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Role of the Dielectric Constants of Membrane Proteins and
Channel Water in Ion Permeation

Turgut Bas˛ tuğ and Serdar Kuyucak
Department of Theoretical Physics, Research School of Physical Sciences, Australian National University, Canberra, A.C.T. 0200, Australia

ABSTRACT Using both analytical solutions obtained from simplified systems and numerical results from more realistic cases,
we investigate the role played by the dielectric constant of membrane proteins ep and pore water ew in permeation of ions across
channels. We show that the boundary and its curvature are the crucial factors in determining how an ion’s potential energy
depends on the dielectric constants near an interface. The potential energy of an ion outside a globular protein has a dominant
1/ew dependence, but this becomes 1/ep for an ion inside a cavity. For channels, where the boundaries are in between these two
extremes, the situation is more complex. In general, we find that variations in ew have a much larger impact on the potential
energy of an ion compared to those in ep. Therefore a better understanding of the effective ew values employed in channel
models is desirable. Although the precise value of ep is not a crucial determinant of ion permeation properties, it still needs to be
chosen carefully when quantitative comparisons with data are made.

INTRODUCTION

Continuum electrostatics, that is, solving the Poisson

equation for a charge distribution embedded in dielectric

media, has been playing a prominent role in modeling of ion

permeation across membrane channels (for recent reviews,

see Partenskii and Jordan, 1992; Roux et al., 2000; Kuyucak

et al., 2001; Tieleman et al., 2001). Early calculations of the

potential energy profiles of ions along the central axis of

model channels provided useful insights about their per-

meation properties (Parsegian, 1969; Levitt, 1978; Jordan,

1982). The effect of the ionic atmosphere on the channel

potentials was later explored by combining the Poisson and

Boltzmann equations (Jordan et al., 1989). The Poisson-

Boltzmann formalism is, however, an equilibrium theory,

and to study the permeation process itself requires a non-

equilibrium theory. At the continuum level, this is provided

by the Nernst-Planck equation (Levitt, 1986). Self-consistent

solution of the Poisson and Nernst-Planck equations leads

to the Poisson-Nernst-Planck formalism, which has been

used in numerous studies of ion channels (for reviews, see

Eisenberg, 1996, 1999). An alternative nonequilibrium

method is to follow the motion of individual ions using

Brownian dynamics simulations. Here too, one needs to

solve the Poisson equation to calculate the electric forces

acting on ions (Kuyucak et al., 2001).

The only method that dispenses with continuum electro-

statics is molecular dynamics (MD) simulations, where all

the atoms in a system are treated explicitly. Recently several

attempts have been made to calculate the conductance of

a channel from MD simulations (Suenaga et al., 1998,

Crozier et al., 2001). However, to obtain statistically mean-

ingful results, very high applied potentials (;1 V) and con-

centrations (;1 M) had to be used in these simulations.

Considering the nonlinear nature of the current-voltage and

current-concentration relations at high voltages and concen-

trations, extrapolation of such results to the physiological

range (;0.1 V and ;0.1 M) remains problematic. Despite

the dramatic increases in computational power, a direct

study of ion conduction across membrane channels under

physiological conditions is still not feasible within the

MD framework. Thus for the foreseeable future, continuum

electrostatics will continue to play an important role in

investigation of structure-function relations in ion channels.

According to the conventional picture of permeation, ions

execute a Brownian motion in solution and drift across

a channel under the influence of the electrochemical forces

acting on them. In models that rely on continuum electro-

statics, one requires two sets of parameters to calculate the

permeation properties of ions: their diffusion coefficients in

the channel and the dielectric constants of the membrane

protein (ep) and channel water (ew). The diffusion coef-

ficients can be estimated in a straightforward manner from

MD simulations of ions in model channels (Smith and

Sansom, 1999; Allen et al., 2000). Since their influence on

permeation is manifestly obvious (conductance of ions

increases with their diffusion coefficient), we do not dwell on

them further here. The effect of the dielectric constants on

ion permeation, on the other hand, is much more com-

plicated. To start with, dielectric constants are well defined

only for isotropic homogeneous media. For anisotropic in-

homogeneous media such as in ion channels, one should

ideally introduce dielectric tensors that are both space

dependent and nonlocal (Partenskii and Jordan, 1992). Thus

use of dielectric constants in channels is a functional ap-

proximation that can only be justified a posteriori. Another

complicating factor is that ions interact with fixed charges in

the protein and induced charges on the boundary, and each

interaction may have a different dependence on the dielectric
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constants and the channel geometry. Finally, compared to the

globular proteins, much less is known about the values of

the dielectric constants of membrane proteins and channel

waters, either experimentally or from theoretical consider-

ations based on microscopic MD simulations. As a result, in

most channel models, the canonical values of ep ¼ 2 and

ew ¼ 80 are employed without worrying too much about

how variations from these values may change the results.

There is evidence from MD studies of water in pores that

confinement significantly reduces orientational polarizability

of water molecules, leading to a much smaller ew value

compared to the bulk value of 80 (Sansom et al., 1997; Green

and Lu, 1997, Tieleman and Berendsen, 1998; Allen et al.,

1999). However, such studies of pure water in pores are of

limited relevance for the effective ew values used in ion

permeation. This is because the electric field of an ion in its

first hydration shell is orders of magnitude larger than the

average (or external) field in pure water. Thus as long as an

ion’s hydration shell remains intact in a pore, its charge is

screened effectively and the use of a bulklike ew may be

justified. The recent high-resolution structure of the KcsA

potassium channel (Zhou et al., 2001) provides a direct

evidence for this: the potassium ions are observed to be

eightfold coordinated by either water or protein oxygens

even in the narrow selectivity filter. Brownian dynamics

simulations of the KcsA channel are also very suggestive in

this regard: the conductance of the channel steadily decreases

when ew is reduced from 80 and vanishes at ew ; 40 (Chung

et al., 1999). Here we aim to provide a better understand-

ing of this behavior within the framework of continuum

electrostatics. Provided that microscopic foundations of con-

tinuum electrostatics can be justified, a longer term goal

would be to determine the effective ew values in channels

directly from MD simulations.

The situation with regard to ep is also ambiguous. The

commonly used value of ep ¼ 2 takes into account only

the electronic polarizability of the protein and ignores poten-

tial contributions from other sources such as reorientation of

polar and charged residues. Moreover, unlike water, proteins

are quite inhomogeneous and it is harder to justify their rep-

resentation by a uniform dielectric constant. Microscopic

estimates from MD simulations indicate that, when the

charged residues on the surface of globular proteins are

explicitly modeled, ep in the interior remains in the range

of 2–6 (Smith et al., 1993; Simonson and Brooks, 1996;

Simonson, 1998; Pitera et al., 2001). Phenomenological

studies of globular proteins with semimacroscopic models

suggest a similar range for ep (Nakamura, 1996; Schutz and

Warshel, 2001). Although there are no such microscopic

estimates for membrane proteins, use of a similar range

appears reasonable and has been adapted in some recent

studies of the KcsA channel (Roux and MacKinnon, 1999;

Chung et al., 2002; Burykin et al., 2002). The value of ep is
claimed to have a large impact on the conductance of the

channel in the latter work whereas the former two suggest

otherwise. Here we present a careful analysis of the elec-

trostatic potential energy of ions in channels that clarifies the

influence of ep variations on ion permeation.

We remark that a great deal of work has been done on the

microscopic foundations of continuum electrostatics in the

gramicidin channel (Partenskii and Jordan, 1992; Jordan

et al., 1997), and the results were mainly negative for

a continuum dielectric description of this channel. This is

not surprising, given that an ion and water molecules are

in a single-file configuration in this narrow channel (radius

2 Å), and unlike most biological channels, the first hydra-

tion shell of an ion in the gramicidin channel remains in-

complete (Tian and Cross, 1999). Indeed a recent detailed

test of continuum electrostatics in the gramicidin channel has

shown that it fails to reproduce most of the observed

properties of gramicidin (Edwards et al., 2002). In contrast,

application of continuum electrostatics to biological chan-

nels have so far led to reasonable descriptions of their pro-

perties, for example, nicotinic acetylcholine receptor (Chung

et al., 1998), KcsA potassium (Chung et al., 1999, 2002;

Mashl et al., 2001), calcium (Corry et al., 2001), porin

(Schirmer and Phale, 1999; Im and Roux, 2002). Although

agreement with data does not necessarily validate application

of continuum electrostatics to these channels, it gives further

incentive for microscopic studies to justify such applications.

ANALYTICAL RESULTS

Analytical solutions of the Poisson equation can be obtained

only for some special boundaries, which do not provide very

realistic representations for globular or membrane proteins.

Nevertheless, insights gathered from the study of these sim-

plified systems will be very useful in understanding the re-

sults obtained for more realistic boundaries using numerical

techniques, which are necessarily less transparent. For this

purpose, we represent the globular proteins with spheres and

the membrane proteins with cylinders or torus with a water-

filled hole through their center. We also consider an infinite

plane as a simple intermediate between the two cases, where

the physics is most transparent. In each case, we study how

changes in the dielectric constants influence the Coulomb

interaction energy Uc of an ion in the solution with a fixed

charge in the protein, as well as the ion’s dielectric self

energy Us due to the charges it induces on the boundary. The

latter is always repulsive, so the former has to be attractive

to facilitate permeation of ions. In the following, we call

‘‘dielectric self energy’’ simply ‘‘self energy’’. Because we

treat charges as discrete quantities, there is no possibility of

confusing this quantity with the self energy associated with

a continuous charge distribution. A particularly simple

representation of the results is obtained by using ep=ew as

a small expansion parameter. For the canonical values of ep
¼ 2 and ew ¼ 80, ep=ew ¼ 1/40. Here we consider variations

in the dielectric constants such that the condition ep=ew � 1

is still satisfied.

2872 Bas˛ tuğ and Kuyucak

Biophysical Journal 84(5) 2871–2882



Plane boundary

We first consider the simplest and most transparent case of

an ion with charge q at a distance d from a planar water-

protein (or lipid) interface (Fig. 1 A). For clarity, we consider
the self and Coulomb potential energies separately. From the

superposition principle, the total potential energy of the ion

is given by the sum of these two contributions. For the planar

boundary, the Poisson equation can be easily solved using

the image charge method and gives for the self (reaction)

potential acting on the ion (Jackson, 1975)

Fs ¼
1

4pe0

q

2ewd
ew � ep
ew 1 ep

: (1)

Substituting this result in the self energy, and expanding in

ep=ew, we obtain

Us ¼
1

2
qFs ¼

1

4pe0

q
2

4ewd
1� 2

ep
ew

� . . .

� �
: (2)

It is seen that, of the two dielectric constants, ew has by far

the largest effect on the self energy of the ion. Reducing ew
by half from 80 to 40 increases Us by 90% (almost double),

whereas doubling ep from 2 to 4 reduces Us by only 5%.

Thus the physical picture based on the dielectric screening of

the ionic charge by ew remains more or less intact for the self

energy of an ion near a planar boundary.

The potential on the same test ion due to a charge qp in the
protein at a distance dp from the interface (see Fig. 1 A) can
be similarly calculated using the image charge method

Fc ¼
1

4pe0

qp

epðd1 dpÞ
1� ew � ep

ew 1 ep

� �
: (3)

Here we have deliberately written the direct (first term) and

the induced charge (second term) contributions to the po-

tential separately to point out its difference from the self

potential in Eq. 1. Both terms are inversely proportional to

ep, which gives the impression that charges in the protein are

shielded by its dielectric constant in much the same way as

ions in water. This is basically the intuitive argument used in

stressing the importance of ep in ion permeation. However, it

ignores the fact that the potential due to the induced charges

is nearly of the same magnitude but of opposite sign as the

direct term, and almost cancels it. Using Eq. 3 in the potential

energy of the ion and expanding in ep=ew, we obtain

Uc ¼ qFc ¼
1

4pe0

2qqp

ewðd1 dpÞ
1� ep

ew
� . . .

� �
: (4)

The dependence of the potential energy in Eq. 4 on the

dielectric constants is seen to be very similar to that in Eq. 2.

For example, halving ew still leads to near doubling of Uc

(95% increase) whereas doubling ep reduces it by merely

FIGURE 1 The simplified systems used in analytical solutions of the Poisson equation: (A) plane, (B) sphere, (C) cylinder, and (D) torus.
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2.5%, far from the 50% drop one would expect from the

shielding of qp by ep. Thus contrary to the intuitive argu-

ments based on the dielectric screening of the protein charges

by ep, variations in the value of ep has a relatively minor

effect on the total potential energy of an ion near a plane

boundary. We also observe that for d � dp, a residual charge
of qp ¼ �q/4 in the protein is sufficient to cancel the

repulsive self energy. Finally, for future reference we note

that the magnitude of the self energy for a unit charge e is

Us¼ 1.6/d kT when d is in Angstrom and ep¼ 2 and ew¼ 80

are employed.

Spherical boundary

The above results provide useful insights about the de-

pendence of the potential energy of an ion on the dielectric

constants in a very simple case. The approximation of the

protein surface by a plane, however, is rather drastic, and we

need to check whether these results still stand when a more

realistic geometry is employed. To this end, we consider

a spherical boundary, for which the Poisson equation can be

solved by expanding the potential in spherical coordinates

(Jackson, 1975). The self potential acting on an ion at

a distance d from a sphere of radius a is given by (see Fig. 1B)

Fs ¼
1

4pe0

q

ewa
+
‘

l¼0

lðew � epÞ
ðl1 1Þew 1 lep

a

a1 d

� �2l12

: (5)

This potential is too complicated for a direct interpreta-

tion because, unlike the plane boundary, the e and space

dependence are mixed through the sum. Nevertheless, these

two parts can be separated by noticing that because ep � ew;
the coefficient of ep in the denominator can be changed from

l! l1 1 with negligible error. This is indicated in Fig. 2 A,
where the self energy calculated with the approximate

expression is seen to be indistinguishable from the exact

one. With this approximation, the dielectric constants can be

taken out of the summation in Eq. 5 and the remaining power

series can be summed as described in the Appendix. Using

Eq. 19 and expanding in ep=ew, the self energy of the ion

outside the sphere can be expressed as

Us ¼
1

4pe0

q
2

4ewd
1�2

ep
ew

� . . .

� �
2a

2a1d
1

2d

a
ln

2ad1d
2

ða1dÞ2
� �� �

:

(6)

This expression differs from the plane result in Eq. 2 by the

extra terms in the curly brackets, which are entirely

geometrical in nature. Otherwise the dependence of the self

energy on the dielectric constants is the same as in the plane

case. In an exact calculation, the coefficient of ep=ew in Eq. 6

comes out slightly smaller than 2, hence ep dependence of Us

in a sphere is actually suppressed relative to that of the plane

(see Fig. 3 A).
In Fig. 2 A, we compare the distance dependence of the

self energy of an ion for the plane and sphere boundaries.

Notice that as the ion approaches the sphere (i.e., d! 0), the

extra terms in the curly brackets in Eq. 6 go to 1, and the

two results merge. These extra terms correspond to the cur-

vature and finite size effects and lead to a reduction in the self

energy of the ion outside a sphere relative to a plane. Re-

cently, applications of continuum theories to ion channels

have been criticized because they neglect the self energy of

ions (Moy et al., 2000; Corry et al., 2000). It is clear from

Fig. 2 A that this is not a problem for ions near a globular

protein—unless the ions are touching the protein, their self

energy would be negligible compared to their kinetic energy.

The potential on the test ion due to a charge qp in the

protein at a distance dp from the surface can be similarly

calculated (see Fig. 1 B)

Fc ¼
1

4pe0

qp

ep
+
‘

l¼0

1� ðl1 1Þðew � epÞ
ðl1 1Þew 1 lep

� �
ða� dpÞl

ða1 dÞl11 : (7)

As in Eq. 3, we have written the direct and the induced

charge contributions to the potential separately to point out

the near cancellation between the two terms. To make

progress, we combine the two terms and change the

FIGURE 2 (A) The self energy of an ion as a function of the distance

d from a spherical protein. The ion has a unit charge e and the radius of the

sphere is a ¼ 20 Å. The filled circles show the exact results obtained using

Eq. 5 and the solid curve shows the approximate result obtained by

substituting l! l1 1 in the denominator of Eq. 5. The dotted line is the self

energy of an ion at a distance d from a plane boundary. (B) The interaction

energy of the same ion with a unit charge fixed at a distance dp ¼ 2 Å from

the protein surface. The meaning of the curves are the same as in A. In both

figures, dielectric constants of ep ¼ 2 and ew ¼ 80 are employed.
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coefficient of ep in the denominator from l ! l 1 1. As

shown in Fig. 2 B, this approximation causes negligible error

in the potential energy of the ion while enabling the sum-

mation of the series. Using Eq. 22 for the sum and expanding

in ep=ew, the interaction energy of the ion with the protein

charge becomes

Uc ¼
1

4pe0

2qqp

ewðd1 dpÞ
1� ep

ew
� . . .

� �

3 11
1

2

d1 dp

a� dp

ln
d1 dp

a� dp

� �� �
: (8)

Again, this expression differs from the plane result by the

geometrical terms in the curly brackets, which go to 1 as

the charges approach the boundary. A comparison of the

Coulomb energy for the sphere and plane geometries is

presented in Fig. 2 B. Note that the drop in the Coulomb

energy of the ion with distance is not as severe as in the case

of the self energy because the former has a monopole

dependence (1/r) whereas the leading term in the latter has

a dipole nature (1/r2).
The conclusions to be drawn from the above comparison

of the potential energy of an ion near planar and spherical

boundaries are that the differences arise mainly from the

geometrical factors but, as far as dependence on the di-

electric constants is concerned, the two boundaries lead to

very similar results. This is highlighted in Fig. 3, which

shows the variation of the self (A) and Coulomb (B)
energies with ep and ew for the planar (dashed line) and

spherical (solid line) boundaries. The small differences

between the potential energies for the two boundaries arise

from the fact that the exact expressions are employed in the

calculations. Thus the insights gathered about the depen-

dence of the potential energy of an ion on the dielectric

constants in a plane boundary equally applies to that of a

sphere. Similar results are obtained for more general

spheroidal shapes such as ellipsoid (Hoyles et al., 1996).

Generalizing these observations to ions outside globular

proteins, we infer that an ion’s potential energy has a

dominant (1/ew) dependence on ew and a much weaker

residual dependence on ep.
In the above example, ions are external to the protein,

whereas in channels they are mostly surrounded by the

protein. Although a water-filled sphere is not a very good

approximation to ion channels, it will be interesting to see

the effect of confinement on an ion’s potential energy.

Besides, this problem has applications to water-filled cavities

in proteins, e.g., iron depositing protein ferritin. For this

purpose, we switch the dielectric constants around and reflect

the positions of the charges about the boundary in Fig. 1 B.
The self potential of an ion inside a water-filled sphere of

radius a and at a distance d from the protein surface is given

by

Fs ¼
1

4pe0

q

ewa
+
‘

l¼0

ðl1 1Þðew � epÞ
lew 1 ðl1 1Þep

a� d

a

� �2l

: (9)

Similarly, the potential acting on this ion due to a charge qp
in the protein at a distance dp from the surface is given by

Fc ¼
1

4pe0

q

ew
+
‘

l¼0

2l1 1

lew 1 ðl1 1Þep

� �
ða� dÞl

ða1 dpÞl11 : (10)

These potentials look very similar to those in Eqs. 5 and 7.

However, there is an important difference in the monopole

(l ¼ 0) terms that completely changes their dependence on

the dielectric constants. This is most easily seen when the ion

is at the center of the sphere (d ¼ a), in which case all the

terms vanish except the dominant monopole term. The self

and Coulomb energies of the ion are then given by

Us ¼
1

4pe0

q
2

2epa
1� ep

ew

� �
; Uc ¼

1

4pe0

qqp

epða1 dpÞ
: (11)

Contrasting these energy expressions with those in Eqs. 6

and 8, we see a complete reversal of the roles played by ep
and ew: the dominant dependence on the dielectric constants

has changed from 1/ew when the ion is outside to 1/ep when
the ion is inside. Thus despite the fact that in both cases ion

is in water and its charge is screened by ew, the final

FIGURE 3 Dependence of the self (A) and Coulomb (B) energies on the

dielectric constants ep and ew. Both energies are normalized with the value at

ep ¼ 2 and ew ¼ 80. The left side shows the effect of varying ep from 2 to 20

while ew is fixed at 80, and the right side shows the variation with ew while ep
¼ 2. The radius of the sphere is a ¼ 20 Å, the ion is at d ¼ 4 Å from the

protein surface, and the fixed charge is at dp ¼ 2 Å. The solid lines show the

cases when the ion is outside the sphere, which nearly overlaps with the

plane results (dotted lines).
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dependence of its potential energy on the dielectric constants

is determined by the boundary, and more importantly,

whether the ion is external or internal to it. Dependence of

the potential energy on ew in Eq. 11 is particularly interest-

ing in this regard: contrary to the shielding arguments, Us

actually decreases with decreasing ew whereas Uc remains

constant. For other positions of the ion, as long as d is not

much smaller than a, the monopole term dominates the series

and the above observations remain largely valid.

Another consequence of this reversal of the e dependence
is that the self energy of an ion confined in a sphere is more

than one order of magnitude larger compared to that of an

external ion (e.g., for the canonical values of ep and ew, Us

¼ 137/a kT when a is an Å, which is 85 times larger than

the corresponding plane result). This enhancement in the

self energy basically follows from the fact that the ratio

ew=ep is large. But perhaps a physically more enlightening

reason is that the total charge induced on the sphere by an

external ion vanishes, whereas it is given by q(1/ep � 1/ew)
for an internal ion regardless of its position. Thus, although

the self energy may be neglected in continuum theories for

external ions, this is not so easy to justify for internal

ones—even for a relatively large cavity with radius 20 Å,

Us ’ 7 kT for a central ion, which is five times its kinetic

energy.

Cylindrical boundary

The simplest analytically solvable boundary mimicking an

ion channel is that of an infinite cylinder. Because it confines

an ion, we expect some similarities with the sphere problem

discussed above. The self potential acting on an ion on the

central axis of a cylinder of radius a (see Fig. 1 C) is given by
(Smythe, 1968)

Fs ¼
1

4pe0

2q

pa
1� ep

ew

� �ð‘

0

xK0ðxÞK1ðxÞ
ew � ðew � epÞxI0ðxÞK1ðxÞ

dx:

(12)

Here In(x) and Kn(x) are the modified Bessel functions. Just

as in the case of a central ion in a sphere, the space and e
dependence are decoupled in Eq. 12. Unfortunately, the in-

tegral in Eq. 12 diverges for ep ¼ 0, and an expansion in

ep=ew that would identify the leading e dependence of the

potential is not possible. The Coulomb potential acting on

this ion due to a charge qp in the protein at a distance dp from
the surface (see Fig. 1 C) is given by

Fc ¼
1

4pe0

2q

pa

ð‘

0

K0½ð11 dp=aÞx�
ew � ðew � epÞxI0ðxÞK1ðxÞ

dx: (13)

Apart from a residual dependence on the ratio dp=a, this
integral is similar to the one in Eq. 12 and suffers from the

same divergence problem for ep ¼ 0. Therefore, we evaluate

the integrals in Eqs. 12 and 13 numerically, and plot the

ep and ew dependence of the resulting self and Coulomb

energies of the ion in Fig. 4, A and B (dashed lines). For
comparison, the corresponding potential energies of a central

ion in a sphere (Eq. 11) are also plotted (solid lines). Because
of its symmetry, the effect of confinement on the potential

energy of an ion is maximal in a sphere. In a cylinder, the

induced charges are spread further away from the ion, and

the effect of confinement is somewhat reduced. For example,

for the canonical values of ep and ew, Us ¼ 47/a kT, which

is three times smaller than the corresponding sphere result.

This explains the movement of the cylinder results in Fig. 4

from those of the sphere toward the plane results (Fig. 3).

Nevertheless, the potential energies of an internal ion in

Fig. 4 display a broadly similar dependence on the dielectric

constants even for very diverse boundaries as sphere and

infinite cylinder. It may appear that the ew dependence of

the results exhibit a larger deviation compared to the ep
dependence. But this is because the same scale is used in the

plot. Otherwise the relative deviations in the two cases are

quite similar. Accordingly, we expect the potential energy

of an ion confined by a protein boundary to exhibit a strong

(1/ep) dependence on ep and a weaker residual dependence

on ew.

FIGURE 4 Similar to Fig. 3 but for an ion at the center of a water-filled

sphere (solid line) or on the central axis of an infinite cylinder (dashed line).

The results are independent of the geometrical parameters for Us and Uc in

the sphere and for Us in the cylinder. For Uc in the cylinder, dp=a ¼ 0.1 is

employed. For larger ratios of dp=a (corresponding to smaller cylinder radii),

the dashed lines in Bmove slightly toward the solid lines. Note that Uc in the

sphere overlaps with the unit line.
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Toroidal boundary

In an infinite cylinder, ions are absolutely confined by the

boundary, which is not true in the case of ion channels. Rather

they present mixed boundaries that are partly open (along

the channel axis) and partly closed. Thus for a finite length

cylinder, we expect the infinite cylinder results in Fig. 4 to

move further toward the plane results. The crucial question is

by howmuch. This requires numerical solution of the Poisson

equation and will be discussed in the next section. Here we

address this issue using a torus-shaped boundary, which can

still be solved analytically (Kuyucak et al., 1998). In fact,

as comparisons of potential energy profiles demonstrate, the

toroidal boundary gives a reasonable approximation to ves-

tibular channels such as nicotinic acetylcholine receptor

(Kuyucak et al., 1998). Hence the results presented for the

torus will have general relevance for vestibular channels.

The radius of the toroidal ring is taken as 40 Å and the

radius of the channel at the neck (z¼ 0) is 4 Å. The Coulomb

interaction is calculated by placing four charges with mag-

nitude e/4 at 908 intervals around a ring of radius 6 Å on

the z ¼ 0 plane. This choice stems from the fact that charges

that control the selectivity of vestibular channels are usually

located at the narrow neck region.

The analytical solutions of the Poisson equation in

toroidal coordinates are, unfortunately, very complicated

and it is not possible to extract the e dependence of the

potential energy of an ion from them. Therefore, we directly

plot the dependence of the self and Coulomb energies on the

dielectric constants ep and ew in Fig. 5. For reference we

note that both energies have bell-shaped profiles that peak

at the center of the torus with Us ¼ 3.7 kT and Uc ¼ 6.8 kT

at the center, dropping to Us ¼ 0.2 kT and Uc ¼ 0.5 kT at

the mouth (z ¼ 40 Å), when the canonical values of e are

employed. Their variation with ep and ew at these locations

are shown in Fig. 5 with solid lines—the lower of the two

curves depicting the z ¼ 0 and the upper one z ¼ 40 Å

results. The infinite cylinder (dashed line) and plane (dotted
line) results are included in the figure for reference purposes.
As one would expect, the e dependence in both energies

move from the cylinder toward the plane results as the ion

is moved from the center to the mouth of the torus. The ep
dependence remains roughly in the middle of those of the

cylinder and plane. For example, doubling ep from 2 to 4

reduces Us by 15% in the torus (at z ¼ 0), whereas the

corresponding drops in the plane and cylinder are 5% and

39%, respectively. Similarly, Uc drops by 12% when ep is

doubled, to be compared with 2.5% drop in the plane and

36% in the cylinder. The ew dependence of the energies in

Fig. 5 are seen to remain much closer to those of the plane.

To give an example, halving ew from 80 to 40 increases Us

by 70% and Uc by 75%; the corresponding increases are

90% and 95% in the plane, and 22% and 27% in the

cylinder. Thus the effects of confinement are greatly reduced

in a semiopen toroidal boundary. Consequently the e

dependence of the potential energies in a vestibular channel

are closer to those of an open boundary rather than an

infinite cylinder. This means that the potential energy of an

ion will be very sensitive to the chosen value of ew, as noted
earlier (Kuyucak et al., 1998, Fig. 8), but not so much to ep.
A common feature of all the results presented in Figs. 3, 4,

and 5 is that the self and Coulomb energies have very

similar functional dependences on ep and ew. This implies

that variations from the canonical values of ew and ep will

simply scale the total potential energy profile of the ion up or

down without changing its overall shape. That is, an energy

well or a barrier will remain so even when very different e
values are employed, only their magnitude will change. In

the case of ew dependence in a torus, this symmetry between

Us and Uc is maintained because we have not distinguished

between the e values of bulk and channel water. Use of

a uniform ew value is, of course, necessary to obtain

analytical solutions in the toroidal coordinates. To address

such issues as well as to discuss the effect of more general

boundaries on an ion’s potential energy, one has to resort to

numerical solutions of the Poisson equation.

NUMERICAL RESULTS

Numerical solutions of the Poisson equation can be obtained

most efficiently using the boundary element method (Levitt,

FIGURE 5 Similar to Fig. 3 but for an ion at the center (z ¼ 0) and mouth

(z ¼ 40 Å) of a torus-shaped channel (solid lines). On each side, the lower

solid line depicts the z ¼ 0 result. The dotted and dashed lines show the

results for the plane and cylinder boundaries from Figs. 3 and 4.
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1978). Accuracy of this method, without compromising

its efficiency, has been greatly enhanced by incorporating

corrections due to the curvature of the boundary in the

solutions (Hoyles et al., 1998). We have slightly modified

this code to allow different dielectric constants for channel

and bulk waters. This is achieved by placing imaginary

planes at the mouths of a channel that separates the pore

region from the bulk water. Outside the pore region, e¼ 80 is

fixed, whereas inside ew is treated as a variable. When ew\
80, charges are induced on these imaginary planes, which are

calculated according to the boundary element algorithm.

Born energy difference due to the change in the dielectric

constant is taken into account by adding

UB ¼ 1

4pe0

q2

2rB

1

ew
� 1

80

� �
(14)

to the potential energy of the ion in the pore region. Here rB
is the Born radius of the test ion, which we take as 2 Å. With

this method, potential energy can be calculated up to

a distance of rB of the ion from the planes. The remaining

part is obtained by interpolating between the potential energy

values on either side of the planes. Besides the potential

energy of a single ion, here we also study how the ion-ion

interactions are influenced by variations in the dielectric

constants. This is an important consideration for multi-ion

channels such as potassium and calcium channels.

Single ion potential energy

For the numerical calculations, we use a cylindrical channel

with length 35 Å and radius 4 Å (see the inset in Fig. 6).

These choices are motivated by typical lipid thickness and

the effective radius of a hydrated ion. The mouth region of

the channel is rounded with a radius of curvature of 5 Å to

avoid difficulties with sharp corners in solving the Poisson

equation. Because the position of the charges in the protein

makes a difference in a finite-length channel, the Coulomb

energy is calculated using two different sets of charges. The

first is just like in the torus study above: four charges with

magnitude e/4 are placed around a ring of radius 6 Å on the z
¼ 0 plane. In the second case, two of these rings, each with

a total charge of e, are placed near the entrance of the channel
at z¼612.5 Å. This charge configuration mimics the mouth

charges seen in many channels with relatively narrow pore

openings. When different e values are used for channel and

bulk water, the imaginary planes are placed at z ¼ 616 Å.

First the Poisson equation is solved without the protein

charges, which gives the self energy of the ion. This cal-

culation is then repeated with the protein charges to obtain

the total potential energy of the ion. The Coulomb energy is

determined by subtracting the self energy from the total.

In Fig. 6, we show the self and Coulomb components of

the potential energy of the test ion along the central axis of

the channel. The canonical values of the dielectric constants

are employed in these calculations. Note that because we use

positive charges in the protein and for the test ion for ease of

comparison, Coulomb interactions are repulsive. In reality,

protein charges would be opposite to that of the ion’s,

leading to an attractive Uc. The main purpose of this figure is

to point out the effect of the location of the protein charges

on the potential energy of the ion. If the height of Uc is

adjusted so as to cancel Us at the center, mouth charges

would lead to a 2 kT deep well at the entrance whereas

central charges would result in a barrier of half a kT there.

This suggests that for single-ion channels, charges placed

at the mouth could provide a more efficient conduction

pathway for ions compared to centrally located charges.

We also note that the focusing effect of the dielectric

boundary results in an almost constant Uc inside the pore for

the mouth charges.

The e dependence of the potential energy components

shown in Fig. 6 is investigated in Fig. 7. As in the torus

study, the finite cylinder results in the figures (solid lines) are
bracketed between the infinite cylinder (dashed line) and

plane (dotted line) results. For simplicity, we consider only

their variations at z ¼ 0, where the energy profiles peak. As

the test ion is moved away from the center, the results move

slowly toward those of the plane. This behavior is similar

to that observed in a torus (Fig. 5) but it is much less

accentuated in a cylinder. We first consider the ep de-

pendence of the potential energy. The results for mouth and

central charges almost overlap in Fig. 7 B, indicating that

the ep dependence of Uc is not affected much by the location

of the protein charges. Dependence of Us on ep in A is also

FIGURE 6 Self and Coulomb energy profiles of an ion with charge e

along the central axis of a cylindrical channel. A cross section of the channel

along its central axis is shown in the inset. The two Coulomb energy profiles

correspond to the charge configurations at the mouth (solid line) and at the

center of the channel (dashed line).

2878 Bas˛ tuğ and Kuyucak
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seen to be very similar to those of Uc. In fact, the only visible

difference of the cylinder results from those of the torus (Fig.

5) is that the rate of drop in the potential energy with ep is
slightly faster: both Us and Uc are reduced by 19% when ep is
doubled from 2 to 4. This is about half the reduction found

for the infinite cylinder, which shows how the loss of ab-

solute confinement of the ion has further eroded impact of

ep on its potential energy.

The above observations indicate that increasing ep will

simply lead to a scaling down of the potential energy of the

ion. This scaling factor is ;0.81 for doubling ep from 2 to

4, or 0.74 for going from 2 to 5. To see whether such simple

estimates determined from a cylindrical channel have any

relevance for more realistic channel models, we compare

them with those obtained from the KcsA structure (Doyle

et al., 1998; Morais-Cabral et al., 2001). In a study of

potential energy profiles in the KcsA channel, Chung et al.

(2002, Fig. 12) have found that increasing ep from 2 to 5 led

to a scaling down of the potential energy of an ion near the

interior binding site by a factor of 0.72. Considering that the

KcsA channel has a rather irregular shape, the cylinder

estimate of 0.74 appears to be quite good. The channel

current, on the other hand, is found to decrease slightly

when ep is increased, which is opposite to that one would

expect from a uniform scaling down of the potential energy.

This anomaly is explained by the fact that the scaling factor

found in this study is not uniform but gets smaller as the

test ion approaches the selectivity filter, which has two

resident K1 ions. The nonuniformity results in a slightly

increased residual barrier (by ;0.6 kT) near the cavity

region, leading to a small reduction (;20%) in the channel

current. Because Coulomb repulsion among ions may play

a role in this behavior, we will return to this issue after

discussing the e dependence of ion-ion interactions in the

next section.

The most important observation about the ew dependence

of the potential energies in Fig. 7 is that the symmetry

between Us and Uc is broken, that is, they exhibit rather

different dependence on ew. This clearly arises from using

different e values for bulk and channel waters because when

ew is varied simultaneously (not shown in the figure to avoid

cluttering), very similar results are obtained for Us and Uc.

As one would expect, the Born energy leads to a steeper

increase in Us, which is very close to the plane result. In

contrast, the ew dependence of Uc is much less steep and also

depends on the position of the protein charges. For example,

for the mouth charges Uc almost overlaps with the infinite

cylinder result whereas for the central charges it remains

between those of cylinder and plane. This suppression in the

ew dependence of Uc (relative to the uniform ew case) is due

to the negative charges induced by the protein charges on the

imaginary planes. Because the mouth charges are very close

to the planes, the contribution of the induced charges on

these planes to the total potential are much larger compared

to the central charges, resulting in a smaller Uc.

The asymmetric behavior of Us and Uc, and the de-

pendence of Uc on the position of protein charges, make

it more difficult to predict how the total potential energy of an

ion would change with ew. Nevertheless, it is possible to

make inferences about the impact of ew variations on barriers

and wells in the energy profile of an ion. A barrier is

dominated by Us, and therefore should steeply increase with

decreasing ew. A binding site near the entrance of a channel,

on the other hand, gets relatively little help from a slowly

increasing Uc, and as a result the energy well will get

shallower with decreasing ew (for very deep wells, this may

occur at smaller ew). We thus expect the energy profile of an

ion to shift upward for ew \ 80, the amount of shift being

more accentuated at the barriers compared to the wells. Such

an ew dependence has indeed been observed in model studies

of the KcsA channel (Chung et al., 1999, Fig. 6)—the

residual barrier faced by a permeating ion near the cavity

region is found to rise steeply with decreasing ew, becoming

roughly doubled at ew; 40 consistent with the results in Fig.

7. For ew # 40, the channel ceases to conduct, thus the

influence of variations in ew on ion permeation is far greater

compared to those in ep. Similar observations can be made

for centrally located binding sites. However, such binding

sites are usually associated with vestibular channels, and

therefore not considered further here.

FIGURE 7 Similar to Fig. 3 but for an ion at the center (z ¼ 0) of a finite

cylindrical channel. In B, the lower solid line on each side shows Uc due to

the protein charges at the mouth of the channel, whereas the upper one is due

to the centrally placed charges. The dotted and dashed lines show the results

for the plane and infinite cylinder boundaries from Figs. 3 and 4 as before.
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Ion-ion interactions

Many biological ion channels contain multiple ions, and

it has been conjectured that the Coulomb repulsion plays

an important role in facilitating the permeation process. For

completeness, we investigate how variations in e values in-
fluence the Coulomb interaction between a pair of ions in

a finite cylindrical channel as considered above. Both ions

have a unit charge, and one of them is fixed on the z axis near
the mouth of the channel (z ¼ �12.5 Å) whereas the other is

moved along the z axis. This choice is motivated by the

observation that binding sites are usually located near the

entrance in cylindrical channels. Because the self energy of

the mobile ion is already discussed above, here we consider

only the Coulomb part due to the fixed ion, that is, we

calculate the potential due to the fixed ion along the z axis
and multiply this with e. This quantity excludes the self

energy of the mobile ion from the total ion-ion interaction.

The Coulomb energy profile of the test ion is shown in

Fig. 8. Here the dashed curve is obtained using ep ¼ 2 and ew
¼ 80. The upper and lower solid lines indicate how this

result is modified when ew ¼ 40 and ep ¼ 5 are employed,

respectively. For reference, the Coulomb interaction in bulk

water at the same distance is shown with dotted lines at

the bottom. It is seen that the presence of the channel leads

to a remarkable enhancement in the Coulomb repulsion

compared to the bulk values. Further, whereas Uc drops with

distance, the rate is much slower than 1/r within the

channel due to the focusing effect of the dielectric boundary.

Finally, the energy scale in the figure is similar to that in

Fig. 6, indicating that the Coulomb repulsion makes a match-

ing contribution to the ion’s potential energy as the other

components. These features help to explain why the ion-ion

repulsion plays a significant role in the permeation process in

multi-ion channels.

The e dependence of Uc at z ¼ 0 gives a virtually identical

result as the mouth charges in Fig. 7 B, and therefore is not

duplicated. However, there is substantial difference between

ion-ion repulsion and the other components when it comes

to position dependence—the latter results, as noted above,

exhibit negligible variation with the position of the test ion in

the channel. Comparison of the solid lines in Fig. 8 with the

dashed line, on the other hand, indicates a clear position

dependence in ep and ew variations. This nonuniform scaling

of Uc with e is most visible when the ions are a few Å apart,

and becomes negligible when the test ion is near the center.

Returning back to the comparison with the KcsA results,

we observe that the nonuniform scaling of Uc with ep in Fig.

8 may have contributed to the small increase in the residual

barrier when ep is increased from 2 to 5 (Chung et al., 2002).

This, however, is not sufficient to explain the whole effect,

and geometrical factors, such as presence of a cavity, must

also have contributed to the final result. With regard to the ew
dependence and the doubling of the residual barrier when ew
is halved from 80 to 40, the contribution from the ion-ion

repulsion (;1 kT) remains rather marginal compared to that

from the self energy (;7 kT). Thus Coulomb interactions

due to other ions have a reduced sensitivity to ew variations

similar to those due to fixed charges in protein (Fig. 7 B).

CONCLUSIONS

Potential of a charge q immersed in a bulk dielectric medium

with constant e is screened by q=e. This dielectric screening
is often employed to get a quick estimate of how the potential

of a charge would change with e in more complex situations.

The primary aim of this study has been to point out that such

estimates are only reliable away from boundaries. Presence

of a boundary and its curvature could have a drastic effect

on the potential of an ion, and completely change its e de-
pendence. This is illustrated with an ion outside and inside

a spherical boundary, where the dominant e dependence of

its potential energy changes from 1/ew in the former case to

1/ep in the latter.

Because ion channels have mixed boundaries and their

shapes could vary from vestibules to cylinders, it is difficult

to give general rules about the influence of e variations on
the potential energy of ions. Nevertheless we find that when e
for the channel and bulk water are distinguished and the

Born energy is included, the self energy of an ion exhibits

a dominant 1/ew behavior remarkably similar to that seen

in open boundaries such as plane and sphere. Because the

Coulomb component of the potential energy displays a much

milder dependence on ew, we expect the residual barriers in
the energy profile of an ion to rise rapidly with decreasing ew,
leading to an exponential suppression of the current. Thus as

a phenomenological parameter, ew exercises a large influence

on channel conductance, and therefore, it is desirable to have

a better understanding of the effective ew values currently

FIGURE 8 The Coulomb energy of a test ion along the z axis due to a fixed

ion on the z axis at�12.5 Å. The self energy of the test ion is not included in

Uc. The dashed line is obtained using the canonical values of ep¼ 2 and ew¼
80. The solid lines show how Uc changes from this reference result when ep
is increased to 5 while keeping ew ¼ 80 (lower curve), and when ew is

reduced to 40 while keeping ep ¼ 2 (upper curve). The dotted line at the

bottom shows Uc in bulk water.
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used in channel models from microscopic studies. Moder-

ating the value of ew using organic solvents and measuring

the changes in the ensuing conductance levels (as suggested

by a reviewer) could provide a more direct test for the

predictions made in this study.

The ep dependence of the potential energy of an ion in

a channel remains in between those of open and closed

boundaries. Also there is conformity among the behavior of

its various components. Thus an increase in ep is expected to
lead to a uniform scaling down of the energy profile of an ion

with a concomitant increase in its permeation rate. Because

this is a comparatively small effect, other geometrical factors

can easily modify this behavior as indeed observed in the

KcsA channel. Although variations in ep cause relatively

small changes in the energy profile of an ion, because of

the exponential dependence of channel current on residual

barriers, its value still has to be chosen carefully when the

aim is quantitative comparisons with physiological data.

APPENDIX

The approximation to the self potential in Eq. 5 involves the power series

S9 ¼ +
‘

l¼0

l

l1 1
x
l11

; (15)

where x ¼ a2/(a 1 d)2. This is related to the standard series

S ¼ +
‘

l¼0

xl ¼ 1

1� x
(16)

by the expression

S9 ¼
ðx

0

x
dS

dx
dx: (17)

Using Eq. 16 in Eq. 17 and evaluating the algebra gives

S9 ¼ x

1� x
1 lnð1� xÞ: (18)

Substituting the value of x, we obtain

S9 ¼ a

2d

2a

2a1 d
1

2d

a
ln

2ad1 d
2

ða1 dÞ2
� �� �

: (19)

The approximate form of the Coulomb potential in Eq. 7 involves the

power series

S99 ¼ +
‘

l¼0

2l1 1

l1 1
x
l
; (20)

where x ¼ (a � dp)/(a1 d). Writing 2l1 1 ¼ (l1 1)1 l, this series can be
expressed in terms of the series S and S9 introduced above as S99 ¼ S1 S9/x.

Using the results from Eqs. 16 and 18, we get

S99 ¼ 1

1� x
1

1

x

x

1� x
1 lnð1� xÞ

h i
: (21)

Simplifying and substituting back x yields

S99 ¼ 2ða1 dÞ
d1 dp

1
a1 d

a� dp

ln
d1 dp

a1 d

� �
: (22)
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