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ABSTRACT The main function of the transmembrane light-harvesting complexes in photosynthetic organisms is the
absorption of a light quantum and its subsequent rapid transfer to a reaction center where a charge separation occurs. A
combination of freeze-thaw and dialysis methods were used to reconstitute the detergent-solubilized Light Harvesting 2
complex (LH2) of the purple bacterium Rhodopseudomonas acidophila strain 10050 into preformed egg phosphatidylcholine
liposomes, without the need for extra chemical agents. The LH2-containing liposomes opened up to a flat bilayer, which were
imaged with tapping and contact mode atomic force microscopy under ambient and physiological conditions, respectively. The
LH2 complexes were packed in quasicrystalline domains. The endoplasmic and periplasmic sides of the LH2 complexes could
be distinguished by the difference in height of the protrusions from the lipid bilayer. The results indicate that the complexes
entered in intact liposomes. In addition, it was observed that the most hydrophilic side, the periplasmic, enters first in the
membrane. In contact mode the molecular structure of the periplasmic side of the transmembrane pigment-protein complex was
observed. Using Föster’s theory for describing the distance dependent energy transfer, we estimate the dipole strength for
energy transfer between two neighboring LH2s, based on the architecture of the imaged unit cell.

INTRODUCTION

Photosynthesis is the process where solar energy is trans-

ferred into useful chemical energy. In purple photosynthetic

bacteria the photosynthetic unit is localized in a system of

intracytoplasmic membranes. It consists of transmembrane

pigment-protein complexes: light-harvesting (LH) complexes

and reaction centers (RC). In short, photons are absorbed

by LH2 complexes and the excitation energy is transferred

to a LH1 complex, which is closely associated with the

RC (LH1-RC). The excitation energy is then funneled to

the RC where a charge separation takes places followed by

electron transport across the membrane. The process ul-

timately results in the production of adenosine triphosphate.

All known LH2 complexes of purple bacteria display

a similar architecture (Zuber, 1985). The basic unit is

a heterodimer consisting of two polypeptides (a and b), each

;50 amino acids long, binding a total of three bacteriochlo-

rophyll (BChl) molecules. An aggregation of the subunits in

a ring shape gives the overall structure of the LH2 complex.

Structural studies with x-ray diffraction, transmission elec-

tron microscopy (TEM), and recently performed atomic force

microscopy (AFM) have shown that LH2 complexes are

formed from eight or nine ab-subunits (McDermott et al.,

1995; Koepke et al., 1996; Savage et al., 1996; Scheuring

et al., 2001).

X-ray diffraction, TEM, and AFM are the most frequently

used techniques for obtaining the structure of transmembrane

proteins. Each of these techniques has its advantages and

disadvantages. X-ray diffraction has been quite successful in

resolving protein structures with atomic resolution, but it re-

quires highly ordered, heavily derivated three-dimensional

(3D) crystals. Transmembrane proteins are often not stable

enough under such nonphysiological conditions, and high-

quality crystals are difficult to produce. TEM has been used in

some cases where two-dimensional (2D) crystallization was

easier to achieve than 3D crystallization. The disadvantages

of TEM are, however, that specifically prepared, frozen

samples are needed and that, due to the inherent low contrast,

a good signal-to-noise ratio is difficult to obtain in a single

TEM image. AFM is a relatively new surface technique,

suitable to image lipid bilayers and membrane organization,

which has the advantage of working in aqueous solutions, an

environment in which biomolecules are fully functional.

Furthermore, the orientation and organization of transmem-

brane proteins in the membrane can be investigated. The

disadvantages of AFM are, however, the dependence of re-

solution on the specific tip-sample interacting forces and on

the mechanical stability of the sample. Although TEM and

AFMhave been proven to be powerful techniques, the resolu-

tion obtained with x rays has not yet been achieved. A sig-

nificant improvement can be achieved by applying AFM on

two-dimensional, more or less crystalline, arrays of proteins.

The most frequently used strategy for reconstitution and

crystallization of transmembrane proteins in lipid bilayers is

comicellization of the proteins and lipids, both solubilized

with detergent, which is removed after mixing the separate

solutions (e.g., Jap et al., 1992; Kühlbrandt, 1992; Rigaud
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et al., 1995; Mosser, 2001). Extra chemical agents are usually

added to the solution: detergents such as octyl thiogluco-

side (Scheuring et al., 2001), octyl glucoside (Montoya et al.,

1995), octyl glucopyranoside (Montoya et al., 1995), organic

solvents such as pentane, hexane (Szoka and Papahadjopou-

los, 1978), or other chemicals such as glucose (Walz et al.,

1998) or glycerol (Ikeda-Yamasaki et al., 1998). The con-

centration of the detergent molecules in these solutions is

then gradually reduced, either by dialysis or by the addi-

tion of Bio-Beads (Rigaud et al., 1997). As the concen-

tration of the detergent decreases from these lipid-detergent

and lipid-protein-detergent micellar solutions, lipid bilayers

are progressively formed in which the transmembrane

proteins are incorporated. Usually, the morphology of the

resulting 2D crystals depends on several poorly defined fac-

tors, and depending on the circumstances, various structures

can be obtained such as planar sheets, proteo-liposomes,

multilayered stacked sheets, thin three-dimensional crystals,

and tubes (Lacapere et al., 1998; Mosser, 2001). High-

resolution imaging with AFM has only been performed so

far on purely planar sheets and opened-up proteo-liposomes.

We have used a combination of methods for reconstituting

the LH2 complex from Rhodopseudomonas (Rps.) acido-
phila, strain 10050, in natural preformed lipid bilayers,

without the need of chemical agents other than the detergent

with which the LH2 was solubilized. Using this method, 2D

quasicrystalline LH2 liposomes were obtained. Imaging the

LH2 bilayers with AFM allowed us to investigate the

orientation of the transmembrane complex in the membrane.

Two modes of AFM operation were used: tapping mode

AFM (TMAFM) in air and contact mode (CMAFM) in an

aqueous solution. In TMAFM the tip is being excited in

resonance oscillation while being scanned across the surface.

In this way the lateral forces are significantly reduced and

biomolecules adsorbed on a surface can be easily imaged in

air. In CMAFM the tip is simply scanned across the surface.

Using this mode of operation high-resolution images of

biomolecules in liquid have been obtained, and the ring

structure of the LH2 complex was resolved. Finally, the

energy transfer between neighboring LH2s for this system is

described using a simple model.

MATERIALS AND METHODS

Materials

Egg phosphatidylcholine (egg PC) was purchased from Avanti Polar Lipids

(Alabaster, AL), Lauryldimethylamine N-oxide (LDAO) from Fluka

(Buchs, Switzerland). 500-ml Slide-A-Lyzer dialysis cassettes with a cutoff

of 10 kDa were purchased from Pierce (Rockford, IL). All other chemicals

were purchased from Sigma Chemicals (Western, Australia).

Reconstitution of LH2 in liposome

Egg PC (20 mg) was dissolved in 1 ml of chloroform. The solvent was

evaporated under a flow of dry nitrogen gas for several hours. After adding

buffer A (10 mM Tris-HCl (pH 8.0), 400 mM NaCl), resulting in a lipid

concentration of 2.5 mg/ml, the hydrated films were sonicated in a bath

sonicator for at least 15 min. The solution was freeze-thawed and sonicated

with a microtip sonicator (Sonics & Materials Inc., Danbury, CT) three or

more times until it was almost transparent.

LH2 from Rps. acidophila, strain 10050, complexes were diluted to ;5

mg/ml in buffer B (10 mM Tris-HCl (pH 8.0), 400 mMNaCl, 0.6% LDAO).

The protein solution was added to the lipid solution at a lipid-to-protein ratio

of 0.4 (w/w). The solution was further diluted twofold with detergent-free

buffer, buffer A. The mixed solution was freeze-thawed once again and

transferred to dialysis cassettes. It was dialyzed against 1.5 liters with de-

tergent-free buffer for 4 days at 48C in the dark. The dialysis buffer was

renewed two times. The protein concentration was determined from the

absorbance at 850 nm, using an extinction coefficient per Bchl of 382 mM�1

3 cm�1 and a value of 129 kDa for themolecularweight of the LH2 complex.

Atomic force microscopy

Freshly cleaved mica was used as a support. The reconstituted solutions

were diluted in buffer C (10 mM Tris-HCl (pH 7.2), 150 mM KCl, 25 mM

MgCl2). A small droplet of the diluted solution was applied on mica and let

to adsorb at room temperature. After 30–45 min the samples were gently

washed with the imaging buffer, buffer D, (10 mM Tris-HCl (pH 7.2), 150

mM KCl) to remove weakly attached membranes. For measurements done

in ambient conditions the samples were gently blown dry under a flow of

nitrogen gas.

A commercial AFM (Nanoscope III, Digital Instruments, Santa Barbara,

CA) equipped with a 14-mm scanner (E-scanner) was employed. For tapping

mode AFM, Si probes were used with a resonance frequency of 75 kHz

and a nominal spring constant of 2.8 N/m (Nanosensors GmbH, Wetzlar-

Blankenfeld, Germany). For contact mode AFM, oxide sharpened Si3N4

probes with a nominal spring constant of 0.06 N/m (Digital Instruments)

were used. Before use, the liquid-cell-tip holder was cleaned with 1% sodium

dodecyl sulfate, washed extensively with ultrapure water and blown dry

under a flow of nitrogen gas. The AFMwas placed on an active antivibration

table (Halcyonics GmbH, Goettingen, Germany), and in an isolating box

(Burleigh, Vanier, Canada). Scans in liquid were recorded in buffer D with

typical scan line rates of 2–3 Hz. An open liquid cell was used. The minimal

force was applied, of the order of 100 pN, which was manually adjusted to

compensate for thermal drifts. The particle and lattice dimensions were

measured with WS3M (Nanotec, Spain) or with the Nanoscope program.

Optical measurements

The absorbance of egg PC liposomes was monitored at 524 nm with a UV-

Vis spectrophotometer (Shimadzu, Columbia, MD) as LDAO was added.

The absorbance was recorded after addition of the detergent until a constant

value was obtained (usually within a few minutes).

RESULTS AND DISCUSSION

Three-dimensional structure of LH2
Rps. acidophila strain 10050

Fig. 1 shows schematic representations of the structure of

LH2 of Rps. acidophila strain 10050 obtained by Cogdell

and co-workers with x-ray diffraction on 3D crystals, with

a resolution of 2.5 Å (McDermott et al., 1995). The complex

is a nonameric circular aggregate of two polypeptides, a and

b, (Fig. 1 B) with associated pigments, three Bchls, and one

(possibly two) carotenoid molecules. The overall structure

(Fig. 1 A) is rather like a hollow cylinder, believed to be
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filled with lipids. The inner walls of the cylinder are formed

by the a-apoproteins and the outer walls are formed by the

b-apoproteins. Within these protein walls the pigment

molecules are located.

Reconstitution of LH2 complexes
in lipid liposomes

Formation of liposomes

For AFM imaging, the stability of the biomolecules is crucial;

the biomolecule that is being imaged has to withstand the

strong lateral forces exerted by the tip. Immobilization of

highly aggregated biomolecules via adsorption on a flat

substrate has proven to meet the requirements for high-

resolution AFM imaging. When the biomolecules are closely

packed, the neighboring molecules stabilize the biomole-

cule under the AFM tip (Shao, 1999). For transmembrane

proteins, this can be achieved by using aggregates of re-

constituted proteins in lipid bilayers. To be able to image in-

dividual LH2 complexes, LH2 bilayers were prepared.

Here, we chose to incorporate the transmembrane protein,

LH2, in preformed natural egg PC liposomes. A combination

of strategies found in the literature for preparing liposomes

was utilized. In detail, first multilamellar lipid liposomes

were formed by adding aqueous buffer to a dry lipid film. To

produce small, unilamellar liposomes, high energies of

subsequent sonic radiation are required. For the formation of

large unilamellar liposomes, the solution of small unilamel-

lar liposomes is exposed to multiple freeze-thaw cycles. In

practice, the solution is rapidly frozen in liquid nitrogen

and upon slowly thawing large unilamellar liposomes are

formed. It has been suggested (Pick, 1981) that upon the

rapid freezing, water molecules crystallize on the lipid in-

terface, forming two frozen planes separated by the hydro-

phobic core of the membrane. This causes the lipid bilayer

to fracture. During the slow thawing fractured bilayers

fuse together.

Lipid-detergent interactions

To reconstitute the LH2 complex into the egg PC liposomes,

a solution of detergent-solubilized (LDAO) LH2 and the egg

PC liposomes was dialysized against a detergent-free buffer.

Upon dialysis the detergent was slowly removed from the

solution, passing through the dialysis membrane, and the

LH2 inserted in the lipid bilayer. Important in this mixture

are the liposome-detergent interactions. In general, lipo-

somes can readily interact with detergents. Depending on

the nature of the detergent and the detergent-to-lipid ratio,

the structure of the liposome can be altered, varying from the

formation of holes to the complete disruption of the bilayer

structure at high ratios.

An indirect indicator of the microstructural changes of

liposomes (Lasch, 1995; Knol et al., 1998) are the variations

in the optical density (turbidity). The absorbance at 524 nm

(OD524) was measured as a function of the detergent-to-lipid

ratio (w/w) (Fig. 2), to check the stability of the liposomes.

The curve can be divided in three main stages. In stage I
the OD524 has a high value. During stage I, detergent

molecules partition between the aqueous buffer and the

bilayer forming detergent-doped liposomes. In stage II the
OD524 decreases with increasing detergent concentration. In

this stage liposomes are saturated with detergent and this

process continues upon further increase of the detergent

concentration. In stage III the OD524 remains constant. In

our procedure the initial LDAO to egg PC ratio was 1.6. We

FIGURE 1 (A) Topology model (top view, periplasmic side) of the LH2

of Rps. acidophila strain 10050. It consists of a concentric arrangement of

two hollow cylinders built from nine a- and nine b-apoproteins. The outer

surface of the cylinder is formed by the b-subunits, and its inner surface by

the a-subunits. Each ab-apoprotein pair binds four pigment molecules,

three bacteriochlorophylls, and two carotenoid molecules. The spheres in

various shades of gray represent the 18 apoproteins and the black spheres

represent the pigment molecules. (B) Topology model of an ab-apoprotein

pair without the associated pigment molecules. Model A has been scaled

down five times with respect to Model B.

FIGURE 2 Turbidity (optical absorbance at 524 nm) of egg PC liposomes

at various LDAO to egg PC ratios. The effect of the detergent on the physical

state of the liposomes can be followed. The three indicated stages are dis-

cussed in the text.
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do not expect that at this detergent-to-lipid ratio, a complete

disruption of the molecular structure of the egg PC liposomes

will occur, but rather the formation of holes in the bilayer

structure.

Reconstitution experiments at lower relative amounts of

LDAO were unsuccessful. It seems that detergent-mediated

liposomes are more suitable for transmembrane protein re-

constitution than pure liposomes, most likely, the formation

of holes in the bilayer structure facilitates the insertion of

transmembrane proteins.

AFM imaging of two-dimensional
aggregates of LH2

Mica was used as a substrate. It is atomically flat, hy-

drophilic, and, in water, negatively charged (Israelachvili

and Adams, 1977; Pashley, 1981). When a solution of pro-

teoliposomes is exposed to the mica substrate, proteoli-

posomes first adsorb on the mica substrate. Theoretical and

experimental studies have shown that if liposomes/proteo-

liposomes are big enough they rupture on a hydrophilic

surface, leading to the formation of single (proteo) bilayer

patches, exposing the interior of the liposome to the air/water

interface. (Vikholm et al., 1995; Sackmann, 1996; Seifert,

1997; Keller and Kasemo, 1998; Reviakine and Brisson,

2000; Leonenkoet al., 2000; Kumar and Hoh, 2000).

Negatively charged biomolecules can be immobilized on

mica, by use of ions in the buffer solution. The counter ions

act as a bridge between the negatively charged mica and the

negatively charged biomolecules (Müller et al., 1997a). At

a pH ;7.2, the headgroups of egg PC are neutral, the peri-

plasmic side of LH2 is almost neutral, and the cytoplasmic

side is negatively charged. LH2 liposomes were adsorbed

on the mica substrate using an electrolyte solution consisting

of a mixture of monovalent and divalent ions, buffer C. The

ruptured LH2 liposomes on the mica substrate were imaged

in tapping mode AFM in ambient conditions and in contact

mode AFM in a buffer solution.

TMAFM of two-dimensional aggregates of LH2

Using TMAFM in ambient conditions, round patches were

observed with a typical height of ;10 nm and a typical

diameter of;400 nm (Fig. 3 A). Several patches had part of
the edges elevated to a height of typically 14 nm. Within the

patches, domains can be distinguished which show protru-

sions assembled in a lattice with unit lattice dimensions of

a ¼ 13.4 nm, b ¼ 16.4 nm, g ¼ 638. The ellipsoidal-shaped

blobs have lateral dimensions of 6.5 nm and 9 nm and

protrude by;0.4 nm from the lipid bilayer, as seen in a high

magnification image, Fig. 3 B. Two types of domains were

distinguished differing by their height as measured from the

mica surface (shown in Fig. 4), a thin domain with a height

of ;9.5 nm and a thicker one of ;12 nm. (Due to high ag-

gregation of LH2 in the bilayer and the small height of the

tip apex, the actual dimensions of the part of the LH2 ex-

tending from the lipid bilayer could only be measured at

the edges of the domains.)

CMAFM of two-dimensional aggregates of LH2

TMAFM imaging in ambient conditions can be considered

effortless. However so far, high-resolution imaging of bio-

molecules has been performed successfully only in a liquid

environment. The mode of operation commonly used in

liquid is CMAFM. High-resolution imaging in liquid is

limited by two main factors, the sharpness of the tip and the

deformation of the biomolecule under the probe. Commer-

cially available Si3N4 probes can be sharp enough (Sheng

et al., 1999). The second limiting factor is the deformation

of the biomolecule under the tip pressure. To avoid de-

formation of the biomolecule, one has to neutralize the elec-

trostatic and van der Waals forces between the tip and the

biomolecule, and at the same time retain a contact between

the tip and the sample. To achieve this condition for the

LH2-lipid samples, we use a buffer-containing electrolyte

solution, buffer D.

At low magnification, CMAFM topographs in the above-

FIGURE 4 TMAFM topograph of reconstituted light-harvesting 2

complexes in a lipid bilayer. The gray scale represents a height range of

15 nm. Thinner and thicker domains are observed in the imaged patch.

(Inset) Section analysis along the white line in image showing the

protrusions of the thinner and thicker domain. The height difference is 2 nm.

FIGURE 3 (A) TMAFM topograph of reconstituted light-harvesting 2

complex in a lipid bilayer imaged under ambient conditions. The gray scale

represents a height range of 15 nm. (B) The higher magnification image

shows periodic structures, with an ellipsoidal-like shape. The gray scale rep-

resents a height range of 5 nm.
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mentioned buffer (Fig. 5 A) revealed similar patches as the

TMAFM topographs in ambient conditions (Fig. 3 A). The
height of the patch (measured from the mica surface) was on

average 11 nm. Also here two domains were evident, as in

TMAFM (Fig. 4), with a height difference of ;2 nm (Fig. 5

A). The big, mostly round objects (bright color) in the image

are presumably small liposomes or contaminants adsorbed

on the patch.

Higher magnification images demonstrated the difference

between TMAFM in ambient and CMAFM in liquid con-

ditions. Higher magnification images on the thinner domain

(Fig. 5 B) revealed roughly doughnut-shaped structures, the

ring structure of the LH2 complex. An inner diameter of 3.6

nm and an outer diameter of 7.3 nmwere measured. The rings

extended 0.21 nm from the lipid bilayer. On the thicker

domain, higher magnification images (Fig. 5C) did not reveal
ring structures, but protrusions with a diameter of 8 nm ex-

tending slightly higher from the underlying layer, by 0.3 nm.

Submolecular resolution was obtained in some of the

imaged LH2 complexes. We were able to identify nine sub-

units, corresponding to the nine ab-heterodimers of the LH2

complex (Fig. 5 B, inset). In Fig. 5 B, some of the LH2 com-

plexes seem to miss some subunits. Unfortunately we can-

not make a definitive statement for the existence of open

rings in our aggregates with the current resolution. The ob-

servation could be due to a local deformation of the

imaged biomolecule, as a result of height variations and the

low degree of aggregation. Future, higher-resolution images

could verify the validity of this observation.

Orientation of LH2 in lipid bilayer

Structure of LH2 from Rps. acidophila strain 10050
in lipid membrane

The polypeptides of the LH2 complex of Rps. acidophila
strain 10050 are quite small (the a-apoprotein contains 53

amino acids, and the b-apoprotein 41 amino acids). Both

polypeptides consist of polar N- and C-termini and a central

hydrophobic region. The N-termini lie on the cytoplasmic

side of the membrane and the C-termini on the periplas-

mic side. The hydrophobic regions are single transmembrane

a-helices. The amino acid sequence and corresponding x-ray

structure of the a- and b-polypeptides of LH2 is shown in

Table 1.

The amino acid sequence of the polypeptides of various

purple bacteria antenna complexes has been published before

(Zuber, 1990). The main feature is that all a- and b-poly-

peptides contain a hystidine residue. This conserved residue is

ligated to the bacteriochlorophyls in the periplasmic side of

the membrane bilayer. A sequence alignment for these amino

acid sequences was performed, and for each a- and b-poly-

peptide the amino acid sequence corresponding to the mem-

brane spanning, N- and C-terminal portions were assigned.

Alignment of the amino acid sequence of the polypeptides

of the LH2 complex from Rps. acidophila strain 10050 with
the published sequence alignment was done using as a re-

ference point the most conserved residue, hystidine H (the

residue is highlighted at position 30 in the amino acid se-

quence in Table 1). We found that residues 14-34 for the

FIGURE 5 (A) CMAFM topograph of reconstituted light-harvesting 2 complex in a lipid bilayer imaged in buffer D. The gray scale represents a height range

of 20 nm. (B) High-resolution images on the thinner layer, revealing the ring structure of the LH2 complex. The gray scale represents a height range of 1.5 nm.

(Inset) Single LH2 complex. (C) High-resolution image on the thicker layer. The gray scale represents a height range of 2 nm.
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a-apoprotein, and 14-36 for the b-apoprotein are transmem-

brane (the presumed position of the hydrophobic layer thick-

ness membrane is shown by the gray boxed areas in Table 1).

According to the x-ray structure the total length of the ab-

heterodimer is 5.6 nm, but is asymmetric. From the cyto-

plasmic side it extends by 1.0 nm from the lipid bilayer and

only by 0.2 nm from the periplasmic side (including

a diameter of 5.5 Å per lipid head (Parsegian et al., 1979)).

We also used several transmembrane prediction algorithms

available on the Internet: TMHMM (http://www.cbs.dtu.

dk/services/TMHMM/); DAS (http://www.sbc.su.se/;

miklos/DAS/); TMPRED (http://www.ch.embnet.org/cgi-

bin/TMPRED_form_parser); HMMTOP (http://www.enzim.

hu/hmmtop1.1/server/hmmtop.cgi); SOSUI (http://sosui.

proteome.bio.tuat.ac.jp/cgi-bin/sosui.cgi?/); SWISS-PROT

(http://www.expasy.ch/sprot/). All gave different results,

however, all the algorithms predicted that the polypeptide

portion of the cytoplasmic side of the LH2 complex would

extend further from the lipid bilayer, with respect to the

periplasmic side.

Based on the above observations, we believe that the

observed thinner domains contain LH2s oriented into the

lipid bilayer with the periplasmic side exposed to the AFM

tip, because the periplasmic side of the LH2 complex extends

the least from the lipid bilayer. The previously mentioned

thicker domains consist of LH2 aggregates but with opposite

orientation in the lipid bilayer.

Insertion of LH2 in lipid liposome

For reconstitution of transmembrane proteins in preformed

liposomes, it has been argued (Eytan, 1982; Jain and Zakim,

1987) that if the membrane protein structure is asymmetric,

the protein will preferentially insert in the lipid bilayer with

its more hydrophobic moiety first, thus exposing its more

hydrophilic part to the exterior of the lipid bilayer.

Unidirectional reconstitution of the lactose protein of

Escherichia coli in egg PC preformed liposomes mediated

with Triton X-100 (Knol et al., 1998), and in E. coli
phospholipid extracted preformed liposomes mediated

with a-D-octylglucoside and Triton X-100 (Jung et al.,

1998) have been reported. Unidirectional reconstitution of

reaction centers in a mixture of dipalmitoyl-L-a-phospha-

tidydylcholine and dipalmitoyl-L-a-phosphatidylglycerol

liposomes was also achieved by the freeze-thaw method

(Miyake and Hara, 1997); 90% of the RCs were incor-

porated with the H-subunit in the outer surface of the

liposomes.

The x-ray structure of LH2 reveals that the cytoplasmic

side is more polar than the periplasmic side. With the rupture

of the LH2 liposomes on the hydrophilic mica surface the

interior of the liposome (which would be the periplasmic

side) is exposed to the AFM tip. A preferred orientation

of LH2s in the lipid bilayer was indeed observed. The

periplasmic side was observed in 83% of the imaged LH2s,

therefore we can conclude that the periplasmic side, which is

more hydrophobic preferentially inserts first.

LH2 dimensions measured with the AFM

Table 2 shows an overview of the dimensions of the re-

constituted samples measured with AFM. The lateral dimen-

sions are in agreement with the measurements performed

with x-ray crystallography on cryogenic 3D LH2 crystals

(McDermott et al., 1995). But the dimensions perpendicular

to the bilayer, namely the thickness of the LH2 bilayer, the

distance between the top of the LH2 ring, and the lipid bi-

layer, deviate from the expected values based on crystal

parameters.

Absolute normal dimensions measured with AFM have to

be treated with caution. Height deviations of imaged bio-

molecules have been reported previously. Height differences

in AFM topographs between different materials not only

TABLE 2 Single LH2 and LH2-bilayer dimensions measured

with the AFM under physiological conditions

Dimension Average 6 SD (nm)

Thickness

Domain I 9.5 6 1.0

Domain II 12.2 61.2

LH2 dimensions

Inner diameter 3.6 6 0.2

Outer diameter 7.3 6 0.5

Ring diameter 5.5 6 0.2

Height (lipid-top) 0.21 6 0.06

Height (ring center-top) 0.27 6 0.07

TABLE 1 Amino acid sequence of LH2s a and b polypeptides

Polypeptide Sequence

a-apoprotein * * * M N Q G K I W T V V N P A I G I P A L L G S V T V I A I L V H L A I L S H T T W F P A Y W Q G G V K K A A

1 5 10 15 20 25 30 35 40 45 50

* * * C 3 3 3 3 3 3 3 3 3 H H H H H H H H H H H H H H H H H H H H H H H H H H C C C H H H H H H H ? ? ? ? ? ? ?

b-apoprotein * * * * * A T L T A E Q S E E L H K Y V I D G T R V F L G L A L V A H F L A F S A T P W L H

1 5 10 15 20 25 30 35 40

* * * * * C C C C C C H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H C C C C

The corresponding x-ray secondary structure is assigned: * - unknown; 3 - 310 Helix; H - a Helix; ? - disordered; C - coil.
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have a structural origin, but also depend on the specific tip-

sample interactions (Butt et al., 1990; Müller and Engel,

1997b; Heinz and Hoh, 1999; Müller et al., 1999). For ex-

ample, by varying the salt concentration of the imaging buf-

fer, the thickness of the purple membrane could be varied

with a factor 2 (Müller and Engel, 1997b). In our system, the

underlying mica substrate, the headgroups of egg PC, the

cytoplasmic side, and the periplasmic side of the LH2 com-

plex all have quite different surface charge densities, likely

leading to the observed discrepancies in the experimentally

determined heights of the corresponding domains.

The height of an LH2 complex, as determined from the

length of the ab-heterodimer, is 5.6 nm. As observed, the

LH2 complexes are not all oriented in the same direction

in the lipid bilayer. Treating the LH2 bilayer as rigid, for

patches containing LH2s facing in both directions a patch

thickness of 6.5 nm is expected. It is well established that the

headgroups of phospholipids interact with the mica surface

mediated by a thin layer of water (Ragier et al., 1995).

Therefore, an extra 1–2 nm should be added, resulting in

a LH2-bilayer thickness of ;8.5 nm. We measured an

average patch thickness of 10 nm in TMAFM and 11 nm in

CMAFM. Measurements in aqueous solutions with different

salt concentrations may make it possible to investigate the

remaining difference of 1.5–2.5 nm, and deduce the actual

perpendicular dimensions.

Small height variations of;0.3 nm can be observed in the

AFM images. Egg PC is a mixture of phosphatidylcholines

lipids with hydrocarbon chains of different length. Accord-

ing to the manufacturer’s specifications, egg PC is a mixture

of C16 and C18 saturated and unsaturated alkyl chains with

a small content of unsaturated C20 phosphatidylcholines.

The difference between the thickness of the hydrophobic part

of a lipid bilayer for a C16 and a C18 alkyl chain is of

the order of 0.3 nm. This length difference will result in

a hydrophobic mismatch between the hydrophobic part of

the LH2 complex and the hydrophobic core of the lipids.

There are however, various possible effects (Killian, 1998)

of hydrophobic mismatch between a-helices proteins and

lipids making it difficult to draw any conclusions on how this

particular complex system will adapt to the mismatch.

Energy transfer in two-dimensional
aggregates of LH2

Various LH2 complexes of purple bacteria have been re-

constituted and crystallized in lipid bilayers (Montoya, et al.,

1995; Oling, et al., 1996; Savage, et al., 1996; Walz, et al.

1998; Scheuring, et al., 2001; Ranck, et al., 2001). In Table 3

an overview of the unit cell configurations is given. The area

occupied by a LH2 complex varies from;5000 to 25,000 Å.

This diversity is not surprising because the systems are quite

different (the size and composition of light-harvesting com-

plexes vary from species to species, as do the lipids used

for reconstitution and the conditions of the reconstitution

itself, such as salt concentration and pH). It is interesting,

however, to attempt to compare the degree of aggregation

observed in our system with that of native photosynthetic

membranes. One way is to estimate the distance dependent

dipole strength for interLH2 excitation transfer on the basis

of our observed unit crystal, using the Föster theory.

The in vivo architecture of the photosynthetic unit of

purple bacteria consists also of LH1-RC complexes, which

may alter the nature and degree of aggregation. Our de-

scription of the energy transfer between two LH2s would

hold if the photosynthetic unit arranges itself in a strip

architecture, as has been previously proposed (Jungas et al.,

1999; Ritz et al., 2001). In the strip configuration, LH2

complexes form arrays within the middle of such an array

a strip of LH1-RC complexes is located.

If we assume that the excitation transfer process between

a donor (LH2) and an acceptor (LH2) pigment is an in-

coherent hopping process, the transfer rate can be calcu-

lated according to the expression

kDA ¼ 1

�h2c
jUDAj2JDA;

where �h is the Planck constant (divided by 2p), c is the speed
of light, UDA is the coupling energy between the donor and

acceptor electronic levels, and JDA represents the overlap on

the frequency scale between the donor emission and acceptor

absorption spectra.

TABLE 3 Summary of light-harvesting 2 ordering in two-dimensional crystals

LH2 Unit cell vectors Area/LH2 (Å2) Reference

Rhodovulum sulfidophilum a ¼ b ¼ 157 Å, g ¼ 908 24,649 Montoya, et al., 1995

Rhodovulum sulfidophilum a ¼ 160 Å, b ¼ 140 Å, g ¼ 908 22,400 Savage, et al., 1996

Ectothiorhodospira sp. a ¼ b ¼ 99 Å, g ¼ 908 9801 Oling, et al., 1996

Rhodobacter capsulatus a ¼ b ¼ 81 Å, g ¼ 608 6561 Oling, et al., 1996

Rhodobacter sphaeroides a ¼ b ¼ 149 Å, g ¼ 908 22,201 Walz, et al. 1998

Rubrivivax gelatiosus a ¼ b ¼ 66 Å, g ¼ 608 4356 Ranck, et al., 2001

Rubrivivax gelatiosus a ¼ 75 Å, b ¼ 175, Å, g ¼ 928 13,125 Ranck, et al., 2001

Rubrivivax gelatiosus a ¼ 90 Å, b ¼ 120 Å, g ¼ 928, 10,800 Ranck, et al., 2001

Rubrivivax gelatiosus a ¼ b ¼ 76 Å, g ¼ 608 5776 Scheuring, et al., 2001

Rubrivivax gelatiosus a ¼ 82 Å, b ¼ 133 Å, g ¼ 908 10,906 Scheuring, et al., 2001

Rhodopseudomonas acidophila a ¼ 134 Å, b ¼ 164 Å, g ¼ 638 22,000 this study
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JDA ¼
Ð
fDðnÞn�3eAðnÞn�1dnÐ

fDðnÞn�3dn �
Ð
eAðnÞn�1dn

:

A value of 9.4 3 10�4 cm was obtained for solubilized LH2

complexes at room temperature.

The dipole-dipole interaction can be written as

UDA ¼ +Vij ¼ +
m2

4peor3ij
ððm̂mi � m̂mjÞ � 3ðm̂mi � r̂rijÞðm̂mj � r̂rijÞÞ

here, the subscripts ij denote Bchl’s belonging to two

different LH2 complexes. rij is the distance between two

Bchls and m is the dipole strength. For the above formula,

the distances and angles between adjacent Bchls of two

neighboring LH2s were determined for our unit cell con-

figuration. Pairwise summation for the determination of

the coupling energy was performed between adjacent LH2

rings.

Employing a value of 1/10 ps�1 (Ritz et al., 2001) for the

transfer rate we obtained a dipole strength, m, of 1.6 6 0.2

(in units of monomeric dipole strength), for the closest unit

distance [13.4 nm] and 4.3 6 0.5 (in units of monomeric

dipole strength), for the largest unit distance [16.4 nm]. The

uncertainty arises from the value of the monomeric dipole

strength; values in the literature range from 6.1 D to 7.7 D

(Ritz et al., 2001).

A value close to 3 has been reported in literature.

Superradiance measurements (Monshouwer et al. 1997) on

the light-harvesting LH2 complex of Rhodobacter sphaer-
oides gave an emitting dipole strength equal to 2.8.

CONCLUSIONS

In this work, aggregated LH2s reconstituted in lipid bilayers

were produced by detergent removal, using freeze-thaw and

dialysis techniques. The produced 2D aggregates were ideal

for AFM imaging, because the solution contained mainly

LH2 liposomes that opened up on the surface. They were

imaged with atomic force microscopy in ambient conditions

with tapping mode, and under physiological conditions with

contact mode. The AFM images revealed that the LH2s were

aggregated in 2D quasicrystalline domains. The ring

structure could only be resolved in an aqueous solution. In

ambient conditions the AFM images revealed protrusions of

the size of an LH2 complex. Useful information, however,

could be extracted from the dry AFM images, such as the

orientation and 2D organization in the lipid bilayer. A

realistic value for the dipole strength for our LH2 spatial

configuration in the bilayer was calculated using a simple

theory. The organization observed in the AFM images may

be relevant to the assembly of light-harvesting complexes in

native photosynthetic membranes.

In the last few years, structural details of many individual

pigment-protein complexes have emerged, adding to our

understanding of the function of the photosynthetic appara-

tus. One of the next challenges will be to understand the

organization of the photosynthetic apparatus in native mem-

branes, in which the complexes are also believed to be in

an aggregated configuration. Our results clearly demonstrate

that also these types of aggregates can be successfully

imaged with the AFM technique.
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Biol. 282:833–845.

Zuber, H. 1985. Structure and function of light-harvesting complexes and
their polypeptides. Photochem. Photobiol. 42:821–844.

Zuber, H. 1990. Considerations on the structural principles of the antenna
complexes pf phototropic bacteria. In Molecular Biology of Membrane-
Bound Complexes in Phototropic Bacteria. G. Drews and E. A. Dawes,
editors. Plenum Press, New York. 161–180.

LH2 Complexes Resolved with AFM 2491

Biophysical Journal 84(4) 2483–2491


