

was used (Wang and Jardetzky, 2002). In this method, CSI of the set of

backbone atoms are used to define the probability with which the secondary

structure (sheetorhelix) is assigned.Secondarystructurecontent inpercentage

is then calculated with respect to the total number of residues in the sequence.

The structure-based percentage of sheet and helix (sum of a and 310) was

determined using the program PROMOTIF (http://www.biochem.ucl.ac.uk/

gail/promotif/promotif.html) (Hutchinson and Thornton, 1996), which uses

the atomic coordinate files obtained from the RCSB. All the analyses were

performed using codes written using Cþþ and other scripts (awk or perl) on

a Silicon Graphics UNIX work station (copies of the code are available from

the authors). A complete list of the 213 proteins (comprised of 1HN, 15N,
1Ha, and 13Ca chemical shifts) and 25 additional proteins (with only 1HN and
15N chemical shifts), their individual ACS values and the structure based

secondary structure content estimates are available from the authors.

RESULTS

Correlations between averaged chemical shifts
and secondary structure content

Fig. 1 shows the ACS values of 1HN and 15N nuclei (top and

bottom rows, respectively) plotted against the respective

sheet and helical content (left and right columns, re-

spectively). Fig. 2 shows a similar plot for 1Ha and 13Ca

nuclei. A total of 238 and 213 proteins were used in Figs. 1

and 2, respectively (Supporting Information Table S1). The

continuous lines in Figs. 1 and 2 correspond to linear

regression analyses of the data, and Table 1 lists the results of

the analyses. ACS values of both 1HN and 1Ha are much

more indicative of the overall secondary structure content

than those of the heavy atoms. Correlation coefficients for

the plots of 1HN, 15N, 1Ha, and 13Ca versus percent sheet

content are 0.64, 0.44, 0.75, and 0.44, respectively, whereas

the coefficients obtained in the plots versus percent helix

content are 0.65, 0.40, 0.80, and 0.58, respectively (Table 1).

Although 13Ca ACS values show a wider dispersion with

respect to helical content (Fig. 2 d ) than the corresponding
15N data (Fig. 1 d ), the correlation coefficients for the plots

of heteronuclei are equally poor. Overall, the best correla-

tions were obtained with the 1HN and 1Ha data.

A notable feature of these results is that the slopes of the

lines for the ACS values versus helix and sheet content are

opposite to each other (most clearly seen in panels a and c of

Figs. 1 and 2). The change in the sign of the slope indicates

that changes in ACS values can allow differentiation of in-

creasing or decreasing helical or sheet secondary structural

elements upon changes in environment. The ACS values

increase with an increase in the total sheet content and

decrease with an increase in the total helical content.

Estimation of SSC for proteins having no
determined three-dimensional structure

A set of 36 proteins obtained from the BMRB for which

complete assignments of the backbone atoms are known, but

FIGURE 1 Plots of ACS values versus the secondary structure contents

estimated from the three-dimensional structures using the program

PROMOTIF. (a) and (b) show the correlation of 1HN and 15N ACS values,

respectively, to the percentage of b-sheet structures, whereas (c) and (d )

correlate the same ACS values with respect to the percentage of helical

structure (sum of a and 310 helices). Continuous lines represent the linear

regression analysis results.

FIGURE 2 Plots of ACS values versus the secondary structure contents

estimated from the three-dimensional structures using the program

PROMOTIF. (a) and (b) show the correlation 1Ha and 13Ca ACS values,

respectively, to the percentage of b-sheet structures, whereas (c) and (d )

correlate the same ACS values with respect to the percentage of helical

structure (sum of a and 310 helices). Results of the linear regression analysis

are shown by continuous lines.
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for which structures have not yet been determined, were used

to estimate SSC by using the empirical correlation between

SSC and 1Ha or 1HN ACS values. SSC was also calculated

using the consensus chemical shift indices using the program

PSSI (Methods) using all the backbone atoms. The list of all

the proteins and their estimated SSC, using the correlation

and CSI-based methods is given in Table 2. There is an

overall agreement between the SSCs estimated using these

two methods (Fig. 3). Larger deviations were observed in the
1HN ACS values compared to the 1Ha ACS values. The

TABLE 1 Linear correlation of ACS to secondary structure content

*Sheet (%) *Helix (%)

ACS (ppm) yCC zSlope zIntercept yCC zSlope zIntercept

1HN 0.64 60.9 6 4.4 �488.0 6 36.3 0.65 �95.0 6 6.7 818.9 6 55.4
15N 0.44 5.1 6 0.63 �598.4 6 75.5 0.40 �7.2 6 1.0 899.1 6 118.6
1Ha 0.75 66.2 6 3.7 �273.1 6 16.0 0.80 �102.8 6 5.2 482.1 6 22.6
13Ca 0.44 �6.27 6 0.9 377.6 6 49.8 0.58 12.4 6 1.2 �680.0 6 67.5

*Secondary structures defined based on PROMOTIF.
yCC: Correlation coefficient for linear regression analysis.
zSlope and intercept are defined based on a linear equation ACS (ppm) ¼ Slope3 Secondary Structure Content þ Intercept.

TABLE 2 Estimated SSC using ACS- and CSI-based methods for proteins with no three-dimensional structural information

Helix (%) from Sheet (%) from

BMRB Protein name *ACS (1Ha) *ACS (1HN) yCSI *ACS (1Ha) *ACS (1HN) yCSI

4840 Adenylate kinase 15.31 12.65 12.70 38.11 34.58 20.40

4834 Staphylococcus aureus peptide deformylase 25.56 18.69 21.70 25.54 20.70 36.50

4825 Recombinant RC-RNase 2 27.28 18.45 15.10 25.70 19.60 39.60

4821 DcuS 17.62 15.87 20.40 33.70 30.37 19.10

4795 Human D187N gelsolin domain 2 20.83 18.67 37.10 28.73 26.01 24.10

4794 Human wild-type gelsolin domain 2 25.69 19.45 20.70 25.06 20.62 35.30

4787 Apical membrane antigen 1 26.10 12.95 13.10 29.25 20.36 21.30

4784 Tyrosine repressor n.a. 6.38 6.60 n.a. 47.90 57.40

4776 Sud dimer 14.03 11.31 19.70 40.21 36.56 42.30

4771 Tola3 8.18 4.57 21.70 50.72 45.64 36.80

4752 gpnu1-E68 11.92 4.32 16.20 51.62 39.25 39.70

4735 Olfactory marker protein 23.33 12.27 21.50 29.68 22.13 41.10

4722 Shikimate kinase 9.34 6.80 19.00 47.78 43.28 32.10

4716 Auxilin 3.53 2.78 7.70 54.01 52.33 39.00

4712 Newt acidic FGF 16.76 10.94 5.30 30.54 26.34 45.50

4711 RNA-binding protein n.a. 13.99 31.70 n.a. 36.02 20.80

4698 Transforming growth factor beta type II receptor n.a. 13.86 4.90 n.a. 28.66 41.00

4688 L18 22.46 14.66 32.40 34.98 23.48 31.50

4670 PIN1At 30.71 17.80 29.20 25.68 17.80 33.30

4664 Lipocalin Q83 25.54 11.77 17.20 30.01 20.71 51.00

4579 FYVE domain of EEA1 n.a. 20.16 18.60 n.a. 27.05 11.60

4567 Catalytic domain of yUBC1 19.30 13.23 24.50 37.21 28.38 38.40

4558 YopH-NT monomer 17.48 12.64 25.70 38.13 31.21 37.50

4463 Ras-binding domain of Byr2 21.74 18.02 31.90 30.37 23.95 33.60

4447 p23fyp 20.93 19.80 33.30 26.97 25.85 29.80

4353 p13 C-terminal domain 23.81 16.69 15.90 26.84 21.82 38.90

4335 Calerythrin 5.88 2.21 11.40 54.90 48.68 60.20

4313 E2 24.09 17.73 41.70 30.19 20.94 21.10

4294 Human MBF1(57-148) core domain 5.96 4.99 15.20 50.59 48.55 42.40

4271 Calcium binding protein from Entamoeba histolytica 11.00 8.70 13.40 44.27 41.27 48.50

4239 f29-SSB bacteriophage 23.69 14.46 15.30 28.27 21.90 43.50

4147 Cold shock domain 14.95 6.93 8.90 32.65 27.95 44.30

4136 Escherichia coli multidrug Resistance protein E n.a. 3.46 1.80 n.a. 52.96 68.20

4132 Human ubiquitin-conjugating enzyme 18.15 12.68 19.90 38.07 30.17 33.10

4027 S. aureus DHFR(F98Y)-NADPH-TMP ternary complex 17.36 17.00 22.20 26.64 25.96 44.90

1583 Micrococcal nuclease n.a. 20.59 7.30 n.a. 23.89 48.90

*Secondary structure content estimated using the correlation listed in Table 1.
ySecondary structure content estimated using probability-based protein secondary structure identification (Wang and Jardetzky, 2002).

n.a.: not determined due to absence of chemical shift information.
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correlation between 1HN ACS and secondary structure

(Table 1) is worse than that for the 1Ha ACS, as shown in

Fig. 3, b and d.

DISCUSSION

Previously, Wishart and co-workers (Wishart et al., 1991b;

Wishart and Sykes, 1994) have suggested two methods to

estimate secondary structure content from two-dimensional

NMR data. In one of their methods, the total number of

crosspeaks over a preselected region of a homonuclear two-

dimensional correlation spectrum is counted to estimate the

SSC. Here we show that even the averaged chemical shift

values of a backbone atom of a protein can retain significant

information about the proteins secondary structure. In

particular, the 15N-1HN chemical shift values, which are

often underutilized as indicators of secondary structure

because they are liable to change with small variations in

temperature and pH (Glushka et al., 1989; Le and Oldfield,

1994), can be used to estimate SSC from 1HN ACS values as

a function of varying buffer conditions. In addition to the

backbone atoms 1HN, 15N, 1Ha, and 13Ca, ACS versus SSC

correlations for the other backbone and side-chain nuclei
13CO, 13Cb, and 1Hb were also evaluated (data not shown).

The correlation coefficients for the plots of ACS values for

these nuclei versus SSC were good, in particular for the

carbon atoms. However, estimates of SSC using the 13CO,
13Cb, and 1Hb ACS were not considered further because

residue-specific secondary structure determination can

readily be accomplished with chemical shift assignments

by using other empirical methods, such as TALOS,

developed by Cornilescu et al. (1999).

The statistical analysis of the correlation between ACS

and SSC is relatively good for the 1Ha ACS values (75–

80%), whereas a moderate correlation (65%) is obtained with

the 1HN ACS values. As the number of proteins that can be

added into the correlations of ACS with secondary structure

increases, the correlation coefficients should improve sig-

nificantly. However, certain factors may result in lower-

ing the correlation coefficient. ACS values were based on

the total number of crosspeaks that were observed, and not

on the total number of residues in the protein. For example,

a 15N-HSQC spectrum will not contain resonances from

a proline residue, which will consequently not be included in

the ACS value, though it is present in the sequence.

Significant contributions in lowering the correlation are

expected from the residues that are present in the turns that

will contribute to the ACS value as a sheet or helix. For

example, residues that are part of a b-turn will be considered

as b-sheet when the average values are calculated. The

distribution of chemical shifts for each of the amino acids

found in the BMRB database suggests that no particular

amino acid dominates the ACS values, and hence the

chemical shifts, for a particular type of amino acid. Therefore

no particular amino acid expected to bias the correlation.

Moreover, Sharman et al. (2001) have used rigorous

statistical analyses of 1Ha chemical shifts to show that there

is no correlation between amino acid type and propensity to

fall within helical or sheet regions. However, it is possible

that certain proteins will contain a large number of one type

of residue (or a preponderance of a few types of residues)

that may skew the ACS value. The relatively low correlation

coefficients (0.64–0.8) for the ACS versus SSC correlations

may result from these and other factors. However, estimating

SSC from ACS values may still be a way to detect secondary

structural changes, especially increases or decreases in

helical content.

From a practical point of view, this correlation would be

most useful if a sufficient number of individual crosspeaks

are observed in an HSQC spectrum. Although the correla-

tions were not evaluated by systematically eliminating

a certain percentage of peaks from the data, it is

recommended that a minimum of 70% of the total number

of peaks expected should be observed in the spectra to

determine a reliable ACS value. Experimental methods

based on transverse relaxation optimized spectroscopy

(Pervushin et al., 1997, 1998) can provide an additional

advantage for estimating SSC from ACS values.

In summary, the observed correlation between ACS and

SSC can be used to monitor structural changes in real time,

such as in protein folding experiments, to detect large-scale

structural changes in complex formation and to identify initial

protein folds in high throughput proteomics applications.

SUPPORTING MATERIAL

Table S1: List of all the proteins, BMRB and pdb codes,

ACS values and PROMOTIF estimates of secondary

FIGURE 3 Comparison of helical and sheet content percent calculated

using 1Ha or 1HN ACS values to that obtained using a consensus chemical

shift index-based method for a set of proteins for which no three-

dimensional structures are available. (a) and (b) correspond to the helical

content using the 1Ha and 1HN ACS values, respectively, whereas (c) and

(d ) are the corresponding sheet content using the same ACS values. The

dashed lines correspond to a perfect correlation between these two methods.

1226 Sibley et al.

Biophysical Journal 84(2) 1223–1227



structure content is available from the authors. (15 pages,

data used in Figs. 1 and 2).
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