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Energetics and Self-Assembly of Amphipathic Peptide Pores in
Lipid Membranes
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Department of Physical Chemistry and the Fritz Haber Research Center, The Hebrew University, Jerusalem 91904, Israel

ABSTRACT We present a theoretical study of the energetics, equilibrium size, and size distribution of membrane pores
composed of electrically charged amphipathic peptides. The peptides are modeled as cylinders (mimicking a-helices) carrying
different amounts of charge, with the charge being uniformly distributed over a hydrophilic face, defined by the angle subtended
by polar amino acid residues. The free energy of a pore of a given radius, R, and a given number of peptides, s, is expressed as
a sum of the peptides’ electrostatic charging energy (calculated using Poisson-Boltzmann theory), and the lipid-perturbation
energy associated with the formation of a membrane rim (which we model as being semitoroidal) in the gap between
neighboring peptides. A simple phenomenological model is used to calculate the membrane perturbation energy. The balance
between the opposing forces (namely, the radial free energy derivatives) associated with the electrostatic free energy that
favors large R, and the membrane perturbation term that favors small R, dictates the equilibrium properties of the pore.
Systematic calculations are reported for circular pores composed of various numbers of peptides, carrying different amounts of
charge (1–6 elementary, positive charges) and characterized by different polar angles. We find that the optimal R’s, for all
(except, possibly, very weakly) charged peptides conform to the ‘‘toroidal’’ pore model, whereby a membrane rim larger than
;1 nm intervenes between neighboring peptides. Only weakly charged peptides are likely to form ‘‘barrel-stave’’ pores where
the peptides essentially touch one another. Treating pore formation as a two-dimensional self-assembly phenomenon, a simple
statistical thermodynamic model is formulated and used to calculate pore size distributions. We find that the average pore size
and size polydispersity increase with peptide charge and with the amphipathic polar angle. We also argue that the transition of
peptides from the adsorbed to the inserted (membrane pore) state is cooperative and thus occurs rather abruptly upon a change
in ambient conditions.

INTRODUCTION

Amphipathic, a-helical peptides are abundant in nature,

serving as membrane permeating agents in the host defense

system of many organisms. Antibiotic peptides, such as

alamethicin, isolated from the Trichoderma viride fungus,

the bee venom peptide melittin, the magainins of the African

frog Xenopus laevis, and many others, are among the most

intensively studied peptides (Hancock et al., 1995; Nicolas

and Mor, 1995). Attempts to mimic nature and design novel

antibacterial drugs have stimulated numerous experimental

and theoretical studies of amphipathic peptides.

The distinctive structural characteristic of amphipathic

helical peptides is the division of their cylindrical envelope

into complementary hydrophobic and hydrophilic faces.

Viewed along the helix axis, the hydrophilic face is often

characterized by a well-defined polar angle, a. In many

peptides, the polar face is positively charged, due to the

presence of lysine and/or arginine residues.

Adsorption onto the hydrocarbon-water interface of the

membrane is most likely the first stage of interaction between

most amphipathic peptides and membranes. The prevailing

picture of the adsorbed state is that the peptide lies parallel to

the interface, pushing sideways polar lipid headgroups, with

its hydrophobic sector embedded in the membrane hydro-

phobic core, resulting in local (and, at higher concentrations,

global) thinning of the lipid bilayer, and an unfavorable

elastic deformation free-energy penalty. Experiments reveal

that above a certain threshold concentration of adsorbed

peptides, the membrane undergoes a phase transition,

whereby the peptides are inserted into the lipid bilayer to

form the walls of membrane-spanning pores (He et al.,

1996a; Yang et al., 2001). It has been suggested that peptide

insertion takes place because the membrane perturbation in

the adsorbed state is larger than in the inserted state (He et al.,

1996a; Epand et al., 1995; Chen et al., 2002). An alternative

theory treating the mixture of adsorbed peptides and pores

(modeled as monodisperse rigid rings) according to scaled-

particle theory has recently been presented by Zuckermann

and Heimburg (2001). According to this theory, peptide

insertion is driven by excluded area interactions between

adsorbed peptides.

Although pore formation in lipid membranes is a well-

established phenomenon (Ladokhin et al., 1997; Matsuzaki

et al., 1997; Ludtke et al., 1996; He et al., 1996b; Bezrukov

and Vodyanoy, 1993), its underlying molecular mechanisms

are very partially understood. In early models, amphipathic

peptides in the inserted state were depicted as lining up

densely along the perimeter of a ‘‘barrel-stave’’ pore; their

hydrophobic faces apposed to the surrounding lipid tails and

their hydrophilic faces in contact with water (Boheim, 1974;

Sansom, 1991). In-plane neutron-scattering measurements
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on lamellar phases of alamethicin-containing lipid bilayers

(He et al., 1996b), combined with oriented circular dichroism

studies (Huang and Wu, 1991), have confirmed the assembly

of eight or nine alamethicin molecules into barrel-stave pores

of radius R � 9 Å.

On the other hand, various other experiments, as well as

computer simulations (Lin and Baumgärtner, 2000), indicate

that the barrel-stave model is often inapplicable, especially

for pores composed of highly charged peptides. More ex-

plicitly, a variety of experimental studies involving mem-

brane pores formed by melittin (net charge zp ¼ 16)

(Matsuzaki et al., 1997), magainin (14) (Matsuzaki et al.,

1996a; Ludtke et al., 1996), and other charged peptides

(Matsuzaki et al., 1996b; Yang et al., 2001) lend strong

support to a different, ‘‘toroidal’’ pore model. Unlike in

a barrel-stave pore in which the peptides are tightly packed

against each other, in the toroidal pore, a lipid ‘‘spacer’’

region of length corresponding to several lipid headgroup

diameters separates between the peptides. This model

appears quite natural in view of the strong electrostatic

repulsion between the highly charged peptides, which tends

to increase the interpeptide spacing and hence also the pore

diameter (Yang et al., 2001; Lin and Baumgärtner, 2000).

The gap between peptides is most likely bridged by a bent,

approximately semitoroidal lipid rim, with the polar lipid

headgroups facing the aqueous pore (Weakliem et al., 1995;

Bagdassarian et al., 1991) (see Fig. 2.)

Unlike barrel-stave pores whose circumference is

uniquely prescribed by the number of their constituent

(e.g., alamethicin) peptides, toroidal pores appear to exhibit

variable sizes, depending on experimental conditions and

method of measurement. For instance, based on neutron-

scattering experiments, a radius of 22.0 Å has been reported

for melittin pores (Yang et al., 2001). On the other hand,

leakage measurements (of dye markers from lipid vesicles)

performed at two different laboratories indicate pore radii in

the range 12.5–15.0 Å (Ladokhin et al., 1997), and 6.5–12.0

Å (Matsuzaki et al., 1997), respectively. The latter set of

experiments also reveals an increase in the average pore

radius upon increase in peptide to lipid ratio. Finally,

comparing the number of peptides per pore (in the range 4–7)

with the measured pore radius, it has been concluded that the

barrel-stave model is inappropriate for highly charged

peptide pores (Ludtke et al., 1996; Yang et al., 2001).

Electrostatic interactions between the peptides, as well as

between the peptides and membrane lipids, must play

a central role in determining the mechanisms of peptide

adsorption onto the membrane, insertion into the membrane,

as well as the structure and size of peptide pores (Bechinger,

1997; Lin and Baumgärtner, 2000). For example, using pH-

sensitive (histidine-containing) peptides, it was shown that

the orientation of amphipathic peptides with respect to the

membrane interface changes with the bulk pH, and hence

with the amount of charge. More explicitly, under acidic

conditions, in which histidine groups are positively charged

and strongly repel each other, the peptides align parallel to

the membrane plane, changing into a transmembrane orien-

tation at physiological pH values (Titus et al., 1999). Another

way to demonstrate the effect of electrostatic interactions

between peptides in the pore state was to change the salt

concentration in solution. It was shown, for example, that

(alamethicin) channel life times increase substantially with

ionic strength (Hall et al., 1984), consistent with earlier find-

ings suggesting that high salt concentration stabilizes small

membrane pores (Boheim, 1974). Unfortunately though,

direct experimental information pertaining to the effects of

electrostatic interactions on the pore state of peptides is

rather scarce. A major goal of the present study is to analyze

the role of electrostatic interactions in determining the struc-

tural and energetic characteristics of charged peptide pores.

The elastic deformation associated with peptide adsorp-

tion and insertion involves an energetic (membrane pertur-

bation) penalty that depends on the nature and composition

of the lipid molecules constituting the membrane. It also

depends on the peptide characteristics (e.g., the hydrophilic

angle or peptide length) and concentration. It is well known,

for instance, that the ‘‘hydrophobic mismatch’’ (Bloom et al.,

1991; Killian, 1998; Morein et al., 2000), measuring the

difference between the peptide length and the (unperturbed)

membrane thickness, plays a crucial role in determining the

membrane perturbation free energy and other characteristics

of the interaction between lipids and integral proteins

(Huang, 1986; Harroun et al., 1999; Fattal and Ben-Shaul,

1993; Ben-Shaul, 1995; May and Ben-Shaul, 1999).

Numerous theoretical studies have dealt with the interaction

between integral proteins and lipid membranes. However,

only few of those are directly relevant to the interaction

between lipid bilayers and amphipathic peptides. The

membrane perturbation energy associated with peptide

adsorption has been addressed by Huang and co-workers

using continuum elastic theories (Huang, 1995), as well as

on the basis of simple packing considerations (Ludtke et al.,

1995). More recently, changes in the membrane lateral

pressure profile, reflecting changes in the embedding lipid

matrix, have been invoked to explain shifts in the size

distribution of alamethicin pores (Cantor, 2002). However,

a detailed molecular-level theory of the membrane pertur-

bation energy as a function of peptide structure and density

and lipid properties is still lacking.

The structural, energetic, and thermodynamic character-

istics of amphipathic peptide adsorption and insertion are

governed by the interplay between the electrostatic and

elastic interactions discussed above. Our general goal in this

paper is to present a systematic analysis of this interplay,

focusing on the dependence of electrostatic interactions

between charged peptides on the energetic and size

characteristics of peptide pores.

More explicitly, our pore formation free energy will be

expressed as a sum of the peptides’ electrostatic charging

energy that favors pore expansion, and a ‘‘surface’’
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(membrane perturbation) term that counterbalances this

tendency. The electrostatic (charging) energy of the pores

will be calculated using Poisson-Boltzmann (PB) theory.

The lipid perturbation contribution to the pore free energy

will be treated using a familiar phenomenological model for

lipid packing in membranes and micelles (Israelachvili et al.,

1976; Ben-Shaul and Gelbart, 1994), yielding a simple

expression for the free energy of the semitoroidal lipid rim.

Then, for a given number and type of peptides (as specified

by their charge and hydrophilic angle), the equilibrium pore

size is found by balancing the opposing forces corresponding

to the electrostatic and membrane perturbation components

of the pore’s free energy. One of the major qualitative

conclusions of our analysis is that, with the exception of very

weakly charged peptides, the toroidal pore model is more

appropriate than the barrel-stave model.

Given the equilibrium pore size and energy, we shall

derive the pore size distribution using a simple statistical-

thermodynamic model that treats pore formation as a two-

dimensional (2D) self-assembly phenomenon. The size

distribution calculations are limited to the dilute (peptide in

lipid) solution regime, where interchannel interactions can be

neglected. We also ignore the possible effects of interactions

between inserted and adsorbed peptides. We conclude the

discussion with several comments pertaining to the thermo-

dynamic characteristics of the transition of peptides from the

adsorbed to the inserted state.

THEORY

Consider a ‘‘perforated’’ lipid bilayer consisting of 2Nl lipid

molecules (Nl per monolayer) and Np membrane spanning

peptides oriented perpendicularly to the membrane plane.

The Np-inserted peptides self-assemble into circular pores of

different sizes s, such that +sns ¼ Np, with ns denoting the

number of pores composed of s peptides (or s-pores).
In the first part of this section we shall describe our method

of calculating fs
0, the free energy per peptide in an (isolated,

immobile) s-pore. In the second part we use fs
0 in a simple

statistical-thermodynamic scheme for calculating the equi-

librium distribution of pore sizes, fnseqg.

Pore free energy

We assume that the amphipathic peptides forming the

membrane pores are a-helical, and model them as cylinders

of radius Rp and length hp. (See, however, Shai, 1994; White

and Wimley, 1999.) The hydrophilic face apposing the

aqueous channel is assumed to subtend a well-defined angle

a, carrying polar and charged residues of net total charge zp.
The complementary hydrophobic surface, of angle 2p � a,

faces lipid chains of the host membrane. A schematic top

view of a membrane pore, illustrating that the peptides are

not necessarily in contact with each other, is shown in Fig. 1.

A side-view illustration of a pore is shown in Fig. 2.

The formation free energy of such a pore involves two

major s-dependent contributions. The first, of magnitude fs,el
0

(R; zp, a) per peptide, is the electrostatic (charging) energy,
which depends parametrically on zp and a, and decreases

with the pore radius R owing to electrostatic repulsions

between the peptides. The second term, fs,mp
0 (R; a),

represents the membrane perturbation free energy, account-

ing for all changes in lipid packing associated with peptide

insertion into the bilayer. This term is a sum of the elastic

perturbation experienced by the lipid molecules in contact

with the hydrophobic face of the peptide and (whenever the

peptides are not in contact) the line energy associated with

the inevitable change in lipid packing along the lipid-water

contact region, (of length Ll 6¼ 0 in Fig. 1). Both

contributions to fs,mp
0 depend on the hydrophobic mismatch,

measuring the difference between the length of the peptide,

hp, and the thickness of the bilayer’s hydrophobic core, hb.
To simplify our analysis, we shall assume perfect hydro-

phobic matching, hp ¼ hb, thus attributing fs,mp
0 entirely to

the rim energy. The equilibrium radius of the pore is the

value of R corresponding to the minimum of

FIGURE 1 Schematic top view of a tetrameric peptide pore. The peptide

surface marked Lp is uniformly charged; Ll denotes the hydrocarbon-water

interface of the lipid membrane rim.

FIGURE 2 A segment of a toroidal pore, containing one peptide and its

neighboring semitoroidal lipid rims.
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f 0s ¼ f 0s;el 1 f 0s;mp: (1)

Before turning to a more detailed discussion of the two

terms on the right hand side of Eq. 1, it may be noted that the

interplay between these opposing tendencies is analogous to

that between headgroup repulsion and hydrocarbon-water

surface tension in micellar aggregates of amphiphilic

molecules (Israelachvili et al., 1976; Ben-Shaul and Gelbart,

1994). Actually, peptide pores may also be regarded as 2D

water-in-oil microemulsion droplets, with the amphipathic

peptides playing the role of surfactants (Safran, 1994).

The electrostatic free energy

The electrostatic free energy of the toroidal pore will be

evaluated using PB theory. Despite its approximate charac-

ter, this mean-field theory has proved successful in pre-

dicting and explaining many experimental observations

pertaining to similar, spatially confined environments, e.g.,

DNA-cationic lipid complexes (Harries et al., 1998; Wagner

et al., 2000).

Because we are not specifically concerned here with

a particular amphipathic peptide, several simplifying ap-

proximations will be made to allow systematic analyses of

charge and size effects. One approximation is to treat the zp
charges as randomly distributed over the hydrophilic face of

the peptide, giving rise to uniform charge density s ¼ ezp /
hpaRp, with e denoting the elementary charge and Rp ¼ 6 Å

the radius of the cylindrical peptide. For highly charged

peptides, say zp $ 3, and typical peptide characteristics such

as hp ¼ 30 Å and a ¼ 2p/3, we find e/s # 120 Å2,

comparable to the area spanned by thermal fluctuations of

charged amino acid side chains.

The charge-smearing approximation is certainly less

satisfactory for smaller zp values. It should be mentioned,

however, that we have carried out comparative electrostatic

calculations for uniform versus ‘‘stripe-wise’’ distributions

of peptide charge and found rather small differences, even

for low zp.
We approximate the electrostatic charging energy of a pore

of length hp, by the charging energy of a section of length hp
of an infinitely long pore. This approximation reduces the

dimensionality of the PB equation by eliminating end effects

at the pore mouths. Again, comparing the results of this

calculation with numerical solutions of the three-dimen-

sional (3D) PB equation, we found that the end effects are

minor.

Finally, in most calculations we assume that a sharp

boundary (the thick line in Fig. 1) separates between the low
dielectric medium (eo � 2) within the membrane and peptide

cores and the high dielectric (ew¼ 80) aqueous interior of the

pore. The convex regions, of length Lp along the pore

contour, are the uniformly charged cylindrical peptide faces.

The complementary sectors, of length Ll, are electrically

neutral surfaces, marking the interface between lipids and

water. This geometrical model is appropriate for toroidal

pores whose constituent peptides are well separated from

each other; say, d $ Rp ¼ 6 Å in Fig. 1.

For small, barrel-stave, pores whose boundaries consist of

tightly packed peptides, allowance should be made for

a nonzero, counterion-free layer of intermediate (pore radius-

dependent) dielectric constant. For these very small pores,

we have carried out finite difference PB calculations (Gilson

et al., 1987; Honig and Nicholls, 1995), and found enormous

electrostatic formation energies for all zp $ 1. We thus

conclude that the barrel-stave scheme is only reasonable for

very weakly charged peptides. Nevertheless, to provide an

estimate of the magnitude of electrostatic repulsion of such

pores, an approximate closed-form model for calculating

their charging energies is described in the Appendix. The s
and zp dependencies predicted by this model are in line with

the finite difference PB calculations, and the electrostatic

potentials and energies are also similar. Note, however, that

unless otherwise specified, all the electrostatic calculations

presented in this paper are for the toroidal pore model, where

Ll is at least a few molecular diameters.

Assuming that the embedding aqueous solution contains

a 1:1 electrolyte of concentration n0, the 2D PB equation for

the peptide pore in Fig. 1 reads

@2c

@r2
1

1

r

@c

@r
1

1

r2
@2c

@u2 ¼ k2 sinh c; (2)

with r denoting the distance of an arbitrary point from the

pore’s center and u its polar angle relative to, say, the x axis;

c¼ eu/kBT is the reduced electrostatic potential, where u is

the electrostatic potential, kB denotes Boltzmann’s constant,

and T the temperature. k�1 ¼ lD ¼ (ewkBT/8pn0e
2)1/2

denotes the Debye screening length. In all calculations, we

have assumed physiological salt conditions, namely n0 ¼ 0.1

M, and room temperature T ¼ 300 K, corresponding to lD �
10 Å.

Our membrane pore model consists of s identical sections,
as indicated in Fig. 1. By symmetry, the tangent component

of the electric field must vanish at all planes emanating

radially from the pore center and bisecting the Lp and Ll

lines, i.e.,

@c

@u

� �
u¼0

¼ @c

@u

� �
u¼p=s

¼ 0: (3)

Assuming that the electric field does not penetrate the

hydrophobic regions (as appropriate in the ‘‘decoupling

limit’’ (Carnie et al., 1994; Andelman, 1995)), the boundary

conditions (Gauss’ law) at the pore walls read,

=c � ^n ¼ �4psðe=kBTÞ=ew on Lp

0 on Ll

;

�
(4)

with s ¼ ezp/hpaRp denoting the charge density on the polar

peptide face and ew ¼ 80 standing for the dielectric constant
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of water. In the numerical calculations presented in the next

section, the PB equation has been solved by a collocation

method as described by Houstis et al., (1985).

The effective charge on the peptide hydrophilic face, zp,
and hence the surface charge density in Eq. 4, depend on the

degree of protonation of the basic amino acid residues. More

explicitly, the number of positive charges on the peptide

surface may be smaller than the number of titratable amino

groups, as some of them may not be protonated (Borisenko

et al., 2000). Following Ninham and Parsegian (1971), it can

be shown that the degree of protonation is given by 1/(1 1

exp(2.3(pH � pK0) 1 cs(R)), where K0 is the equilibrium

constant for a deprotonation reaction of the type: R � NH3
1

! NH2 1 H1 of an isolated amino group in water, and cs is

the reduced electrostatic potential on the peptide surface.

Since cs depends on pore size and peptide charge, the

effective charge density in Eq. 4 is not strictly constant, but

rather ‘‘regulated’’ by the pore diameter and pH. Typical pK0

values for lysine and arginine residues are 10.5 and 12.0,

respectively (Matthew, 1985). Our numerical solutions of the

PB equation yield cs(R) # 6 for all (toroidal) pore sizes of

interest. Thus for pH # 8, all arginine residues are fully

($95%) charged. Similarly, for pH# 6.5, all lysine residues

are charged. Assuming that these conditions are fulfilled, we

have treated s as independent of pore size. These conditions

may not apply for small, barrel-stave pores where other

assumptions (such as the charge-smearing scheme and the

existence of a sharp dielectric boundary) are also question-

able. For these, highly confined geometries, atomic level

calculations are called for.

After solving PB equation for c, subject to the boundary

conditions specified above, the charging free energy of the

pore can be calculated using

1

kBT
sf 0s;el ¼

1

2e

ð
A

sc da 1 n0

ð
V

ðc sinhc� 2 coshc 1 2Þdv;

(5)

with the first integral extending over the charged peptide

surfaces and the second over the entire pore volume.

The charging free energy, sf 0s,el, includes both the ‘‘self

energy’’ corresponding to the charging energy of the isolated

peptides, and the excess (or interaction) electrostatic energy

associated with the close proximity of the peptides in the

pore. The excess electrostatic free energy, per peptide, is

given by

Df 0s;el ¼ f 0s;el � ^fel; (6)

with f̂fel denoting the charging free energy of an isolated,

noninteracting peptide. This quantity may be interpreted as

the electrostatic free energy per peptide in an infinitely large

pore. Since the limit R ! ‘ corresponds to a single peptide

adsorbed on a planar lipid wall, we may also interpret f̂fel as
the electrostatic free energy of an isolated peptide adsorbed

on the membrane surface. Note that f̂fel depends on zp and a.

Membrane perturbation free energy

We model the membrane rim segment (of length Ll, Fig. 2.)

which separates between neighboring peptides as a section of

a bent semitoroidal rim, as illustrated in Fig. 2. The lipid

molecules constituting these rims are not in their ideal

packing environment, which is the planar (peptide-free) lipid

bilayer. The membrane perturbation free energy, fs,mp
0 , is the

excess packing free energy of the rim molecules, relative to

the packing free energy (of the same number of molecules) in

the planar bilayer.

The optimal rim geometry depends on the molecular

characteristics of its constituent lipids, primarily their

spontaneous curvature (Helfrich, 1973). Thus, for one lipid

species, the optimal rim geometry might be a straight

semicylindrical segment bridging between two peptides,

whereas others would prefer organizing in a bent semi-

toroidal rim. Since the focus of this paper is not on the

prediction of exact pore dimensions made of specific

peptides in specific lipid bilayers, but, rather, the general

characteristics of the competition between peptide repulsion

and membrane-rim perturbation, we shall suffice here with

a simple phenomenological model for fs,mp
0 , as follows.

We assume that the rim is a segment of a circle (of radius

Rl) of arc length Ll, and excess energy per unit length l.

Namely,

f 0s;mp ¼ lLl ¼ tmp Rl=s� lb: (7)

To avoid additional parameters, we assume that l is

a constant, independent of the pore radius Rl (as appropriate

for straight rim segments and in the limit of large Rl). In the

second equality, we have introduced the radial force, tmp ¼
@(sfs,mp

0 )/@R, which opposes pore expansion because of the

increasing line energy. Simple geometrical considerations

reveal 2pRl ¼ s(Ll 1 b), where b is a geometrical constant

depending parametrically on a and Rp; implying tmp¼ 2pl.

Thus, ignoring rim curvature effects, tmp, like l, is

independent of s.
Clearly, the toroidal pore model is appropriate, essentially

by definition, only when Ll is large enough to enable at least

several lipid molecules, in the space between peptides, to

bend and poke their headgroups into the aqueous interior of

the pore. Since, typically, the cross-sectional area per lipid

headgroup is a $ 50 Å2, this means that Ll should be larger

than Ll � 7 Å. Smaller distances, as suggested for barrel-

stave pores, imply exposure of lipid hydrophobic tails to

water, resulting in a much larger interfacial (water-

hydrocarbon) energy. A crude estimate of this energy can

be obtained as follows. The hydrocarbon-water contact area,

per peptide, is Llhp, corresponding to interfacial energy

f 0s;mp � gLlhp, and hence l ¼ f 0s;mp=Ll ¼ ghp, with g � 0.1

kBT/Å
2 denoting the common value for lipid-water contact

(Israelachvili et al., 1976). This yields l� 3 kBT/Å or tmp �
20 kBT/Å. This value is much larger than the value of l for

a toroidal channel, as argued below.
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An estimate of l for the semitoroidal rim (Fig. 2) may be

obtained using the ‘‘opposing forces’’ model for amphiphile

packing in micellar aggregates (Israelachvili et al., 1976;

Ben-Shaul, 1995). Using g to denote the packing free energy
per lipid in a self-assembled aggregate (e.g., planar bilayer or

semicylindrical rim) we express g as a sum of two

contributions with opposite effects on the average area per

lipid, a: i), the water-hydrocarbon surface energy, ga, which
tends to minimize a; and ii), interlipid repulsion of strength c/
a whose components include the spatial and/or electrostatic

repulsion between lipid headgroups, as well as the (chain-

conformational) entropic repulsion between the lipid tails, all

favoring maximal a; c is a phenomenological constant

measuring the strength of headgroup repulsion. (It may be

noted that these forces operate at different planes relative to

the hydrocarbon-water interface. Their balance, and the

balance of their moments dictate the equilibrium area and

curvature, both measured at the ‘‘neutral surface’’ (May and

Ben-Shaul, 1999). However, we shall suffice here with

a much simpler analysis, with a measured at the interface.)

The opposing forces model yields, g ¼ ga1 c=a ¼
2ga0 1 gað1� a=a0Þ2, where a0 ¼

ffiffiffiffiffiffiffiffi
c=g

p
is the optimal

headgroup area dictated by the balance of the two opposing

forces (i.e., minimal g).
Most phospholipids, owing mainly to their large (double

chain) hydrophobic tail, prefer packing in the planar bilayer

environment, with a ¼ a0 � 60–70 Å2, implying gbil ¼ 2ga0
for the free energy per lipid in the bilayer. The (excess) free

energy per lipid in the semitoroidal rim is necessarily higher,

g ¼ grim � gbil ¼ garim(1 � arim/a0)
2, with arim denoting the

area per molecule in the rim. Ignoring rim curvature effects,

the number of lipids, per peptide, in the rim section isNl
rim¼

Llphp/2arim, and hence

l ¼ f 0s;mp=Ll ¼ pðhp=2Þgð1� arim=a0Þ2: (8)

Thus, according to this model, the minimal rim free energy

and hence the actual value of l depends on the ability of the

lipids to pack with an area per headgroup as close as possible

to a0.
From simple geometric packing considerations it follows

that the minimal area per headgroup of a single-tail

amphiphile in a cylindrical micelle is 40–45 Å2, implying

acyl
min ffi (80–90) Å2 for a double-tail lipid. Thus, in principle,

the area per molecule in the rim could be as small as arim ffi
85 Å2, resulting in l ffi 0.25 kBT/Å for the typical bilayer

value abil ¼ a0 ¼ 70 Å2 and g ¼ 0.12 kBT/Å
2. (It should be

noted, however, that the diameter of such semitoroidal rims

is somewhat larger than the membrane thickness, indicating

imperfect hydrophobic matching and hence a necessary,

additional, free-energy penalty associated with the seam

between the cylindrical and planar regions.) Interestingly,

the value l ¼ 0.25 kBT/Å agrees quite closely with the

prediction of a molecular-level (chain-packing) theory for

the line tension corresponding to the semitoroidal lip of

a planar lipid bilayer (May, 2000). Realizing that lmay vary

markedly from one lipid-peptide system to another, all the

calculations presented in the next section are for tmp ¼ 2pl

¼1 kBT/Å, serving as our standard choice for the rim line

energy. Our qualitative conclusions, pertaining, e.g., to the

variation of optimal pore size with peptide charge or polar

angle, are rather insensitive to variations in tmp. On the other

hand, absolute pore sizes and energies may vary significantly

with tmp, possibly reflecting the experimentally observed

differences corresponding to different lipid membranes.

Equilibrium pore size

The circular, perfectly symmetric pore model depicted in Fig.

1 is of course an idealized structural scheme, neglecting

fluctuations in pore size and shape, which are expected to

increase with the average pore radius. Furthermore, as the 2D

density of pores increases, interactions between them may

become important, leading possibly (as in 3D micellar

systems) to pore elongation and alignment. In this paper,

however, we are specifically interested in low peptide con-

centrations where the average pore size is relatively small and

interaction effects are negligible. We shall therefore assume

that all s-pores are, indeed, perfectly circular and character-

ized by a well-defined equilibrium radiusReq¼Req(s; zp, a).
The value of Req is dictated by the balance of forces,

df 0s
dR

¼
df 0s;el
dR

1
df 0s;mp

dR
¼ 0; (9)

with the derivatives

ts;el ¼ �s
df 0s;el
dR

; tmp ¼ s
df 0s;mp

dR
(10)

representing, respectively, the radial forces acting to increase

(ts,el[ 0) and decrease (tmp[ 0) the pore radius.

Pore size distribution

Excluding the areas corresponding to the aqueous interiors of

the pores, the total surface area, A, of a lipid bilayer

composed of 2Nl lipids (Nl per monolayer) and Np

membrane-spanning amphipathic peptides, is A ¼ Nla0 1

Npap. Here, a0 ¼ abil is the average area per lipid in the

membrane, which we shall treat as a constant, a0 ¼ 70 Å2, in

all calculations; ap ¼ pRp
2 � 115 Å2 is the constant cross-

sectional area per peptide. In a tensionless membrane, the

aqueous regions will adjust their areas to the optimal pore

size distribution, playing no role in determining this dis-

tribution.

The free energy of a membrane corresponding to a pore

size distribution fnsg, is given by

F ¼ +
s

ns sf 0s 1 kBT ln
ns

A=a0

� �
1 kBT

� �
; (11)
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with fs
0 denoting the free energy per peptide in a pore of size

s; Eq. 1. (The use of a0 as the unit area is discussed below.)

The equilibrium size distribution is the one that minimizes

F subject to the material conservation condition,

+
s

sns ¼ Np: (12)

Minimizing F we find

neq
s ¼ ~AA exp½�bsðf 0s � mÞ�; (13)

with ~AA ¼ A=a0 denoting the membrane area measured in

units of a0 and b ¼ 1/kBT. The chemical potential per

peptide, m ¼ f 0s 1 ðkBT=sÞ lnðneqs =~AAÞ is the Lagrange mul-

tiplier conjugate to the conservation constraint Eq. 12.

Size distributions are sometimes expressed in terms of the

normalized weight distribution Xs ¼ Ns/Np ¼ sns/Np, which

in our case is given by

Xs ¼ s3 exp½�bsð f 0s � mÞ�=Np: (14)

For a given Np, the normalization condition +
s
Xs ¼ 1

enables evaluation (generally numerically) of m for a given

Np, or vice versa.

Returning to Eq. 11, it should be noted that the choice of

a0 as the unit area is analogous to the use of a molecular

volume in the 3D free energy of a self-assembling system

(Safran, 1994). It should nevertheless be added that the

correct choice of the right length (or area, or volume) scale is

a highly nontrivial statistical-mechanical issue, as discussed

for instance in the context of microemulsions (Reiss et al.,

1996). In microemulsions, the natural length scale for droplet

fluctuations was argued to be comparable to the diameter of

a single surfactant molecule. Noting the analogy between

a perforated lipid membrane and a 2D microemulsion, our

use of a0 as the unit area appears as the most natural choice.

Still, since the choice of a0 can strongly affect the calculated

size distribution, we may regard a0 as a phenomenological

parameter that may be scaled by comparison to experiment.

Indeed, using a0 � al yields reasonable agreement with

available experimental results (see below).

RESULTS AND DISCUSSION

In the first part of this section, we present numerical results

pertaining to the structural and energetic characteristics

of isolated peptide pores, focusing on their variation with s,
R, zp and a. Pore size distributions are discussed in the

second part.

PORE CHARACTERISTICS

The electrostatic free energies presented below were

calculated using Eq. 5, following the numerical solution

for c using PB Eq. 2. Pore free energies were calculated for

a wide range of pore radii R, which, for a given s, correspond

to a wide range of interpeptide distances, d. The relationship
between d and R in an s-pore (see Fig. 1) is

d ¼ 2½ðR 1 RpÞ sinðp=sÞ � Rp�: (15)

Recall that our PB calculations are valid for relatively

large, toroidal, pores (d $ 7 Å, or so). In most cases of

interest, the equilibrium values of d are well above this lower
limit. In the rare cases where this condition is not satisfied,

the electrostatic energy will be estimated using the capacitor

model (see Appendix, Eq. 17).

Fig. 3 shows the electrostatic repulsive force acting in

a four-peptide pore, t4;el ¼ �4df 04;el=dR, as a function of the

pore radius R and the interpeptide distance, d, for peptides
carrying zp ¼ 1; . . . ; 6 charges on their polar face, a ¼ 1208.

The equilibrium pore radius, Req (see inset), is dictated by

the crossing point of the electrostatic force and the mem-

brane perturbation force tmp. The horizontal dashed line in

Fig. 3, corresponding to tmp ¼ 1 kBT/Å, represents our

estimate of the radial force associated with the expansion of

the semitoroidal lipid sectors, as discussed in the previous

section. (Recall that semitoroidal rim formation is impossible

for small interpeptide separations, d # d* � 7 Å, where the

membrane perturbation force is that of a barrel-stave pore,

tbsmp � 20 kBT=Å; beyond the scale of Fig. 3.)

As expected, Req (equivalently deq) increases with zp,
reflecting the increase in electrostatic repulsion between

FIGURE 3 The radial electrostatic force in a four-peptide pore as

a function of the pore radius (R, bottom scale) and the interhelical

separation (d, top scale) for different peptide charges, zp ¼ 1; . . . ; 6. The

horizontal dashed line marks the attractive force resulting from the line

energy of the semitoroidal lipid rim, tmp ¼ 1 kBT/Å. The crossing points of

the force curves mark the equilibrium radii and are shown as a function of zp
in the inset. In these calculations, n0 ¼ 0.1 M and a ¼ 1208.
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peptides. From Fig. 3 it is apparent that all peptides, except

perhaps the most weakly charged ones (zp ¼ 1), conform to

the toroidal pore model. This conclusion follows from the

fact that the equilibrium value of the interpeptide spacing

(d $ 10 Å already for zp ¼ 3) exceeds d*, the minimum

separation allowing for the formation of a low energy

semitoroidal rim.

In Fig. 4 we show the electrostatic repulsion force between

tetravalent (zp ¼ 4) peptides assembled into pores of varying

sizes (s ¼ 4–8) as a function of the interhelical distance, d.
As in Fig. 3, the equilibrium separation between peptides is

marked by the crossing points between these curves and the

constant membrane perturbation force described by the

dashed horizontal line. The equilibrium interhelical distance

is seen to decrease as the number of peptides per pore

increases. If interpeptide interactions were governed by

nearest-neighbor repulsion we would expect a nearly

constant deq, (nearly, and not exactly, because the interaction
depends weakly on the relative peptide orientation, which

depends on s).
A simple qualitative explanation of the results shown in

Fig. 4 can be given based on the general notion that the major

source of electrostatic repulsion between like-charged

surfaces is the osmotic pressure associated with counterion

confinement (see, e.g., Evans and Wennerström, 1994;

Parsegian and Gingell, 1972; Wagner et al., 2000). Similar,

counterion osmotic pressure is the source of electrostatic

repulsion in a charged cylindrical channel enclosing an

aqueous electrolyte solution. Suppose the cylinder’s radiusR
is increased while its surface charge density is kept constant.

Since the number of counterions increases with the number

of surface charges, and hence linearly with R, whereas their
density (hence the pressure) decreases quadratically with R,

the electrostatic free energy decreases with R. Obviously,
increasing the aggregation number, s, of a circular peptide

pore at constant d is analogous to increasing the cylinder’s

radius while keeping its surface charge density constant.

Thus, for a given d, the radial electrostatic force decreases

with s, explaining why deq decreases with s, as shown in Fig.
4. For large enough s, the pore walls become essen-

tially planar, and the interhelical spacing should approach

a constant value.

All pores in Fig. 4 fulfill our condition deq [ d* � 7 Å,

and may safely be classified as toroidal, consistent with the

qualitative notion that this is the preferred pore geometry for

multivalent peptides, (here zp ¼ 4 as, e.g., in magainins).

Similar behavior is found for all zp $ 3 peptides and even

zp ¼ 2. The only case where our calculations suggest a

possible preference for barrel-stave arrangement (deq # 7 Å)

is that of large s pores composed of weakly charged peptides,

zp ¼ 1, as indicated in Figs. 3 and 5.

The effect of peptide charge on the pore formation free

energy is demonstrated in Fig. 5 for tetrameric pores

composed of peptides carrying zp ¼ 1; . . . ; 6 charges. The

top panel of this figure shows the excess electrostatic free

energy per peptide in the pore (see Eq. 6) as a function of d.
As expected, this energy increases with zp and decreases

monotonically with d, approaching zero in the limit of

infinite membrane radius. The lower panel displays the total

pore formation free energy, Df 0s¼4 ¼ Df 0s¼4;el 1 f 0s¼4;mp, for

2pl¼ tmp¼ 1 kBT/Å. The equilibrium interpeptide spacing

increases with zp; the rate of the increase decreases with zp.
The minima in Fig. 5 appear quite shallow, suggestive of

large pore size fluctuations. It should be noted, however, that

the root mean-square fluctuations in pore radius dR ¼ [hR2i
� (hRi)2]1/2 are determined by the total pore free energy,

sfs
0, rather than the free-energy per peptide, fs

0. The root

mean-square radius fluctuations can be estimated using the

general expression,

@2ðsf 0s Þ
@R2

� �
ðdRÞ2 ¼ kBT: (16)

From our numerical results, it follows that the dR’s are

actually quite small, ranging from 2 Å for zp ¼ 1, 2 to �3 Å

for zp ¼ 6.

The range of equilibrium pore radii and their dependence

on the peptide aggregation number is displayed in Fig. 6 for

four values of the peptide charge zp ¼ 1; . . . ; 4. The

corresponding values of Df 0s ðR ¼ ReqÞ are shown in Fig. 7.

All cases considered in Fig. 6, except the zp ¼ 1 curve,

correspond to the geometry of toroidal pores, i.e., their Req

correspond to d[ d*. The equilibrium pore radii increase,

nearly linearly, with s; at a rate that increases with zp
(corresponding to the increase with zp of deq). Of course, pore
radii on the order of 10–20 Å would allow the passage of

rather large molecules across the lipid membrane. The

probability that this may indeed happen depends on the pore

size distribution, which depends sensitively on the pore free

FIGURE 4 The electrostatic repulsive force as a function of the inter-

helical distance in pores composed of s ¼ 4; . . . ; 8 peptides; all peptides

carry four charges; n0 ¼ 0.1 M, a ¼ 1208.
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energies (those shown in Fig. 7), and the total concentration

of inserted, transmembrane peptides. As expected, the

minimal free energy per peptide decreases with s, approach-
ing a constant value when the pore radius gets large compared

to the Debye screening length, lD, in which limit the pore

walls behave as being planar. Since small pores are preferred

on entropic grounds, the appearance of large multipeptide

pores is improbable, despite their low energies (see below).

All the calculations presented in this section correspond to

the physiological salt concentration, 0.1 M. Increased salt

concentrations, and hence smaller Debye lengths, result in

increased screening of the Coulomb repulsion between

peptides, thus favoring small pore formation. Indeed, smaller

pores are known to form at high salt concentrations (Sansom,

1991).

Weakly charged peptides

Figs. 3, 5, and 6 show that the equilibrium distance between

peptides in a membrane pore decreases as zp decreases. In

fact, the equilibrium interpeptide spacing in pores composed

of singly charged (zp ¼ 1) peptides suggest their classifica-

tion as barrel-stave rather than toroidal pores. For such small

pores, as discussed in the previous section, the capacitor

model, Eq. 17 (see Appendix), is more appropriate than the

PB expression Eq. 5.

In Fig. 8 we show the electrostatic repulsion force

operating in a tetrameric pore composed of zp ¼ 1 peptides,

calculated using the capacitor model, Eq. 17. Using the

membrane perturbation force corresponding to a semitoroidal

FIGURE 5 The excess free energy per peptide (relative to the adsorbed

state) in a tetrameric pore, as a function of the interhelical distance and the

pore radius, for six values of the peptide charge: zp ¼ 1; . . . ; 6. (Top panel)

The electrostatic interaction free energy. (Bottom panel) The total excess

free energy. The solid squares mark the equilibrium positions; the membrane

perturbation force is tmp ¼ 1 kBT/Å; n0 ¼ 0.1 M, a ¼ 1208.

FIGURE 6 The equilibrium radius of toroidal pores as a function of the

peptide aggregation number, for zp ¼ 1; . . . ; 4; tmp ¼ 1 kBT/Å, a ¼ 1208,

n0 ¼ 0.1 M.

FIGURE 7 The formation free energy, per peptide, of (equilibrium)

toroidal pores as a function of the peptide aggregation number, for zp ¼
1; . . . ; 4; tmp ¼ 1 kBT/Å, a ¼ 1208, n0 ¼ 0.1 M.
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lipid rim (tmp ¼ 1 kBT/Å, lower dashed line in Fig. 8) we

find an equilibrium interpeptide spacing of deq � 3.2 Å.

Clearly, this spacing is too small to warrant the formation of

a semitoroidal rim. That is, for such small d’s, the membrane

perturbation force should be calculated using the much

higher value, tbsmp � 20 kBT=Å (upper dashed curve in Fig. 8)
corresponding to the exposure of hydrocarbon chains to

water. This in turn implies an even smaller interhelical

spacing, deq � 1 Å, which may safely be regarded as cor-

responding to a barrel-stave pore.

There is, however, another alternative for pore formation

by the zp¼ 1 peptides; namely, to increase the space between

them to deq¼ d*� 7 Å, thus enabling the formation of a (low

energy, �ltord*) semitoroidal rim segment. It turns out that

the formation free energy of such a ‘‘minimal’’ toroidal pore

is significantly lower than that of a small barrel-stave pore,

even for zp ¼ 1 peptides. For instance, the energy of

a tetrameric barrel-stave pore of radius R � 3 Å (d ¼ 1 Å),

and tbsmp ¼ 20 kBT=Å to balance the electrostatic repulsion, is

Df4
0 � 14 kBT/peptide, compared to the energy Df4

0 � 2

kBT/peptide for a toroidal pore of radius R � 7 Å (d � 7 Å).

Increasing R (and hence d ) results in a very steep reduction

in the electrostatic energy, but a concomitant increase in the

hydrophobic (exposure) energy corresponding to the large

value of tmp
bs . Expansion of the pore to the minimal toroidal

pore radius (R � 7 Å) (thereby replacing tmp
bs by the much

lower line energy tmp
tor ) remains the energetically favorable

solution even if tbsmp were smaller by a factor of two or three.

It must be emphasized, however, that our small-pore model

ignores all atomic details (charge pairing for instance) that

could perhaps explain the formation of barrel-stave pores by

weakly charged peptides.

The effect of polar angle

The polar angle a is believed to play a key role in pore

formation by amphipathic peptides (Wieprecht et al., 1997;

Epand et al., 1995; Uematsu and Matsuzaki, 2000). Suppose,

as suggested by Fig. 1, that the angle a indeed coincides with

the lipid-water interface. Based only on purely geometric

considerations, an increase in a suggests an increase in the

optimal aggregation number s. Indeed, this behavior has

been demonstrated experimentally by Lear et al. (1988) for

pores composed of electrically neutral peptides, containing

varying proportions of hydrophobic (leucine) and polar

(serine) residues. Actually, if only the angle defining the

hydrophilic sector were important, one should expect the

optimal aggregation number to depend on a according to

the simple relationship: s ¼ 2/(1 � a/1808), yielding s ¼ 4

for a ¼ 908, s ¼ 6 for a ¼ 1208, etc.

In reality, the dependence of the pore energy on a is far

more complicated, due to additional factors such as speci-

fic (e.g., hydrogen-bonding) interpeptide and lipid-peptide

interactions and, of greater and more general relevance here,

electrostatic interactions. Qualitatively, electrostatic inter-

actions tend to enhance the increase of (the optimal) swith a,
due to the closer proximity of charged residues belonging to

neighboring peptides. However, once the distance between

peptides exceeds the Debye screening length (lD � 10 Å in

our case) the electrostatic repulsion between neighboring

peptides depends mainly on their total charge rather than its

distribution over their polar face.

Fig. 9 shows the formation free energies of tetrameric

pores composed of tetravalent peptides for three values of the

polar angle: a ¼ 1008, 1208, 1408. In all three cases the

equilibrium pore size (R � d � 12 Å) corresponds to the

toroidal structure. Consistent with the qualitative arguments

above, we find that the formation free energy increases as

a increases. These apparently small differences (of order

1 kBT ) are magnified in the pore size distribution, and in the

probability of peptide insertion into the membrane, due to the

exponential dependence of the pore populations on sDfs
0, as

discussed in more detail next.

Pore populations

In Fig. 10 we show Xs ¼ sns /Np, the weighted size

distribution of toroidal pore, for a rather low concentration of

inserted peptides in the membrane, Np /2Nl ¼ 1/400. As

expected, an increase in peptide charge zp results in a larger

average pore size and a broader size distribution. Fig. 11

shows the size distributions corresponding to tetravalent

peptide pores for the three polar angles considered in Fig. 9,

revealing that the average pore size indeed increases with a.

In particular, the weight distribution corresponding to a ¼

FIGURE 8 The electrostatic repulsive force in a tetrameric pore

composed of weakly charged (zp ¼ 1) peptides. This force is the radial

derivative of the electrostatic charging energy, calculated using the small-

pore model, Appendix Eq. 17, with d ¼ 2 Å. The horizontal dashed line is

t ¼ tmp
bs ¼ 20 kBT/Å representing the opposing force resulting from the

exposure of lipid tails to water. The dashed line at t ¼ tmp
tor ¼ 1 kBT/Å is the

force used in the toroidal model. The inset shows the effective dielectric

constant used in this calculation.
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1408 exhibits a maximum at the rather large value of s ¼ 10.

It should be remembered, however, that the number of

s-pores in the membrane is given by ns rather than sns. Still,
the a dependence of ns revealed in Fig. 11 is consistent

with various previous suggestions to regulate pore sizes

and stability by tuning a (Wieprecht et al., 1997; Uematsu

and Matsuzaki, 2000).

Peptide insertion

It is widely accepted now that peptide insertion and pore

formation occur only after the peptides have first adsorbed

onto the membrane surface, and that the adsorbed state is not

a metastable kinetic intermediate but, rather, a thermody-

namically stable phase. Electrostatic interactions between

adsorbed peptides, at least at low surface coverages, are

much weaker than those between neighboring pore-forming

peptides. Thus, our calculations of Df 0s;el should provide

a reasonable estimate of the electrostatic energy cost as-

sociated with peptide insertion. These calculations indicate

that the electrostatic energy associated with pore formation is

typically 10–20 kBTs per pore (see, e.g., Fig. 5), thus

opposing peptide insertion and assembly into ordered pores.

Pore formation is also opposed by the loss of entropy

associated with the aggregation of s independent peptides

into one aggregate. Thus, there must be additional mech-

anisms that can promote the transition from the adsorbed to

the inserted state. One of these are excluded area interactions

between adsorbed peptides as their coverage increases (see,

e.g., Zuckermann and Heimburg, 2001). Another possible

mechanism is the elastic perturbation of the lipid membrane

by the adsorbed peptides, which may increase with their

surface concentration to an extent favoring the smaller elastic

perturbation in the inserted state (Chen et al., 2002). Yet

another important mechanism of great relevance in biolog-

ical systems is the favorable interaction between the intrinsic

dipole of the peptides with the membrane potential. For

typical membrane potentials (100 mV) and peptide dipoles

(65 D) (Sansom, 1991), this interaction is on the order of

several kBTs, possibly large enough to partly or even fully

overcome the insertion barrier.

All of the above factors that can contribute to peptide

insertion have been studied both experimentally and

theoretically. Nevertheless, a coherent picture elucidating

the synergistic action of these forces is not yet available.

Notwithstanding this state of affairs, we would like to close

this section with an illustrative estimate of the degree of

peptide insertion into the membrane, assuming that an

FIGURE 9 The formation free energy, per peptide, in a tetrameric pore

composed of tetravalent peptides, as a function of the pore radius for three

values of the polar angle: a¼ 1008, 1208, and 1408. Here tmp¼ 1 kBT/Å and

n0 ¼ 0.1 M.

FIGURE 10 The weight distribution of pore sizes, Ns/Np ¼ sns/Np,

corresponding to peptide charges zp ¼ 2,3,4. The ratio between the num-

ber of transmembrane peptides and lipid molecules in the membrane is

Np/2Nl ¼ 1/400. Here tmp ¼ 1 kBT/Å, a ¼ 1208, and n0 ¼ 0.1 M.

FIGURE 11 Size distribution of peptide pores composed of tetravalent

peptides for three values of the polar angle: a ¼ 1008, 1208, and 1408. Other

details as in Fig. 10.
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energetic boost, Dg per peptide, has been provided to the

system to enhance peptide insertion into the membrane, so

that the excess free energy per inserted peptide reduces from

Dfs
0 to Dfs

0 � Dg. The origin of Dg could be the higher

elastic membrane perturbation in the adsorbed as compared

to the inserted state (Chen et al., 2002), excluded area inter-

actions between densely adsorbed peptides (Zuckermann

and Heimburg, 2001), the unfavorable interaction of the

peptide dipole with the external field, or combination of these

mechanisms. In Fig. 12 we show the fraction of adsorbed

peptides as a function of Dg for three values of the peptide

charge. In this particular calculation, the overall (i.e., inserted

and adsorbed) peptide to lipid ratio in the adsorbed

monolayer is Np
tot/2Nl ¼ 1/40.

The steep change in the fraction of adsorbed peptides

shown in Fig. 12 is a consequence of the cooperative nature

of the pore formation process, resembling an oligomerization

or micellization process (Ben-Shaul and Gelbart, 1994).

For this type of processes, a change in the association

equilibrium constant (through a change in temperature or in

the standard reaction free energy) results in a sharp transi-

tion from ‘‘reactants’’ to ‘‘products’’ (or vice versa). The

transition gets sharper, resembling a phase transition, when

the cooperativity of the process (namely the average ag-

gregation number involved) gets larger. The increase with zp
in the value of Dg corresponding to the adsorbed ! inserted

transition is due, of course, to the increase in the pore’s

electrostatic energy. Other factors that we have not speci-

fically treated here, such as the nature and composition of the

lipid membrane, which influence (differently) both the

adsorbed and inserted state, may also affect the transition

point, possibly drastically. The sensitivity of the transition

from the adsorbed to inserted state to membrane character-

istics explains, in principle, why amphipathic peptides

exhibit pore formation in one membrane but not in another.

Most recently, Chen et al. (2002) have analyzed the

insertion behavior of alamethicin in several lipid bilayers,

finding that the transition from the adsorbed to the inserted

state is sigmoidal, yet steeper than the transition predicted by

a simple micellization scheme (similar to our model above).

The authors attribute the enhanced transition to the fact that

the elastic deformation of the lipid membrane is larger in the

adsorbed state and its quadratic increase with the surface

concentration of adsorbed peptides. In our model this would

amount to assuming Dg} ðNadsorbed
p =NlÞ2, which might

indeed be the case due to both elastic and excluded area

interactions.

SUMMARY

Our goal in this work has been to provide a consistent

analysis of the major factors affecting the energetics and

sizes of membrane pores composed of charged amphipathic

peptides. We found that pores composed of charged peptides

conform generally to the toroidal model, whereby a finite

semitoroidal membrane rim intervenes between neighboring

peptides, thus largely reducing the electrostatic energy of the

pore. Only very weakly charged peptides, e.g., alamethicin,

may prefer the barrel-stave pore structure, where the peptides

are tightly packed against each other.

We also found that the free-energy minima of the toroidal

pores are rather shallow, suggesting substantial variations in

pore sizes and pore aggregation numbers. Furthermore, since

the membrane perturbation (rim) energy depends sensitively

on the nature and composition of the lipid mixture, a given

type of peptides may exhibit very different behaviors when

interacting with different lipid membranes. These notions

may explain the wide variety of pore sizes and insertion

thresholds observed experimentally for peptides interacting

with different lipid membranes. On the other hand, weakly

charged (e.g., alamethicin) peptides appear to exhibit much

smaller variations in size (Yang et al., 2001).

Additional conclusions from our calculations involve the

role of the polar angle, the peptide charge, and the energetic

barrier to peptide insertion. We found, for example, that the

pore formation free energy increases with the polar angle

owing to stronger electrostatic repulsion, even in toroidal

pores where the peptides are well separated from each other.

Attempting to elucidate the general trends governing pore

formation, we had to adopt several simplifying approxima-

tions. Among those are the assumption that the peptide

charge is uniformly smeared over the helix polar face, the use

of a constant (curvature independent) membrane rim energy,

and the neglect of elastic membrane deformations, such as

those implied by a hydrophobic mismatch between peptide

and membrane thickness. The inherent limitations of our

mean-field PB treatment of the electrostatic interactions,

especially in small barrel-stave pores, has already been

FIGURE 12 The fraction of adsorbed peptides on the membrane surface

as a function of the insertion energy gain Dg (see text) for three values of the

peptide charge, zp ¼ 2,3,4. The minimal energy required for pore formation

increases with peptide charge. In this calculationNp
tot/2Nl ¼ 1/40, a¼ 1208,

tmp ¼ 1kBT/Å, and n0 ¼ 0.1 M.
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discussed in Theory. Notwithstanding all the above reser-

vations, we believe that the qualitative behaviors predicted

by our theory, especially for highly charged toroidal pores,

are valid. Only atomic-level calculations can yield quanti-

tative information concerning the structure and energetics of

small, weakly charged pores.

APPENDIX: SMALL PORES

The radius R of a barrel-stave pore consisting of several tightly packed

peptides is on the order of just a few molecular (water and/or counterion)

diameters (see Fig. 13). The electrostatic energy of such pores is extremely

sensitive to such details as the exact positions of the peptide charges and to

local variations in the dielectric constant. Thus, in calculating this free

energy, allowance should be made for the fact that the peptide charges are

actually located slightly inside the low dielectric region, and the solvated

counterions cannot really reach the surface charges. In finite difference PB

calculations, these effects are often accounted for by assigning a small low-

dielectric shell of width d/2 � 1 Å around every (fixed or mobile) charge in

the system (Gilson et al., 1987; Honig and Nicholls, 1995). Apart from

modifying the interaction between charged surfaces and mobile ions

in solution, this picture suggests that the intervening space between

neighboring peptides is a low dielectric medium, implying very strong

electrostatic repulsion between them. In the text we argued that this

repulsion is strong enough to render the small pore model illustrated in Fig.

13 highly unlikely, except perhaps for pores composed of very weakly

charged peptides. To estimate the electrostatic energy of the very small

pores, we shall use here a highly simplified, analytical ‘‘capacitor’’ model, as

outlined below. The predictions of this model, especially the electrostatic

potential and the magnitude of the electrostatic charging energy, show

satisfactory agreement with finite difference PB calculations for the same

pore geometry (Fattal, unpublished).

The peptide charges involve some motional freedom and may therefore

be modeled as forming an equipotential surface at distance R 1 d from the

center of the pore, with d denoting the (average) minimal distance separating

the surface charges from the mobile ion charges in solution (see Fig. 13).

Note that the (peptide) charge distribution along this cylindrical equipoten-

tial surface is not uniform, owing to (azimuthal) variations in the local

dielectric constant. The counterions in solution are mobile, yet because of

the small pore dimensions and hence the strong repulsion between them, the

counterions may be assumed to reside in another, equipotential layer at

distanceR from the pore’s center, thus forming a concentric capacitor of gap

size d ¼ 2 Å.

The gap is devoid of charges, and its effective dielectric constant is

calculated using the following model. For R corresponding to tightly packed

peptides, there is no room for water molecules to enter the R, R 1 d shell,

and its dielectric constant is set to e ¼ eo ¼ 2. The volume of this shell

increases with R, and we assume that the added volume is filled up by water

molecules, implying an R dependence of the effective dielectric constant.

The effective dielectric constant of a concentric capacitor whose gap consists

of alternating azimuthal regions of different dielectric constants (as in

Fig. 13) is the arithmetic average of the corresponding constants, namely,

eeff(R)¼ eo1 x(R) (ew� eo)¼ 21 78x(R), with x(R) denoting the volume

fraction of water in the gap. Qualitatively, the increase of eeff(R) with R (see

the inset in Fig. 8) is consistent with molecular level models of the effective

(‘‘distance-dependent’’) dielectric constant in confined environments

(Warshel, 1979; Gilson et al., 1993).

The electrostatic charging energy per peptide according to the small pore

model, ~ff 0s;el, is that of the corresponding concentric capacitor, namely

~ff 0s;el ¼
se2z2p

hpeeffðRÞ
ln 11

d

R

� �
: (17)
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