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Statistical Analysis of Fluorescence Correlation Spectroscopy:
The Standard Deviation and Bias

Saveez Saffarian* and Elliot L. Elsony

*Department of Physics, and yDepartment of Biochemistry and Molecular Biophysics, Washington University, St Louis, Missouri

ABSTRACT We present a detailed statistical analysis of fluorescence correlation spectroscopy for a wide range of timescales.
The derivation is completely analytical and can provide an excellent tool for planning and analysis of FCS experiments. The
dependence of the signal-to-noise ratio on different measurement conditions is extensively studied. We find that in addition to
the shot noise and the noise associated with correlated molecular dynamics there is another source of noise that appears at
very large lag times. We call this the ‘‘particle noise,’’ as its behavior is governed by the number of particles that have entered
and left the laser beam sample volume during large dwell times. The standard deviations of all the points on the correlation
function are calculated analytically and shown to be in good agreement with experiments. We have also investigated the bias
associated with experimental correlation function measurements. A ‘‘phase diagram’’ for FCS experiments is constructed that
demonstrates the significance of the bias for any given experiment. We demonstrate that the value of the bias can be calculated
and added back as a first-order correction to the experimental correlation function.

INTRODUCTION

Fluorescence correlation spectroscopy (FCS) is a powerful

technique for measuring diffusion coefficients and chemical

reaction rates both in vivo and in vitro. The fundamental idea

of these experiments is to measure the relaxation of spon-

taneous fluctuations of fluorescence from a defined volume

of a sample. These fluctuations can arise from diffusion of

fluorescent molecules into or out of a sampling volume de-

fined by a focused laser, or from chemical reactions or photo-

physical processes.

To obtain information about conventional rate parameters

one typically analyzes the fluctuations statistically by

computation of a fluorescence fluctuation autocorrelation

function. Knowing the mechanism by which the fluctuations

occur, one can also calculate the expected correlation

function. The reaction rates or diffusion coefficients are

extracted by fitting the theoretical model to the experimen-

tally determined correlation function (Elson and Magde,

1974). Hence, the accuracy with which the rate coefficients

are determined depends on the statistical accuracy of the

experimental correlation function.

The experimental correlation function is calculated from

a finite data set and thus is only a statistical estimation of the

theoretical ensemble averaged correlation function used to

model FCS data. Note that the theoretical ensemble averaged

correlation function is calculated assuming infinite experi-

ment time. Due to statistical variance the measured ex-

perimental correlation function always deviates from the

theoretical correlation function. When the data set is finite

but very long, these deviations are random and so when the

experiments are repeated many times and averaged, the

average will approach the true ensemble averaged correla-

tion function apart from systematic measurement errors. The

behavior of these random deviations has been the focus of

investigation by previous authors and has been included in

the calculation of standard deviation for the experimental

correlation functions. In contrast, when the data set is short,

even when averaged over many repeats of the experiment,

the final averaged result will have a systematic deviation

from the theoretical ensemble averaged correlation function

calculated for an infinite experiment time. This systematic

deviation is called ‘‘bias,’’ and thus the experimental cor-

relation function is called a biased estimator. This problem

has previously been recognized for experimental correlation

function calculations (Oliver, 1979; Schatzel et al., 1988),

but here we present the first derivations of it in the context

of an FCS experiment.

Koppel provided the first statistical analysis of the

standard deviations for experimental correlation functions

in FCS (Koppel, 1974). In his pioneer analysis Koppel

derived analytical expressions for the standard deviation of

the correlation function of fluorescence under assumptions

of Gaussian statistics. The analysis assumed an exponential

correlation function, and in the analysis he derived an ex-

pression for the dependence of the standard deviation of

the measurements on the duration of the experiment, i.e., the

data acquisition time, and the photon yield of the particles.

The underlying assumption that the fluorescence signal is

Gaussian is valid, however, only when the contribution of

the detector to the statistics is negligible and the number of

particles in the laser beam is much larger than one. Qian

extended the analysis to include the contributions of the

detector and the effects of a small number of molecules in the

beam, both of which contribute to the Poissonian nature of

the statistics of fluorescence (Qian, 1990).

Further improvements were made by considering the

effects of a more realistic hyperbolic correlation function and

of the contributions from different laser profiles on the
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statistical analysis, but only the derivations by Koppel and

Qian have provided the errors for the nonzero lag times in the

correlation function (Qian, 1990; Kask et al., 1997).

By the late 1980s advances in the field of light scattering

pushed researchers to develop new methods for correlation

function measurements, which would enable the calculation

of the correlation functions over a large range of lag times

(Schatzel et al. 1988). These ‘‘multi-tau’’ correlators cal-

culate the correlation function using many different dwell

times in comparison with the single dwell time used in earlier

linear correlators. Multi-tau correlators were soon found

useful in FCS experiments as they provide a logarithmic

scale of lag times and facilitate evaluation of the correlation

function over a wide time range (Rigler et al., 1993; Schwille

et al., 1999). Wohland showed that the proper weighting of

the experimental correlation function by error estimates

(error bars) before fitting to a theoretical model could

dramatically improve the parameter estimation of a FCS

measurement. Thus knowledge about the standard deviation

of the experimental correlation function was shown to be

crucial for the analysis of FCS. It was also demonstrated that

the theoretical estimations based mainly on Koppel’s

calculations fail to predict the measured errors of the

correlation function (Wohland et al., 2001). The error bars

for the correlation function were measured either by

repetition of FCS experiments, which was both time-con-

suming and uninformative about the nature of the errors, or

by computer simulations.

The extension of Koppel’s approach used by Wohland

fails to properly take into account the Poissonian nature of

the fluorescence signal, the hyperbolic character of diffusion

correlation functions, and the use of multi-tau correlators

(Wohland et al., 2001).

An empirical solution for the noise analysis has been

offered by Starchev et al. (2001), in which an empirical

equation is introduced to account for the noise on FCS.

Although this approach might be useful for establishing the

errors on the correlation function after calibrating the in-

strument, it reveals little about the underlying mechanisms of

noise.

In the first part of this paper we have developed a

theoretical framework in which the Poissonian nature of the

fluorescence signal and the effects of varying dwell times

in multi-tau correlators are both taken into account. The

calculations have been performed for free diffusion, and

arbitrary beam profiles. Very good agreement with experi-

mental data has been demonstrated.

In the second part of the paper we focus on the bias

associated with FCS experiments. The experimental corre-

lation function is a biased estimator of the desired ensemble

averaged correlation function. Bias is a systematic error in

experimentally measured correlation functions that results

from limiting the data accumulation time over which

fluctuations are measured. As the data accumulation time

increases, the magnitude of the bias decreases and the

estimator approaches the ensemble averaged theoretical cor-

relation function calculated for an infinite data set. In general

the presence of bias in experimental correlation function

estimators has been recognized for many years (Oliver,

1979; Schatzel et al., 1988). Here we present a derivation of

bias for FCS experiments and calculate the conditions under

which the bias would be significant. A method for a first-

order correction of bias errors is also included in the analysis.

THEORY OF FCS NOISE

Correlation function

A laser spot tightly focused inside the sample provides a very

small excitation volume for the particles that diffuse into and

out of the beam. The volume from which fluorescence is

detected is further reduced by using a pinhole in one of the

image planes of the microscope to reject out-of-focus light

(Koppel et al., 1976). This can also be achieved through a two-

photon excitation of the molecules that effectively happens

only in the focal plane of the objective (Denk et al., 1990). The

result is a small observation volume that can be approximated

by a three-dimensional Gaussian (Rigler et al., 1993).

IðrÞ ¼ I0 exp
�2ðx21y2Þ

w2

� �
exp

�2z2

a2w2

� �
: (1)

I0 is the central intensity of the laser beam; w is the radius at

which the intensity in the focal plane has fallen by e-2; anda is

the ratio of the effective beam radius along the optic axis tow.
As themolecules diffuse into and out of this excitation profile,

the fluorescence intensity fluctuates. Although each one of

these fluctuations is stochastic, their average rate of decay

toward equilibrium will be governed by the macroscopic rate

constants of the sample. By making the observation volume

small, thereby decreasing the number of molecules within it,

the fluctuation amplitude increases. This enables the detection

and analysis of the fluctuations (Elson and Magde, 1974).

Here, the fluorescence at time t is represented by F(t), and
to analyze the fluctuations of fluorescence, a normalized

correlation function, G(t), is defined as

GðtÞ ¼ hFðtÞFðt1tÞi
hFðtÞi2 ;

where hF(t)F(t 1 t)i represents an ensemble average or,

equivalently, the following time average, which is in-

dependent of t inasmuch as F is assumed to be stationary,

hFðtÞFðt1tÞi ¼ lim
J�!‘

1

J

ðJ
0

FðtÞFðt1tÞdt:

The correlation function of the fluctuating fluorescence

signal measured in the FCS experiment over a limited data

accumulation time, J, is an approximation to the ideal

correlation function in which J ! ‘. This measured

correlation function is then fitted with an appropriate theo-
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retical model to deduce rate constants and concentrations.

For a simple single component diffusion model in whichm is

the average number of molecules in the observation volume,

the calculated correlation function is

GðtÞ ¼ 1

m

1

11
t

tc

� �
11

t

tcz

� �0:5 : (1b)

Here, tc ¼ w2=4D; tcz ¼ a2w2=4D, and D is the diffusion

coefficient.

Statistical analysis

When the photons emitted by fluorescent particles are

detected, electrical pulses are generated in the photo detector

which can be stored either as individual pulse arrival times or

as the number of pulses that arrive in an interval T (dwell

time). The latter is used for correlation function calculations.

The experimental correlation function estimator is defined as,

g2ðvÞ ¼ +
N�v

i¼1
FiFi1v

N � v
; (2)

inwhichFi is the number of pulses counted during the interval

T at time index i, and v is the lag index. To obtain information

independent of laser intensity and brightness of the particles,

the correlation function is normalized as follows:

gðvÞ ¼
1

ðN � vÞ +
N�v

i¼1

FiFi1v

1

ðN � vÞ+
N

i¼v

Fi

� �
1

ðN � vÞ +
N�v

j¼1

Fj

 ! : (3)

This normalization is called ‘‘symmetric’’ normalization due

to the symmetric boundary on the sums appearing in the

denominator. Symmetric normalization reduces the effect of

the boundary conditions on the variance of the correlation

function at large lag times, and has first been implemented by

Schatzel et al. (1988).

As the time for data accumulation (J ¼ NT) is finite, the
experimental normalized correlation function defined in

Eq. 3 becomes a biased estimator of the desired correlation

function (Oliver 1979; Schatzel et al. 1988):

GðvÞ ¼ hFiFi1vi
hFii2

: (4)

Both the variance and bias of g(v) in Eq. 3, can be

calculated by expanding g(v) in terms of fluctuations of

fluorescence:

Fi ¼ hFi1dFi; (5)

inserting this into Eq. 3,

gðvÞ ¼
1

N � v
+
N�v

i¼1

ðhFi21hFiðdFi1dFi1vÞ1dFidFi1vÞ

hFi1 1

N � v
+
N�v

i¼1

dFi

� �
hFi1 1

N � v
+
N

j¼v

dFj

 ! : (6)

By expanding the denominator one obtains:

gðvÞ ¼ 11
1

ðN � vÞhFi2 +
N�v

i¼1

dFidFi1v � 1

ðN � vÞ2hFi2

3 +
N�v

i;j

dFidFj1v1 . . .

(7)

hgðvÞi ¼ 11
hdF0dFvi
hFi2 � 1

ðN � vÞ2hFi2 +
N�v

i;j

dFidFj1v

* +

1O
1

N3

� �
: (7a)

The third term represents the bias (Schatzel et al., 1988). The

variance of the estimator is defined as,

varðgðvÞÞ ¼ hgðvÞ2i � hgðvÞi2: (8)

The variance can be calculated by inserting Eq. 6 into Eq. 8.

The denominator of the estimator must be expanded again in

terms of the fluctuations, which yields

var gðvÞð Þ ¼ 1

ðN � vÞ2hFi4 +
N�v

i¼1

dFidFi1v +
N�v

j¼1

dFjdFj1v

* + 

� +
N�v

i¼1

dFidFi1v

� �2
!
1O

1

N3

� �
: (9)

Equations 7 and 9 are very general. In an FCS experiment

the ensemble averages in these equations can be calculated

using theoretical higher order correlation functions. To

calculate these higher order moments one needs to understand

the statistics of the diffusing molecules and their photon

emission.

Statistics of fluorescence for simple diffusion

A sample has a total of M identical fluorescent molecules

that are free to diffuse in a volume V. The molecules are

completely independent of one another so that each molecule

interacts only with the solvent molecules. The observation

volume V, created by the tightly focused laser beam defined

in Eq. 1, occupies only a very small fraction of the whole

sample volume V.
In Equations. 9 and 7 we have expressed the variance and

the bias of the normalized correlation function in terms of

moments of fluctuations of fluorescence. The next step is to

represent the moments of the fluctuations in terms of the

moments of individual particle fluorescence, as previously

shown (Saleh, 1978; Qian, 1990):

hFii ¼ MApphpii
hdFidFji ¼ MApphpipji

hdFidFjdFkdFli ¼ MApphpipjpkpli1hdFidFjihdFkdFli
1hdFidFkihdFjdFli1hdFidFlihdFkdFji:

(10)
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Here pi is the fluorescence of a single molecule and

represents the number of photons that are detected from

a single particle during the dwell time T at the index time i.
When T is comparable to or larger than the diffusion time of

the particles, the particles can move in and out of the beam

during the dwell time. The average number of molecules that

contribute to the fluorescence during large dwell times

is larger than the average number in the sample volume.

To take this into consideration we introduce MApp to be

the apparent number of molecules in the sample during

measurements with large dwell times. The concentration of

molecules is simply the total number of molecules divided

by the volume of the sample (M/V). During the larger dwell

time the apparent concentration can be defined as (MApp/V).
The number of molecules in the beam is then just the

apparent concentration times the observation volume. The

relation between MApp and M will be derived later.

Calculation of moments of fluorescence
for single particles

The moments of fluorescence of individual particles (p) are
related to the higher order diffusion correlation functions

plus a shot noise contribution. This result is derived from the

analysis of the diffusion of the particle through the laser

profile using the probability distribution function for simple

diffusion and the beam profile characteristics in Eq. 1. The

motion of the molecules during the dwell time should be

considered if the dwell and diffusion times are comparable.

The first moment is calculated as below (Qian, 1990; Kask

et al., 1997):

hpi ¼
ðT
0

ð
V

lIðrðtÞÞPðr0Þd3r0 dt: (11a)

Here P(r0) is the probability of finding the particle at position
r0, at time zero. For independent particles in the sample of

volume V, this probability is equal to 1/V. l is an optical

factor that includes the absorption coefficient and quantum

yield multiplied by the detection efficiency; I(r) is the laser
intensity defined in Eq. 1; and r(t) is the position of the

molecule at time t. The second moment of fluorescence of

the single particles becomes

hp2i ¼ 1

V

ðT
0

ðT
0

ð
V

ð
V

lIðr1ÞlIðr2Þ
3Pðr2jr1; t2 � t1Þd3r1 d

3r2 dt1 dt21hpi;
(11b)

in which

Pðr2jr1; tÞ ¼ 1

ð4pDtÞ3=2 exp �ðr1 � r2Þ2
4Dt

� �
: (11c)

The second term in Eq. 11b is the shot noise contribution,

which is related to the detector statistics (Saleh, 1978; Qian,

1990). Inserting (11c) into (11b), the second moment is

calculated as

hp2i ¼ Vg2M

VMApp

ðlI0Þ2
ðT
0

dt1

ðT
0

dt2 g1ðjt1 � t2jÞ

1hpi ¼ Vg2

V
q2
App1hpi: (12)

Here, g1 is the first order correlation function of diffusion:

g1ðtÞ ¼ 1

11
t

tD1

� �
11

t

tD2

� �0:5 ; tD1 ¼ w2

4D
; tD2 ¼ a2w2

4D
:

(12a)

If the dwell time is short compared to the diffusion time,

we can express the second moment of the particle fluo-

rescence as (Qian, 1990),

hp2ifast ¼
Vg2

V
ðlI0TÞ21hpifast ¼

Vg2

V
q21hpifast: (12b)

The photon yield parameter q represents the number of

photons that have been detected from a single particle during

the dwell time T. V ¼ p3=2w3a is the observation volume

and g2 ¼ 1=ð2 ffiffiffi
2

p Þ2 is the normalized second moment of the

laser intensity profile. The k9th moment is defined as

gk ¼
Ð
IkðrÞd3r

V
: (12c)

To retain the functional form of Eq. 12b and keep the

notation consistent with previous work, the apparent photon

yield qApp is defined in Eq. 12. The exact solution for qApp is
expressed as (Palo et al., 2000)

qApp ¼ l
I04t

2
c

Tbð1� bÞ0:5 b 11
T

tc

� �
tanh�1

�

3
ð1� bÞ0:5ðð11bT=tcÞ0:5 � 1Þ

b1ð11bT=tcÞ0:5 � 1

� �

� ð1� bÞ0:5ðð11bT=tcÞ0:5 � 1Þ
�
: (13)

Here b ¼ 1=a2 and T is the dwell time. Now that we have

calculated the apparent photon yield we can use it to

calculate all the moments of individual particles for any

dwell time T:

hpi ¼ qApp

Vg1

V

hpipji ¼ q2
App

Vg2

V
g1ðji� jjTÞ1di;jhpi

hpipjpkpli ¼ q4
App

Vg4

V
g3ðji� jjT; jj � kjT; jl� kjTÞ1 . . .

(14)

For a three-dimensional Gaussian excitation intensity

profile, the parameters are derived as

g1 ¼
1

2
ffiffiffi
2

p ; g2 ¼
g1

2
ffiffiffi
2

p ; g3 ¼
g1

3
ffiffiffi
3

p ; g4 ¼
g1

8
;
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and g3 is the fourth-order correlation function for free

diffusion. It is calculated using Eq. 1 and the probability

distribution function of particles undergoing free diffusion.

To summarize, we have expressed the variance and bias of

the normalized correlation function in terms of the higher

moments of the total fluorescence, F, Eqs. 7 and 9. We also

have derived the dependence of the total fluorescence

moments on the moments of fluorescence of single mol-

ecules, p, Eq. 10. At the end we have calculated the moments

of fluorescence of single molecules in terms of the higher-

order correlation functions for simple diffusion in Eq. 14.

Calculation of the variance

Inserting Eq. 14 into Eq. 10, we derive the dependence of the

moments of the fluorescence intensity on the higher-order

diffusion correlation functions:

hFii ¼ MAppqApp

Vg1

V
: (16a)

The average fluorescence count in each bin can also be

directly calculated:

hFii ¼ M
1

V
l

ðT
0

IðrðtÞÞdt
� �

¼ MðlI0TÞVg1

V
: (16b)

By inserting Eq. 13 into Eq. 16a, and comparing with Eq.

16b, the apparent number of particles MApp can be derived:

The apparent number of molecules in the observation

volume is the apparent concentration times the volume of the

observation region which yields

mApp ¼ MApp

V
V: (18)

Continuing with Eq. 10, the higher moments of the fluo-

rescence become:

hdFidFji ¼ mAppq
2
Appg2g1ðji� jjTÞ1di;jhFi (19)

hdFidFjdFkdFli ¼ mAppq
4
Appg4g3ðji� jjT; jj � kjT; jl� kjTÞ

1hdFidFjihdFkdFli1hdFidFkihdFjdFli

1hdFidFlihdFkdFji1 . . . (20)

in which di;j ¼ 1 when i ¼ j and is zero otherwise.

When the moments in Eqs. 19 and 20 are introduced into

Eq. 9, the summation of the fluctuation moments becomes

the summation of higher-order correlation functions:

It is important to note that the contributions from the first

term in Eq. 21, are negligible because the fourth-order

correlation function (g3) decays to zero much faster than the

second-order correlation function (Fig. 1 of Qian, 1990). For

the purpose of this calculation we will neglect the first term

in Eq. 21 that contains the fourth-order correlation function

summation. The shot noise contributions are shown on lines

3 and 4 of Eq. 21. When the two sums on the second line of

Eq. 21 are studied in more detail, it can be seen that the

difference between the two should be of the order of

contributions from the fourth-order correlation function.

Using the above argument, the two sums in line 2 of Eq. 21

will be approximated equal:

g3ðt1; t2; t3Þ ¼ 8

8 11
t1
tD1

� �
11

t2
tD1

� �
11

t3
tD1

� �
� 2

ðt11t3Þ
tD1

� 4

3
1

8 11
t1
tD2

� �
11

t2
tD2

� �
11

t3
tD2

� �
� 2

ðt11t3Þ
tD2

� 4

0
BB@

1
CCA

0:5

:

(15)

MApp ¼ M
T2bð1� bÞ0:5

4t2c
b 11

T

tc

� �
tanh�1 ð1� bÞ0:5ðð11bT=tcÞ0:5 � 1Þ

b1ð11bT=tcÞ0:5 � 1

� �
� ð1� bÞ0:5 11

bT

tc

� �0:5

�1

 !" #�1

: (17)

varðgðvÞÞ ¼ 1

ðN � vÞ2hFi4

mAppq
4
Appg4 +

ji�jj[v

g3ðvT; ji� jjT; vÞ1 +
ji�jj\v

g3ðji� jjT; ðv� ji� jjÞT; ji� jjTÞ
 !

1 m2
Appq

4
Appg

2
2 +
N�v

i 6¼j

g1ðji� jjTÞ21m2
Appq

4
Appg

2
2 +

N�v

i6¼j1v;

j 6¼i1v

g1ðji� j1vjTÞg1ðji� j � vjTÞ

1 ðN � vÞ hFi 11
g2

g1

qApp

� �� �2

1 2ðN � vÞmAppq
2
Appg2g1ð2vTÞ hFi 11

g2

g1

qApp

� �� �

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

: (21)
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+
N�v

i 6¼j1v;

j6¼i1v

g1ðji� j1vjTÞg1ðji� j � vjTÞ � +
N�v

i 6¼j

g1ðji� jjTÞ2

¼
ðN�v

h¼1

ðN � hÞg1ðhÞ2dh:
(22)

The integral in Eq. 22 can be calculated using the three-

dimensional correlation function in Eq. 12a:

Here tcr ¼ tc=T . By applying these approximations, the

final variance can be calculated as

The first term in this equation is the zero time, second-

order moment of fluctuations of fluorescence to the power

of two hðdFÞ2i2. It contains a shot noise term and a

particle noise term. These contributions to the noise will

be discussed further in the Results section. The second

part of the equation is the noise associated with correlated

molecular dynamics (correlated fluctuations noise).

Calculating the bias

The bias of the experimental correlation function has been

derived in terms of fluctuations of the fluorescence in Eq. 7.

By inserting Eq. 19 into Eq. 7a, the bias of the correlation

function becomes

Bias ¼ ðN � vÞhFi1mAppq
2
Appg2 +

N�v

i;j
g1ðji� jjTÞ

ðN � vÞ2hFi2 : (25)

Here the first term represents the shot noise contributions

to the bias. To calculate the bias the sum in Eq. 25 must

be executed. It can be approximated by an integral and

represented as

+
N�v

h¼0

ðN � hÞg1ðhTÞ ¼
ðN�v

h¼0

ðN � hÞg1ðhTÞdh: (26)

The three-dimensional diffusion correlation function can

be integrated in Eq. 26:

The complete bias is calculated by inserting Eq. 27 into

Eq. 25:

Again, the first term ðN � vÞ is the shot noise: b ¼ 1=a2

and tcr ¼ tc=T .

MATERIALS AND METHODS

FCS experiments

The laser beam from a titanium sapphire laser cavity, Mira 900 (Coherent

Inc. Laser Group, Santa Clara, CA), pumped with a diode-pumped Verdi

V-10 laser (Coherent) was used in the experiments. The repetition rate of the

+
N�v

i 6¼j

g1ðji� jjTÞ2 �
ðN�v

h¼1

ðN � hÞg3D
1 ðhÞ2dh ¼

ðN � vÞt2cra2ða2 � 1Þ1ðN � vÞtcra2ð11tcrÞln ð11tcrÞðN1tcra
2Þ

ð11tcra2ÞðN1tcrÞ
� �

ð11tcrÞða2 � 1Þ2 : (23)

varðgðvÞÞ ¼ 1

ðN � vÞhFi4 hFi 11
g2

g1

qApp

� �� �2

1 2m2
Appq

4
Appg

2
2

t2cra
2ða2 � 1Þ1tcra

2ð11tcrÞln ð11tcrÞðN1tcra
2Þ

ð11tcra2ÞðN1tcrÞ
� �

ð11tcrÞða2 � 1Þ2

0
BB@

1
CCA:

ð24Þ

ðN�v

h¼0
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laser was 80 MHz, and the pulse width 120 fs. The laser light was directed to

the side port of an Olympus IX 70 microscope using gold-coated mirrors. A

glass filter (RG715, Chroma Technology Corp., Brattleboro, VT) was used

to eliminate pump beam contamination from the laser beam. A 53 beam

expander mounted on the side of the microscope expanded the beam to over-

fill the back aperture of an Olympus 603water immersion objective. The IR

laser beam was reflected toward the objective using a dichroic mirror (725

dcspxr, Chroma) that reflects the IR beam. The fluorescence of the sample

that passes the dichroic mirror cited above was collected using the same

objective. A low-pass filter (e700SP special, Chroma) was used to filter out

the remaining scattered laser light. The fluorescence of the sample was

collected from the image plane at the side port of the microscope and was

then collimated using a simple convex lens. The collimated fluorescence was

then passed through a 50/50 beam splitter and focused onto two avalanche

photodiode units (Photon Counting Module SPCM-QC, Perkin Elmer

Optoelectronics, Fremont, CA). The TTL pulses generated were then

collected by a correlator card (FLEX01, Correlator.com, Bridgewater, NJ),

which enables both the storage of photon arrival times and real-time

correlation function calculations. A test Rhodamine sample in alcohol was

always used for calibration of the beam profile. All the data analysis was

performedusingOrigin software (OriginlabCorporation,Northampton,MA).

Sample preparation

Fluorescein-labeled dextran molecules (molecular weights, 150 kDa,

464 kDa, 70 kDa, and 2.5 MDa)), were obtained from Sigma (Sigma-

Aldrich, St. Louis, MO). Each experiment was performed using a single

molecular weight of dextran. The molecules were then dissolved in

a phosphate buffer pH 7, which included 0.1 mg/ml of casein. To prevent

aggregation the samples were probe-sonicated and filtered using a 20-mm

sterile filter before use.

RESULTS

To understand the statistics of FCS, the details of the

correlation function measurements as well as the dynamic

processes that occur in the sample and the detector

properties must be considered. There is a considerable free-

dom in the way the correlation function can be measured.

In theory there are no limitations on how fast the data

can be binned and how long the data can be stored, but in

practice a balance between practical restrictions in the instru-

mentation and accuracy of the correlation functions must

be taken into account. Our theoretical analysis of FCS is

developed so that it can be applied to all methods of cor-

relation function measurements. It is useful to point out the

limitations of different methods for correlation function

measurements.

The multi-tau correlator

In early FCS experiments the data were always analyzed

with a constant dwell time. This dwell time was usually fixed

by the speed of data acquisition by the correlator and was

always much smaller than the correlation time of the process

under investigation. In general when a correlation function is

calculated, all the data collected during the longest lag time

of the correlator must be stored in the memory. Thus if the

lag time is much longer than the dwell time, a large number

of dwells must be saved and shifted during this process. This

restricts the lag time of the correlation function due to

memory constraints. When a wide range of lag times is to be

calculated in real time, and the speed and memory of the

instrument is limited, a single dwell time design becomes

impractical. To overcome this problem, multiple dwell times

are used in multi-tau correlators to reduce the number of

dwells that have to be stored in the memory.

A multi-tau correlator is a combination of many linear

correlators, each with a different dwell time. Each linear cor-

relator usually calculates a few lag times. The final corre-

lation function is a combination of the results from all the

linear correlators (Schatzel et al., 1988).

Although the wide range of dwell times used does solve

the problem presented by the wide range of lag times, its

important to know that not all the lag times are calculated

using the same dwell time. When the signal is correlated with

a dwell time much longer than its frequency, the signal gets

effectively averaged out in each dwell time and the

calculated correlation function gets damped. This is most

apparent when an oscillatory signal is correlated by both

a linear and a multi-tau correlator. We have demonstrated

this effect by passing a sine wave through both types of

correlators. In a linear correlator with a dwell time much

smaller than the period of the oscillation, the correlation

function is oscillatory as expected. In the multi-tau correlator

the sine wave correlation is oscillatory in the timescales in

which the dwell time is smaller than the period, but becomes

damped at longer lag times in which larger dwell times are

used (Fig. 1). In typical fluctuation relaxation measurements

the dwell time is always kept at least one order of magnitude

smaller than the lag times corresponding to the fluctuation

FIGURE 1 Processing an extended oscillatory signal using linear and

multi-tau correlators. The correlation function of an oscillatory signal is

calculated using a linear correlator (continuous line) and a multi-tau

correlator (individual data points). In a multi-tau correlator the spacing

between the calculated points increases as the lag time increases. The

software multi-tau correlator was designed according to Wohland et al.

(2001).
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relaxation time, and so the effects of filtering can be neg-

lected when signals are not oscillatory.

This simple example demonstrates how different methods

for measuring the correlation function might show drasti-

cally different results, suggesting that one must always be

mindful of the properties of the correlator used. For FCS

when the samples under study do not have an undamped

oscillatory behavior, the application of the multi-tau cor-

relator is well justified. In our statistical analysis of FCS

we have paid direct attention to the effects of different dwell

time lengths on the statistics of FCS. We begin our anal-

ysis of noise with the fastest dwell times in the multi-tau

correlator.

The shot noise

One of the simple sources of noise is the detector noise also

called shot noise. Detector noise is most easily observed

when light of constant intensity impinges on a photodetector.

The detector photocurrent is a Poisson transform of the

incident intensity (Saleh, 1978). So the distribution of the

measured fluorescence intensity after the detector is wider

than the distribution of intensity emitted by the sample. This

additional broadening that happens at the detector is called

the shot noise or the detector noise, (Qian, 1990).

If the fluorescence signal is completely uncorrelated, the

second moment of fluorescence fluctuations equals the mean

fluorescence registered in the dwell time.

hdF2i ¼ hFi: (29)

Equation 29 is a special case of Eq. 19. Although the

variance of the fluorescence signal grows with the average

fluorescence, the ratio of the variance to signal squared

decreases with increase in fluorescence signal. Thus, the

higher the fluorescence signal, the lower the relative shot

noise contribution.

For the purpose of this section we can simplify by

assuming that the fluorescence of the sample is completely

uncorrelated. This implies that,

hdFidFji ¼ 0 when i 6¼ j; and otherwise hdF2i ¼ hFi:
(30)

Then substituting Eq. 10 into Eq. 9, the variance of the

correlation function can be easily calculated as:

varðgðvÞÞ ¼ +
N�v

i;j
hdFidFji2

ðN � vÞ2hFi4 ¼ ðN � vÞhFi2
ðN � vÞ2hFi4 ¼

1

ðN � vÞhFi2 :

(31)

By comparing this result to the complete analysis of Eq. 24,

one sees that the first term in Eq. 24 includes the shot noise

contribution. As expected if the sample has no correlations,

the variance of the correlation function is determined only by

the number of dwells and the total fluorescence in each

dwell.

We have generated a completely uncorrelated fluores-

cence signal by reducing the laser intensity and increasing

the fluorophor concentration so that each particle that enters

the beam has a very small probability of fluorescing, and

the probability of a particle emitting two photons is negligi-

ble. The agreement between the measured variance of such

a sample, versus the theoretical prediction from Eq. 31, is

demonstrated in Fig. 2.

In a multi-tau correlator the smallest dwell times are very

short, and so the average numbers of photons registered in

the fast dwells are very small. The statistics of the noise at

these timescales is governed by shot noise contributions

described in Eq. 31.

The particle noise

In the previous section we demonstrated the effects of very

small dwell times on the statistics of the noise of the

correlation function. At this point we consider the very long

dwell times. By a very long dwell time, we mean a dwell

time that is much longer than the diffusion time of the

molecules.

The very long dwell times, like the very short ones, do

not correlate with one another. The correlation between any

given two dwells comes from a single particle emitting

fluorescence during both of those dwells. When the dwell

time is very long, the probability of finding the same particle

in two consecutive dwells becomes very small. Thus, the

second moment of fluorescence fluctuation can be written as:

FIGURE 2 Theoretical and experimental variance for shot noise. The

standard deviation is plotted versus lag times. The circles are standard

deviations measured from an experimental sample as discussed in the text

and the black data points are theoretical predictions from Eq. 31. The

standard deviations in this experiment were completely dominated by shot

noise. The experiments were performed for 30 s and were repeated 10 times

for standard deviation calculations.
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hdFidFji ¼ 0 when i 6¼ j; and otherwise

hdF2i ¼ mAppq
2
Appg21hFi: (32)

Equation 32 is derived from Eq. 19. As the dwell time

increases, the apparent number of molecules in the beam

increases correspondingly because more molecules can dif-

fuse in and out of the beam during the longer dwell time.

At the same time the correlation between the dwells de-

creases inasmuch as no one molecule can be found that

has stayed in the observation volume long enough to con-

tribute fluorescence into two dwells. The calculation of

Eq. 32 assumes that there is no correlation between the

dwells at very long dwell times.

The apparent photon yield ðqAppÞ increases linearly with

the dwell time for very short dwell times, but reaches

a saturating level after the dwell time increases beyond the

diffusion time. If we use Eq. 31, and insert Eq. 10 into Eq. 9,

the variance of the correlation function becomes:

varðgðvÞÞ ¼ +
N�v

i;j
hdFidFji2

ðN � vÞ2hFi4 ¼ ðN � vÞhFð11g1qAppÞi2
ðN � vÞ2hFi4

¼ ð11g1qAppÞ2
ðN � vÞhFi2 : (33)

The difference between Eqs. 31 and 33 is the particle

noise. The particle noise becomes important only at lag times

much longer than the diffusion time of the particles. A fit to

the experimental data using Eq. 33 is demonstrated in Fig. 3.

As seen in the Figure, Eq. 33 captures the behavior of the

noise at very short lag times as well as very long lag times.

The correlated fluctuations noise

When the particle emits enough photons and the dwell time

is such that photons emitted by a specific particle are

registered in consecutive series of dwells, the intensities in

these dwells become correlated with one another. Under

these conditions the sums presented in Eq. 21 become im-

portant in the noise analysis. This region of the noise anal-

ysis has been studied intensively by Koppel and others, but

a detailed solution for lags greater than zero has not been

found. Here we have used several approximations to reduce

the complexity of these calculations without losing signif-

icant accuracy in evaluating the noise.

Our first and major approximation has been to ignore

the sums in Eq. 21 which are carried over the fourth-order

correlation functions. This approximation is justified because

the fourth-order correlation functions decay to zero much

faster than the second-order correlation functions. Thus,

when summations are compared, the sums over fourth-order

correlation functions are much smaller than the other terms

in Eq. 21. Although this is valid in most practical cases,

the fourth-order correlation functions are multiplied by m
whereas the other terms are multiplied by m2. Hence, the

effects of the fourth-order correlation terms might need to

be included if very sparse and bright molecules are studied.

We have also omitted the part of the variance represented in

the last term of Eq. 21. This term comes from a multiplication

of shot noise and correlated fluctuations noise, but its ef-

fects will be negligible inasmuch as, when the shot noise

is dominant, the correlated fluctuations noise is small, and

vice versa. The complete theoretical representation of the

variance in Fig. 3, in which all the sources of noise have been

considered, agrees well with the experimental data.

The analysis of signal to noise

The signal-to-noise ratio has been calculated using Eq. 24

and is presented as

FIGURE 3 Theoretical and experimental variance including all noise

contributions. The standard deviation versus lag time for a sample of 150-

kDa Dextran molecules labeled with fluorescein. The experimental points

are presented as circles. The complete analytical noise calculation are

represented by the black triangles. The gray triangles are the predicted

standard deviation from shot noise and particle noise without contributions

from correlated fluctuations noise (Eq. 33). The theoretical points appear as

black and gray bars due to their density.
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in which g ¼ g2=g1. Equation 34 is independent of the

number of molecules in the beam as observed by Koppel.

This is so because the contributions of the fourth-order

correlation functions in Eq. 21 have been ignored. When the

analysis is extended to low concentrations of highly fluo-

rescing molecules, the fourth-order correlation terms must

be considered. Then the signal-to-noise ratio will depend on

the number of particles (Qian, 1990).

The signal-to-noise derived in Eq. 34 is a function of the

photon yield per particle and the total experiment time. We

have calculated the signal-to-noise for different photon yield

parameters in Fig. 4. As seen in the Figure, increasing the

photon yield per molecule increases the signal-to-noise. In

theory, even without shot noise the signal-to-noise is always

limited by the statistical error due to the finite experiment

time and the stochastic nature of fluorescence fluctuations.

When the photon yield is increased, the signal-to-noise ratio

approaches its statistical limit faster at the long lag times.

When the emitted intensity reaches a critical 1-photon-per-

molecule per correlation time, the signal-to-noise in the range

of the diffusion time approaches its limit (Koppel, 1974). It is

important to know that even under these conditions the faster

lag times are still below saturation and a much higher photon

yield is needed to saturate the whole range.

The analysis of bias in FCS

The analysis of Eq. 7a clearly demonstrates that the measured

correlation function is biased from the ensemble averaged

theoretical correlation function obtained from Eq. 4. The bias

can be further calculated using a three-dimensional diffusion

model. Eq. 28 demonstrates the dependence of the bias on

both the photon yield and total duration of the experiment. To

investigate the bias we define signal-to-bias ratio (S/B) as the
ratio of the normalized correlation function to the bias

calculated at the diffusion time of the process:

Further we derive the photon yield as a function of signal-

to-bias and the duration of the experiment:

By plotting the photon yield versus the total duration of

the experiment (Fig. 5), a diagram can be constructed in

which each FCS experiment can be represented by its

coordinates in the photon yield Vs duration plot. We call

this the FCS phase diagram inasmuch as the bias of the

experiment can be judged by looking at the position of the

experiment in the diagram. For a specified value of S/B a plot

of photon yield versus duration defines a reference curve.

When the coordinates for a given FCS experiment fall on the

right side of the reference curve, the S/B ratio for that

experiment is higher than the specified reference value. For

an experiment that falls on the left side of the curve, S/B is

lower than the reference value. From experimental observa-

tions we have found the contributions of the bias to the

resulting fitting parameters to be negligible for values of S/B
larger than 100. Thus we would use S/B ¼ 100 as the

boundary between biased and bias-free FCS experiments.

To demonstrate this concept we performed FCS measure-

ments on 2.5 MDa dextran molecules labeled with fluores-

cein. Three different durations for the experiments were

chosen so that the longest and shortest experiments would

have S/B larger and smaller than 100, respectively. The laser

intensity and sample conditions were kept the same between

the experiments. The resulting correlation functions were

weighted by their respective errors, and a means squared

data fit was performed to obtain values for the number of

molecules and the diffusion time. The data presented in

Table 1 show a significant decrease for the fitted value of the

correlation time when the S/B was below 100.

Inasmuch as the actual value of the bias can be estimated

from the knowledge of the diffusion time and photon yield

of the fluorophores, we corrected the experimental correla-

tion functions with the predicted bias from Eq. 28. The

correlation time used in Eq. 28 was derived from fitting the

initial correlation functions. The results from this secondary
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fit to corrected data are also shown in Table 1. The diffusion

times calculated using the corrected curves do converge to

the value obtained by the longest experiment, thereby

corroborating the correction of the correlation function by

the addition of the calculated bias.

DISCUSSION

Fluorescence correlation spectroscopy is a powerful method

for characterizing the dynamics of molecular processes in

systems that remain, unperturbed by the measurement, in

equilibrium or in a steady state. In contrast, transient kinetic

methods typically observe the relaxation of systems that

have been displaced macroscopically from equilibrium. In

the latter experiments the macroscopic displacement from

equilibrium effectively synchronizes a multimolecular re-

laxation process. The conventional phenomenological rate

parameters, e.g., diffusion coefficients or chemical rate

constants, can be determined from a single relaxation

transient to the limits of accuracy of the measurement of

that transient. FCS, however, measures spontaneous un-

synchronized stochastic fluctuations. Measurement of an

individual fluctuation, no matter how accurate, is insufficient

to determine accurately the phenomenological rate param-

eters. Accurate measurements require statistical analysis

of many fluctuations. This analysis is embodied in the

fluorescence fluctuation autocorrelation function. At the very

low concentrations at which FCS experiments are typically

carried out, the systems measured are effectively ideal, and

so each molecule is correlated only with itself. Cross-

correlations between molecules are not seen unless those

molecules are linked. Hence, in FCS the average dynamic

behavior of single molecules is measured without need for

synchronization.

In the past, application of FCS to small labile systems such

as living cells was hampered by the need to acquire many

fluctuations over a period of time in which the system was

not likely to remain stationary. As a result of technological

improvements (Rigler et al., 1993), it has been possible to

minimize the confocal detection volume, originally intro-

duced by Koppel (Koppel et al., 1976). This has decreased

the diffusion time and has made possible measurements in

which small numbers, even less than one, of fluorescent

molecules are present on average in the observation volume

(Rigler et al., 1993, 1995; Maiti et al., 1997). Decreasing the

number of fluorophores in the observation volume increases

the amplitude of the correlation function (compare to Eq.

1b). The decreased diffusion time and increased fluctuation

signal amplitude have decreased the time required to acquire

a correlation function and so has enhanced the application of

FCS to cells. Very slow fluctuations that might occur in cells

or other labile systems can be filtered out by doing the

experiments in very short intervals and then averaging the

results (Qian et al., 1992).

FIGURE 5 FCS phase diagram for analysis of bias. The FCS phase

diagram as defined by Eq. 36 with the signal-to-bias = 100. The photon yield

(q) is calculated for a dwell time of tc=40. The behavior of the boundary is

dominated by the shot noise when the photon yield becomes small. This plot

shows that to obtain a given S/B, longer measurement times are required for

lower photon yields.

TABLE 1 Corrections to biased experiments

Duration

of the experiments

Measured

diffusion time

Signal to

bias at

diffusion time

Diffusion time

after correction

by calculated bias

3 s 3800 6 250 ms 48 4100 6 250 ms

10 s 4200 6 200 ms 116 4300 6 200 ms

30 s 4400 6 150 ms 296 4450 6 150 ms

The diffusion time is measured for 2.5 MDa dextran molecules in water, in

conjunction with the diffusion times measured after the addition of the

theoretical bias to the experimental correlation function.

FIGURE 4 Theoretical signal-to-noise for various photon yields. The sig-

nal-to-noise, as defined inEq. 34, is plotted versus all the lag times normalized

to the diffusion time. The plots represent signal-to-noise values for different

photon yields. For the symbols h, �, n, ,, and e, the photon yields are

0.01, 0.1, 1, 10, and 100 photons per particle per diffusion time, respectively.
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From the observations above, it is clearly important to

know the limit to which the experiment time can be

shortened, without producing systematic errors. Also the

statistical analysis of FCS is essential for obtaining accurate

estimates of molecular dynamic parameters from the FCS

measurements. It has been demonstrated (Wohland et al.,

2001) that proper weighting of the measured correlation

function by errors yields a much better estimation of the

values of the dynamic parameters. Due to the lack of

a complete theoretical model for the error estimation,

however, it was previously necessary to measure the

variance of the correlation function experimentally or to

calculate it using a Monte Carlo approach. Using our

analysis of noise, one can predict the errors in an FCS

experiment for all the lag times of the correlation function.

By knowing the errors of the experiment a priori, one can

either omit repetitions of the measurement to determine

variance, or one can use the theoretical values versus the

experimental noise as a troubleshooting tool for finding the

additional sources of noise contributing to the experiment.

As an example, we have used this approach to isolate the

contributions of the laser fluctuations to our overall noise.

The laser fluctuations appear as an additional source of noise

at ;0.1 s as shown in Fig. 6. The amplitude of the noise

corresponding to a signal smaller than 1% rms fluctuation is

well within the specifications for our titanium sapphire laser.

By understanding the statistics of FCS one can optimize

the experimental conditions to allow the shortest possible

measurement time within the limits of required accuracy.

Knowing the photon yield of the measured fluorophores, one

can determine from the FCS phase diagram introduced in

the last section the minimum data acquisition time consis-

tent with an acceptable S/B ratio. Hence, when designing

experiments on labile systems that require short data ac-

quisition times, the resulting systematic bias errors can be

estimated and possibly kept to an acceptable level.

In some systems, however, e.g., relatively active cells, it

may be necessary to use data acquisition times too short to

avoid significant bias. Inasmuch as we have calculated the

value of the bias for the correlation function, these fast FCS

experiments can be corrected to the first order by adding the

calculated bias to the measured correlation function. This

method enables improved parameter estimation for experi-

ments that have a total duration of one order of magnitude

less than what would be considered bias free according to the

phase diagram (Table 1).

The methods developed here can also be extended to

analysis of single molecule fluorescence trajectories. In-

asmuch as all the single molecules eventually photo-destruct,

the total fluorescence record available for each is limited.

There can be a significant bias to a correlation function

calculated from these trajectories. Using an analysis similar

to that presented in this paper, one should be able to predict

both the bias and the noise on the correlation function. If

a model is assumed for the process, the bias can be calculated

and added back to the correlation function, reducing the

effect of bias on parameter estimation.

In conclusion, we have derived analytical equations for

calculating the variance and the bias for FCS autocorrelation

functions and have validated them by comparison with ex-

perimental measurements. The most important consequence

of this work is that using these equations one can substantially

shorten the time required for acquisition of FCS data. The

calculation of the variance at each point of the correlation

function eliminates the need for repetitive measurements to

obtain this information and thereby facilitates determining

optimal rate parameters by fitting measured to theoretical

correlation functions. Calculation of bias further accelerates

FCS data acquisition both by allowing a determination of the

minimum data acquisition time consistent with a specified

bias level, and by enabling the correction of correlation

functions obtained using brief data collection times that

produce bias.
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