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Cooperative Regulation of Myosin-Actin Interactions by a Continuous
Flexible Chain I: Actin-Tropomyosin Systems
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ABSTRACT We present a model for cooperative myosin binding to the regulated actin filament, where tropomyosins are
treated as a weakly-confined continuous flexible chain covering myosin binding sites. Thermal fluctuations in chain orientation
are initially required for myosin binding, leaving kinked regions under which subsequent myosins may bind without further
distortion of the chain. Statistical mechanics predicts the fraction of sites with bound myosin-S1 as a function of their affinities.
Published S1 binding curves to regulated filaments with different tropomyosin isoforms are fitted by varying the binding
constant, chain persistence length n (in actin monomers), and chain kink energy A from a single bound S1. With skeletal
tropomyosin, we find an S1 actin-binding constant of 2.2 3 107 M�1, A ¼ 1.6 kBT and n ¼ 2.7. Similar persistence lengths are
found with yeast tropomyosin. Larger values are found for tropomyosin-troponin in the presence of calcium (n ¼ 3.7) and
tropomyosins from smooth muscle and fibroblasts (n ¼ 4.5). The relationship of these results to structural information and the
rigid-unit model of McKillop and Geeves is discussed.

INTRODUCTION

The regulation of contractility in striated muscle by calcium

is effected via tropomyosin on the actin filament (Ebashi,

1969). The tropomyosin molecule is a coiled-coil 42 nm in

length, which covers seven monomers on one strand of the

actin double helix. On each strand these units are disposed

end-to-end to form what appears to be a continuous chain

(Lorenz et al., 1995; Vibert et al., 1997). The steric blocking

model of Haselgrove (1973) and Huxley (1973) proposes

that myosin binding sites are blocked by tropomyosin�
troponin (TmTn) in the absence of calcium, and that

tropomyosin moves to a position which allows myosin

binding when calcium is bound to troponin-C. The two

positions of tropomyosin may be viewed as two states of an

allosteric system if transitions between them are rapid and in

equilibrium (Lehrer and Geeves, 1998). The steric blocking

model is broadly confirmed by a variety of experiments

(Gordon et al., 2000), although the fact that myosin binds

weakly in the absence of calcium suggests that a two-state

model may be oversimplified.

The statistical-mechanical model of thin filament regula-

tion proposed by Hill, Eisenberg, and Greene (Hill et al.,

1980a) is based on these ideas. The key assumptions of their

model are that 1), each tropomyosin molecule can be treated

as a rigid unit moving between two discrete orientations

which generate different actin affinities for myosin; 2), states

of the same kind are favored by weak end-to-end interactions

between adjacent tropomyosins; and 3), Tm-Tm interaction

energies vary with the number of calcium ions bound to

the nearest molecule of TnC. This model contains two

mechanisms for cooperativity in myosin binding; a single

bound myosin activates the six additional actin monomers

covered by one tropomyosin, and this activation is partially

transmitted to neighboring tropomyosins by end-to-end

interactions. Cooperativity is observed in solution studies

of the extent and kinetics of myosin binding (Greene and

Eisenberg, 1980; Trybus and Taylor, 1980; McKillop and

Geeves, 1991) and of actomyosin ATPase (Bremel et al.,

1972; Lehrer and Morris, 1982). In vertebrate striated

muscle, the high sensitivity of isometric force to changes

in calcium level can also be explained in terms of calcium-

dependent Tm-Tm interactions (Hill, 1985).

Later cryo-EM studies show that there are actually three

orientational states of tropomyosin (Vibert et al., 1997),

designated by Lehman et al. (2000) as B (blocked), C
(calcium-induced), and M (myosin-induced). A model

with three regulatory states of the thin filament (blocked,

closed, and open) was previously proposed by McKillop

and Geeves (1993), based on solution studies of myosin-S1

binding to thin filaments. However, this model did not

invoke end-to-end Tm interactions; the regulatory unit was

originally identified as the structural repeat unit of one

tropomyosin and seven actin monomers (A7Tm). The

development of assay methods sensitive to the size of the

regulatory unit showed that cooperativity could extend

significantly beyond the structural unit size for both actin-

Tm and actin-Tm-Tn filaments (Geeves and Lehrer, 1994,

Lehrer et al., 1997, Maytum et al., 1999). For these systems,

a model of independent regulatory units is structurally

inappropriate. A version of the Hill-Eisenberg-Greene model

with three regulatory states would provide a way out of these

difficulties.

In fact, we wish to argue for a more radical revision of

existing regulatory models, in which individual tropomyosin

molecules have intrinsic flexibility and are coupled by strong
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end-to-end interactions to form a semiflexible chain.

Evidence which points in this direction is as follows.

In solution, tropomyosin readily polymerizes end-to-end

at ionic strengths below ;0.3 M, and the polymer is flexible

with a persistence length of 50–200 nm (Howard, 2001).

However, individual molecules of tropomyosin have a very

low affinity for actin (Wegner, 1979), so that the binding

of Tm filaments to actin can also be described as a poly-

merization process (Vilfan, 2001). This view is supported

by the observation that minor modifications to either the

N-terminus (loss of acetylation) or the C-terminus (loss of

the terminal amino acid) of the Tm polypeptide chain does

not greatly affect the stability of Tm but results in loss of

polymerization and actin binding (Heald and Hitchcock-

deGregori, 1988; Maytum et al., 2001). Thus the head-to-tail

interactions between tropomyosins along the actin filament

are essential for actin affinity. High-resolution structural data

(Brown et al., 2001, Whitby and Phillips, 2000) also suggest

that tropomyosin is a semiflexible molecule (see also

Stewart, 2001). Atomic modeling of tropomyosins on the

actin surface suggests that Tm is bound by weak electrostatic

interactions which are not highly stereospecific (Lorenz et al.,

1995). Furthermore, both the Hill-Eisenberg-Greene and

McKillop-Geeves models give an equilibrium constant of

0.2 for the transition between closed and open states of the

actin-Tm filament, so that the Gibbs energy difference

between these states is 1.6 3 thermal energy. The rate of

transitions between these states is estimated at above 500 s�1

(Geeves and Lehrer, 1994), suggesting a low activation

barrier between binding positions. If a single Tm molecule in

a Tm chain were to move between the discrete binding sites

on actin inferred from EM and x-ray scattering, a major re-

organization of the Tm-Tm contacts would be required, yet

these are the contacts which are essential for binding to actin.

Whatever the exact nature of Tm-Tm and Tm-actin in-

teractions, there is now a body of evidence which suggests

that tropomyosin molecules on actin form a loosely-confined

quasi-continuous semiflexible chain which spans the whole

actin filament. We propose a new model of thin-filament

regulation along these lines. To make the problem mathe-

matically tractable the tropomyosin chain is treated as elasti-

cally homogeneous. Similarly, the potential well which

provides angular confinement is assumed to have a single

minimum in the absence of myosin or troponin. As discussed

in the last section, the second hypothesis is still open.

In this article, the continuous-flexible-chain (CFC) model

is applied to actin-tropomyosin systems in the absence of

troponin. Mathematical developments appear in a self-

contained section (Theory), which can be omitted if desired.

Here we show that the model can fit published experimental

myosin binding curves in solution, using reasonable values

of parameters such as chain stiffness and the distortion

energy of the chain accompanying myosin binding. The

results are in broad agreement with those obtained from the

independent-rigid-unit model (McKillop and Geeves 1991,

1993). Chen et al. (2001) have shown that the same binding

curves can also be fitted with the model of Hill, Eisenberg,

and Greene (Hill et al., 1980a). Thus the CFC model should

be tested against a much wider range of experiments. In the

following article, the model is generalized to actin-Tm-Tn

systems and regulation by calcium.

Definitions of model parameters and other symbols are

collected in Table 1. Fortran programs for numerical

predictions and data-fitting to the model are available at

www.kcl.ac.uk/depsta/biomedical/randall/dasmith.html.

REGULATION BY A CONTINUOUS
FLEXIBLE CHAIN

This section gives the basic assumptions of the proposed

model, its mathematical formulation, and a qualitative

description of how it regulates the energetics of myosin

binding. Exact results quoted without proof are derived in

a preliminary article (Smith, 2001). Kinetic aspects of

myosin regulation will be considered elsewhere.

1. Tropomyosin units on the surface of F-actin are

intrinsically flexible and linked to form a continuous semi-

flexible chain along the length of the actin filament (Fig. 1A).
2. This chain is confined to a range of orientations on one

strand of the actin double helix (here termed the closed state)

by a weak electrostatic potential, arising from ionic or van

der Waals interactions.

This model becomes mathematically tractable if we sup-

pose that the chain is elastically homogeneous, with a finite

bending stiffness kTm per unit length, and the confining

TABLE 1

Key model parameters

~KKS1 Second-order binding constant of myosin to actin

A Chain kink energy for one bound myosin

n Persistence number ¼ 1/jc

Associated parameters, variables, and constants

a Strength of the chain confining potential

k Chain bending stiffness per unit length (see under Eq. 1)

j Inverse persistence length ¼(a /4k)1/4

f1 Myosin kink angle ([ 0)

df Angular standard deviation of free chain ¼(8bkj3)�1/2

n Hill coefficient

s Distance along the chain

[S1] Free myosin concentration

KS1 First-order myosin affinity to actin ¼ ~KKS1½S1�
K Myosin affinity under the chain ¼ KS1exp(�bA)

u Myosin bound fraction (of actin sites with myosin bound)

f(s) Angular displacement of the chain at position s

c Actin monomer spacing (5.5 nm)

kB Boltzmann’s constant

T Absolute temperature

b ¼ 1/kBT

Definitions of mathematical symbols appearing outside the Theory section.

In this article, ln and log denote logarithms to base e and 10 respectively.
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potential is a quadratic function of chain orientation f (in

radians) from a preferred orientation which tracks one helical

strand. A distorted chain configuration is specified by an-

gular displacements f(s) at each position s along a chain

of length L. The energy of this configuration is

E ¼
ðL

0

k

2
f0ðsÞ21a

2
fðsÞ2

� �
ds; (1)

where k¼ kTmR
2 andR the radius at which tropomyosin sits

on the actin filament. Estimates of kTm from the persistence

length of tropomyosin in solution (Howard, 2001; Hvidt

et al., 1983, Phillips and Chacko, 1996) and by scaling as

(radius)4 from actin measurements (Yanagida et al., 1984,

Yasuda et al., 1996) suggest that kTm ; 0.4–1.6 3 10�27

N�m2. With R ¼ 4–5 nm (Vibert et al., 1997; Xu et al.,

1999), k ; 0.6–4.0 3 10�44 N�m4. For estimation we use

a value of 2.5 3 10�44 N�m4.

If the chain is forcibly pinned to angle f1 at one point, the

rest of the chain adopts a minimum-energy configuration in

which displacements away from the pinning point revert

smoothly to zero over a characteristic distance called the

persistence length. The persistence length is estimated by

minimizing the energy of a smooth kink of half-width l,
which is of the form k(f1/l

2)2l 1 af1
2 l apart from

numerical factors of order unity. This energy is minimized

when l ¼ (3k/a)1/4. An exact calculation gives the kink

energy A as

A ¼ 4kj3f2

1
(2)

where

j ¼ ða=4kÞ1=4 (3)

and 1/j is the persistence length. It will be shown later that

myosin binding data can be fitted to the model if j�1 ¼ 16.5

nm (three actin repeats). Hence, a ¼ 1.34 3 10�12 J/m,

which implies that the energy required to displace a single

42-nm tropomyosin unit from its resting angle by 308 is

;8 3 10�21 J, or twice thermal energy kBT (kB ¼
Boltzmann’s constant; T ¼ absolute temperature).

3. In the absence of bound myosin, the chain makes

thermal fluctuations about its preferred orientation. The

standard angular deviation from thermal noise can be

estimated by equating the energy of a kink of amplitude

du to kBT. This argument is not rigorous because thermal

noise excites fluctuations on a range of wavelengths above

the persistence length, but gives the correct result,

df ¼ ðkBT=8kj3Þ1=2; (4)

apart from a numerical factor. The preceding estimates for

k and a give du ; 0.30 radians (178), which is physically

reasonable. These fluctuations are intrinsic to the closed

state.

4. In the absence of myosin, myosin-binding sites on the

actin filament are covered by most thermally-driven config-

urations of the chain (Fig. 1), which define a closed state.

5. A myosin binding site is exposed only by a sufficiently

large positive kink f [ f1 in chain angle. To achieve

myosin binding rates comparable with unregulated actin

(Trybus and Taylor 1980), f1 should not exceed two

standard deviations from thermal noise, as above. Equiva-

lently, the kink energy A should not exceed 2kBT. The
binding site should span a range of angles from f1 to a larger

negative angle (Fig. 1 B), to prevent exposure by negative

deviations of the chain.

Fig. 1 A shows how this model leads to cooperative

myosin binding. The first myosin to bind under thermal

fluctuations of the Tm or Tm-Tn chain produces a positive

kink of amplitude f1 and a half-width of one persistence

length (a local open state). We define a persistence number as

n ¼ persistence length

actin site spacing
¼ 1

jc
; (5)

so the first bound myosin exposes n sites on either side, and

the kink size (the number of actin sites exposed by the kink)

is 2n 1 1.

FIGURE 1 Schematics of orientational con-

figurations of a continuous flexible tropomyo-

sin chain on actin (A), and a cross section of the

actin filament (B). A1, A chain configuration in

the absence of myosin (upper diagram), with

thermally excited angular fluctuations about

f ¼ 0, close to the groove between the inner

and outer domains of G-actin depicted in B (see

also Lehman et al., 2000). These fluctuations

cover the myosin binding interface and collec-

tively define a closed regulatory state. A2, The

tropomyosin chain with a low density of

myosins bound to actin, which push the chain

beyond angle f1 toward the inner domain. A

local open state is created by each myosin-

induced kink. A3, At higher myosin density, an

extended open state is created. If the persis-

tence length covers several actin sites, this can

occur even when most sites are unoccupied.
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Let KS1 [ ~KKS1½S1� be the first-order affinity of S1 to actin

in the absence of chain distortion, proportional to free

myosin-S1 concentration in solution. The first myosin to

bind does so with affinity

K ¼ KS1 expð�A=kBTÞ (6)

reduced by the probability of a kink fluctuation. Those that

follow are presented with a predominantly unkinked

filament, so that at low S1 concentration the fraction u of

occupied sites is K/(K 1 1). At higher concentrations, late-

binding myosins see a significant fraction of sites exposed by

kinked regions of the chain, and may bind to these sites at

a higher affinity approaching KS1, enlarging the kinks. As

more myosins bind, all kinked regions eventually overlap

and further bindings are not inhibited by the chain.

The cooperative transition between these regimes should

occur when the bound fraction u � (2n 1 1)�1. If u ¼
K/(K 1 1), switching occurs when K � (2n)�1. Hence the

switching value of KS1, here denoted by K*, is estimated at

exp(A/kBT)/2n. This formula exaggerates the dependence

on A, because the binding curve lies between K/(K1 1) and

KS1/(KS1 1 1). A better estimate can be obtained from

predicted binding curves.

The structure of the model is now specified. To make

quantitative predictions, expressions for the free energy of the

kinked chain are needed for at least two kinks of the same

angle as a function of their separation. For two kinks of angle

f1 at separation jx, the energetic component of the distortion

energy can be written in terms of the single-kink energy A as

Eð2ÞðxÞ ¼ AGSðxÞ (7)

(Smith, 2001). The function GS(x) tends to unity when x !
0 and to 2 for x � 1. When the kinks are merged, the pair

energy is that of a single kink, but when widely separated

the pair energy is the sum of the energies of each kink in

isolation. The entropic contribution is expected to vary

similarly with x, in which case A can be regarded as a free

energy.

Please note the following corrections to the article (Smith,

2001) in which the interaction potentials were derived:

Eq. 3.2: Replace ZabðF1;FbÞ by ZabðFa;FbÞ in both

denominators.

Eq. 4.7: The lower limit of the second sum should be i, not
i 1 1.

MYOSIN BINDING TO ACTIN-TROPOMYOSIN

This section develops the statistical mechanics of equilib-

rium myosin-S1 binding to actin regulated by a continuous

flexible chain. The theoretical formalism can be used to

predict the bound S1 fraction as a function of the free S1

concentration in solution, and other statistical measures of

occupancy such as the correlation length between occupied

sites. This model is applied to the actin-tropomyosin system

in the absence of troponin. It should also be applicable to the

actin-tropomyosin-troponin system at saturating levels of

calcium, as troponin-I does not bind significantly to actin

under these conditions.

Theory

The fraction of monomers with myosin bound can be

calculated if the distortion energy of the kinked chain with an

arbitrary number and position of bound myosins is known.

Let F(n) (sn) be the free energy of the distorted chain covering
Nmonomers on one strand of F-actin, with nmyosins bound

tomonomers at positions sn¼ (s1 , . . . , sn), listed in increasing
order. The equilibrium probability of this configuration is

a Boltzmann factor in the corresponding Gibbs energy,

which is the sum of the above distortion energy and the

Gibbs energy �nkBT lnKS1 of myosin binding. Thus the

probability of all configurations with n myosins bound is

Pn ¼
1

ZN

+
½sn �

Kn
S1 expð�bFðnÞðsnÞÞ (8)

where b ¼ 1/kBT and

ZN ¼ +
N

n¼0

+
½sn �

Kn
S1 expð�bFðnÞðsnÞÞ (9)

is the partition function for regulated binding; the inner sum

is over all ordered arrangements of n sites out of N. Hence

the mean number �nn of occupied sites is given by

�nn ¼ KS1

d ln ZN

dKS1

(10a)

and the bound fraction is u ¼ �nn=N: Similarly, the mean

square deviation in n is

ðDnÞ2 ¼ �nn1K2
S1

d2 ln ZN

dK2
S1

: (10b)

It is instructive to apply these formulae to a rigid chain

covering N sites, as envisaged by Geeves and Halsall (1987)

for protomeric tropomyosin withN¼ 7. If one bound myosin

displaces the whole chain, ZN ¼ 11½ð11KS1ÞN � 1�e�bA

where A is the displacement energy. The corresponding

formula for the bound fraction u is equivalent to that of

Geeves and Halsall if KT ¼ 1=ðebA � 1Þ; where KT is the

equilibrium constant between the closed and open states of

their model. Nevertheless, the rigid-chain model considered

here is different, because the totality of chain configurations in

the absence of bound myosin defines a closed state, but

a subset of these configurations with excitation energy[A
allow myosin binding. If bA � 1, nearly all configurations

permit binding and the fraction of nonbinding configurations,

which should be associated with the closed state of the

Geeves-Halsall model, becomes small. Hence KT � 1 as

predicted above.

Apart from end effects, the distortion energy F(n)(sn)
depends only on the spacings xj;j11 ¼ jðsj11 � sjÞ between
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bound myosins as a fraction of chain persistence length 1/j.

For n¼ 2, a closed analytic expression is available via Eq. 7.

For convenience, each bound myosin is assumed to pin the

chain to angle f1 at the point of contact. It can be argued that

pinning is more realistic than the one-sided constraint f[
f1. Both types of constraint have similar consequences, but

the former is easier to handle mathematically.

The partition function can be evaluated by the transfer-

matrix method if F(n)(sn) can be expressed in terms of

localized interactions between the n bound myosins. For

n ¼ 1, F (1)(s1) [ A is the energy of a single kink. Chain

energies expressing the interaction of localized pairs, triplets

of bound myosins are defined as

Vð2Þðx12Þ ¼ Fð2Þðs1; s2Þ � 2A;

Vð3Þðx12; x23Þ ¼ Fð3Þðs1; s2; s3Þ � Vð2Þðx12Þ � Vð2Þðx23Þ � 3A

(11)

and

VðnÞðx12; . . . ; xn�1;nÞ ¼ FðnÞðs1; . . . ; snÞ � nA

� +
n�1

k¼2

+
n11�k

j¼1

VðkÞðxj; j11; . . . ; xj1k�2; j1k�1Þ

(12)

for a localized n-myosin interaction. By construction, these

functions tend to zero when all spacings between bound

myosins are increased beyond the persistence length. Using

Eq. 7 for the distortion energy of two kinks gives the pair-

interaction energy V ð2ÞðxÞ ¼ AðGSðxÞ � 2Þ; which varies

from �A at x ¼ 0 to zero when x � 1 (Fig. 2). These

definitions imply that the higher-order interactions approach

zero when at least one spacing between adjacent myosins

approaches zero or becomes much greater than the

persistence length. They also vanish in the limit of large

persistence lengths, when the kink from a single myosin

spans many binding sites. Hence the distortion energy will be

approximated by the sum of nearest-neighbor pair inter-

actions, namely

FðnÞðs1; . . . ; snÞ � nA1 +
n�1

j¼1

Vð2Þðxj; j11Þ: (13)

The accuracy of this approximation can be investigated

numerically from recursion formulae for the n-body free

energy function (Smith, 2001).

The transfer-matrix method for pair interactions

Under the pair approximation (Eq. 13), the partition function

of Eq. 9 can be calculated by the transfer-matrix method if

the range of interactions is limited and interactions over all

pairs within that range are included correctly. To this end, the

pair energy V(2)(x) is assumed to be zero for x[ 2, which

neglects an oscillating tail of order 10% (Fig. 2). The range

of this truncated potential is r actin sites, where r ¼ 2n.

The transfer-matrix method forZN proceeds by a recursion

on the number of sites N. For this purpose, the following set

of constrained N-site partition functions are sufficient. Let

zN1 be the partition function with the leading site occupied

by myosin. For j ¼ 2 , . . . , r, let zNj be the partition function

with the leading j�1 sites empty and the site behind

occupied. We also need the partition function with the

leading r sites empty; it is convenient to denote this quantity

by zN,r11, although zN,j then has different meanings for j ¼
r1 1 and j\r1 1. As shown in Fig. 3, adding one more site

gives

zN11;1 ¼ +
r

j¼1

KjzN;j1KzN; r11 (14a)

zN11; j11 ¼ zN; j ð j ¼ 1; . . . ; r � 1Þ (14b)

zN11;r11 ¼ zN;r111zN;r; (14c)

where Kj [K expð�bV ð2Þð j=vÞÞ ð j ¼ 1; . . . ; rÞ is myosin

affinity under the chain but enhanced by a jth-nearest-
neighbor myosin. In vector-matrix form, zN11 ¼ TzN where

T is a transfer matrix of dimension r 1 1. For r ¼ 7,

T ¼

K1; K2; K3; K4; K5; K6; K7; K
1 0 O

1 0

1 0

1 0

1 0

1 0

O 1 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA

(15)

For the interaction potential in Fig. 2 with A[0, K1[K2[
. . .Kr [ K so the transfer matrix has rank r 1 1. Although

this matrix is not symmetric, it has a simple form which

facilitates the construction of eigenvalues and eigenvectors.

FIGURE 2 The universal chain-induced interaction potential Vð2ÞðxÞ ¼
AðGSðxÞ � 2Þ for a pair of bound myosins at separation x in units of the

persistence length. Ticks on the x-axis denote binding sites on actin for a

persistence length of five actin sites (n ¼ 5). The interaction is attractive

(V(2)(x) \ 0) almost everywhere, because the energy of two isolated

kinks has been subtracted. A closed analytic formula is available (Smith,

2001).
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As shown below, a symmetric transfer matrix is not required

to calculate the partition function.

Let la be an eigenvalue of T, with right and left

eigenvectors u(a) and v(a) respectively. All eigenvalues are
assumed to be distinct, though not necessarily real. Hence

the eigenvectors satisfy mutual orthogonality and complete-

ness conditions, which in terms of the matrices U ¼
ðuð1Þ; . . . ; uðr11ÞÞ, V ¼ ðvð1Þ; . . . ; vðr11ÞÞ can be written as

VTU ¼ I and UVT ¼ I respectively. I is the unit matrix and

superscript T indicates the transposed matrix. Then

T ¼ UDVT; (16)

where D is the diagonal matrix of eigenvalues l1 , . . . ,lr11.

These results determine the required partition functionZN.

The vector form of Eq. 14 has the solution zN ¼ TNz0 where
z0 is a constant vector. With Eq. 16, zN ¼ UDNVTz0: The
sum of the elements of this vector gives ZN in the form

ZN ¼ +
r11

a¼1

bal
N

a
;

ðN!‘Þ
bml

N

m; (17)

where lm is the maximum eigenvalue and the ba are

determined by the eigenvectors. In the limit of large N, the

Gibbs energy of the system is �kBTðN ln lm1Oð1ÞÞ and

extensive thermodynamic variables such as �nn are determined

by the maximum eigenvalue. The limiting form

u ¼ K
d ln lm

dK
(18)

of the bound fraction is independent of N.

The secular equation for the eigenvalues of T is the

polynomial

RðlÞ[ lr111+
r

j¼1

ajl
j ¼ 0 (19)

with coefficients ar ¼ �ð11K1Þ; aj ¼ Kr�j � Kr11�j ( j ¼
1, . . . , r) and ao ¼ Kr � K: Manipulations based on this

polynomial allow the bound fraction to be written in the form

u ¼ lr�1

m ðlm � 1Þ
R9ðlmÞ

; (20)

which is used for numerical calculations.

Numerical predictions

Binding curves for u as a function of the first-order binding

constant KS1 have been computed from Eq. 20 using the pair

interaction in Eq. 7. Three parameters are involved; the ratio

bA of kink energy to thermal energy, the persistence number

n, and the range r of the truncated potential such that r$ 2n.

Fig. 4 shows the predicted fraction of actin sites occupied

by myosin as a function of its first-order affinity KS1. At

low affinity, myosin binding is inhibited by the need to

create kinked regions of the chain. As KS1 rises through

a characteristic switching value K*, this inhibitory mecha-

FIGURE 3 Diagrams illustrating iterative rules (Eq. 14) for components

of the N-site myosin-only transfer matrix ZN, with interaction range r ¼ 7.

The component zN11,1 in which the leading site is occupied by myosin (d),

can be expressed in terms of N-site components, zNj, in which the leading

j � 1 sites are unoccupied (s) and the jth site is occupied ( j # 7) or

unoccupied ( j ¼ 8). In the bottom diagram, the leading myosin binds

independently and requires a multiplicative factor K (Eq. 6). Interacting

myosins within range r are linked, and require a factor Kj ¼
Kexpð�bVð2Þð j=vÞÞwhen separated by j sites. Similar diagrams apply for

the zN11, j.

FIGURE 4 The fraction u of actin sites occupied by myosin-S1 as

a function of first-order myosin affinity KS1, as predicted by Eq. 20. Graphs

A and B show binding curves for kink energies A ¼ 1:5kBT and 3kBT

respectively; plots selected along the arrow from right to left are in

increasing order of the persistence number n. Graphs C and D show the

above curves for n¼ 1 and 5 respectively, and A ¼ 1:5kBT; accompanied by

the hyperbolic curvesK/(K1 1) andKS1/(KS11 1) for independent binding

in the presence and absence of inhibition. The crossover effect is discussed

in the main text.
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nism is removed as the kinks overlap and the binding curve

switches smoothly to a higher-level curve. As the persistence

number n is increased, less myosin is required to effect

switching and the width of the switching range of KS1 values

decreases. With a bigger kink energy, the initial inhibition is

increased and more myosin is required to overcome it.

Fig. 4, C and D show that as KS1 ! 0 the bound fraction

approaches the function K/(11 K) where K is affinity under

the chain (Eq. 6). When KS1 � 1, binding is not inhibited,

and the asymptotic form slightly exceeds KS1=ð11KS1Þ and
therefore approaches unity more slowly. The overshoot is

most pronounced for persistence lengths of the order of the

actin site spacing (n � 1), and appears to be due to the

neglect of triplet and higher-order interactions as defined by

Eq. 11. This claim is substantiated by analyzing the behavior

of the chain model for n # 1, when the range of myosin

interaction is substantially limited to nearest neighbors (Fig.

2). In this case, the model is mathematically equivalent to

a one-dimensional lattice gas with a one-particle energy

A� kBT lnKS1 and a nearest-neighbor pair energy

V ð2Þð1=nÞ[ � A1; for which an analytic solution exists

(Baxter, 1982). The correct partition function per site is the

maximum eigenvalue of the transfer matrix

T ¼ K1 K
1 1

� �

for r ¼ 1 (see Eq. 15), from which the binding curve follows

as before. This nearest-neighbor model also generates an

overshoot effect but only when n [ 0.58, for which A1 [
A/2 (Fig. 2). This condition relates to the change in Gibbs

energy,A� kBT lnKS1 � 2A1, whenmyosin binds to a single

vacant site between occupied sites—the overshoot that

occurs when n[0.58 is a consequence of lowering the chain

energy by 2A1 � A[0: However, when the chain energy is

not approximated by a sum of pair interactions, it is clear that

adding one more myosin always increases the distortion

energy of the chain. Thus the overshoot effect is a conse-

quence of the neglect of triplet and higher-order interactions.

The chain model also shows an opposing effect at small n

which is not an artifact of the pair approximation; with the

interaction potential in Fig. 2, the chain is unable to open fully

for a single actin site between two bound myosins. This effect

changes the expected high-affinity binding law fromKS1/(11

KS1) to K1/(1 1 K1) where K1/KS1 ¼ expf�b[A 1 V(2)(1/

n)]g# 1. Taken together, these effects imply that the second-

order affinity ~KKS1 cannot be correctly estimated from

experimental binding curves by fitting the high concentration

region to KS1/(1 1 KS1). Rather, the whole curve should be

fitted to Eq. 20 or its counterpart for the tropomyosin-troponin

system. The reliability of the pair approximation can then be

assessed by the degree of overshoot.

It is desirable to have a general method for characterizing

cooperative binding curves, without invoking a specific

model. The value of KS1 at the point of inflection in the

binding curve can be interpreted as a switching affinity K*.

However, the slope of the curve at this point reflects the

degree of binding as well as the tightness of the switch and is

therefore not a unique measure of cooperativity. One

approach is to construct a Hill plot (Hill, 1913), which is

based on the approximate binding fraction xn/(11 xn) where
x } KS1 in this context. Hill plots for the binding curves of

Fig. 4 are shown in Fig. 5. Each plot has a characteristic

sigmoidal shape, so that the slope is not constant but varies

with KS1. In fact n � 1 at low and high values of KS1,

reflecting first-order binding kinetics with or without

inhibition, whereas larger values are found in the switching

region KS1 ; K*. The customary definition of the Hill

coefficient, as the slope at half activation (zero ordinate),

underestimates the maximum slope if K* \ 1, and in this

article the Hill coefficient is defined as the maximum slope of

the Hill plot. Even so, the Hill coefficients from Fig. 5,A and

B generally underestimate the persistence number n, which

is the basic measure of cooperativity in the present model,

and a different kind of data analysis is required.

A general method for quantifying the degree of cooper-

ativity in an autocooperative binding curve is presented in

the Appendix. Cooperative binding curves which switch

from one affinity to another as a function of enzyme con-

centration x can be characterized by deriving an associated

switching function F(x). The point of inflection of this

function determines the switching concentration x* and the

corresponding affinity K*. The slope S* at this point is

a useful index of cooperativity if 1=~KKS1 is used as the unit

of concentration. The relationship between the switching

parametersK*, S* and the parameters A, n of the continuous-
flexible-chain model are tabulated in this Appendix. In

particular, the empirical relation n � S* (Eq. A4) is usually

accurate to within 10%. The same method also extracts the

apparent second-order affinity at high concentrations, which

falls below ~KKS1 at small persistence numbers as expected.

FIGURE 5 Hill plots corresponding to Fig. 4 for the bound myosin

fraction u against myosin affinity KS1. The Hill coefficient nH, defined as the

maximum slope of the Hill plot, is generally less than the persistence number

n (nH ¼ 1.1 and 1.9 for n ¼ 1 and 5, respectively, in A) but also increases

with kink energy A (nH ¼ 2.6 and 3.8 for n ¼ 1 and 5 in B). The persistence

number is better estimated from the binding curves by the method described

in the Appendix. The plots are indexed as described under Fig. 4.
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When A is zero, myosin affinity for actin is not inhibited

by the chain, and the bound fraction is equal to KS1/(1 1

KS1). This result is duplicated numerically as A ! 0.

However, the calculation is technically invalid when A ¼
0 because the transfer matrix then has rank r, the top row

being K times the sum of the remaining rows.

The model predicts that the extent of myosin binding

depends on free myosin concentration [S1] and second-order

affinity ~KKS1 only through their product KS1 ¼ ~KKS1½S1� (the
first-order affinity). For specific proteins, the second-order

affinity is fixed and titrations are performed against [S1], but

the theory applies equally to the binding of different myosins

at the same concentration. For this reason, model curves are

plotted against KS1. The second-order affinity refers to

binding at high concentrations, in the absence of inhibition.

EXPERIMENTAL BINDING CURVES

Myosin binding data for various regulated actin systems have

been fitted by the CFC model. As this data has already been

fitted by the rigid-regulatory-unit model of McKillop and

Geeves (1991), it is convenient to discuss the fits in relation

to the parameters of this model, namely KT (equilibrium

constant between closed and open states) and nU (number of

actin sites per unit). Numerically, KT tracks the Boltzmann

factor exp(�bA) of the chain model, although the latter

quantity is usually larger. If the regulatory unit is equivalent to

a single chain kink in the CFC model, then nU ¼ 2n 1 1. In

fact, this condition is not observed and the comparison

highlights an essential difference between the models.

Skeletal tropomyosin

Fig. 6 A shows myosin-S1 binding curves of Maytum et al.

(1999) against free S1 concentration to actin-Tm and actin-

Tm-Tn filaments, and fitted curves generated from Eq. 20.

The fitting process was well-conditioned and gave unique

optimum values of the three adjustable parameters ~KKS1; A
and n, summarized in Table 2. Myosin kink energy A is

typically 1.6 kBT, so exp(�bA)¼ 0.22 compared withKT¼
0.15. Both curves are fitted by similar values of the second-

order affinity ~KKS1 in the absence of chain distortion. The

persistence length is increased by adding troponin if calcium

is present at 0.1 mM or more. The corresponding kink sizes,

namely 6.5 and 8.4 for A-Tm and A-Tm-Tn1Ca re-

spectively, should be compared with unit sizes of 7 and 11

from the rigid-unit model.

The fits show that the persistence length of the tro-

pomyosin chain is increased by troponin, but not to the

extent indicated by the McKillop-Geeves model. This may

be due to the dynamic nature of chain kinks in the CFC

model. Kink size 2n 1 1 and unit size nU should be equal

only at low myosin concentrations where bound myosins are

well separated and their associated kinks do not overlap. At

higher concentrations, myosin kinks begin to overlap and the

correlation length of the multipally kinked chain increases

with the density of kinks. Thus the apparent unit size may

correspond to a concentration-averaged correlation length.

The dynamic nature of chain kinks implies that the dis-

crepancy between these measures is bigger in systems with a

high persistence length, as observed.

Other actin systems

Myosin binding data of Maytum et al. (2001) for actin-

tropomyosin from smooth muscle and nonmuscle cells,

which contain no troponin, are also fitted by the chain model.

These systems use structurally different tropomyosins,

which may be shorter than skeletal tropomyosin. A key

assumption of the present model, that these molecules

interact to form a continuous semiflexible chain, can be

tested by using A-Tm constructs with a common actin

structure and tropomyosins of different lengths.

FIGURE 6 Experimental myosin binding curves versus free S1 concen-

tration for regulated actin systems and curves of best-fit to the CFC model.

(A) from skeletal muscle (Maytum et al., 1999) and (B) from nonskeletal

actin-tropomyosin filaments as listed (Maytum et al., 2001). Fitting

procedures and values of fitted parameters are given in Table 2. For

filaments from smooth muscle, the data falls below the fitted curve at the

highest concentrations used.
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Fitted binding curves for tropomyosins from smooth

muscle, fibroblasts, and two kinds of yeast tropomyosin are

shown in Fig. 6 B; the fitted parameters are also in Table 2.

In contrast to skeletal tropomyosin, we find kink sizes

significantly greater than the length of the tropomyosin

molecule in all four systems, and especially for smooth-Tm

and fibroblast-Tm where the kink size is almost twice the

monomer length. Thus, actin-tropomyosin systems exist

where the tropomyosins behave as a continuous semiflexible

chain.

In these systems also, the kink size obtained from the CFC

model generally tracks the unit size obtained from the rigid-

unit model (Table 2; see also Maytum et al., 2001). There is

also a general correlation between values of exp(�bA) from
myosin kink energy A and the closed-to-open equilibrium

constant KT of the rigid-unit model; both quantities are two

to three times bigger for yeast-Tm relative to skeletal-Tm,

although the kink sizes (and unit sizes) are similar. In the

CFC model, the reduced value of A for yeast-Tm can be

produced by a 25% drop in kink angle f1, say by 5–78. As

the myosin binding interface is the same in both systems, this

shift implies that the resting position (f ¼ 0 in Fig. 1 B) of
the chain in yeast actin has shifted slightly toward the inner

domain. Cryo-EM studies (Lehman et al., 2000) suggest that

there is no shift in resting orientation. However, Table 2

predicts a similar small shift toward the inner domain for

smooth-muscle Tm, whereas Lehman et al. (2000) report

a large shift toward the outer domain. This discrepancy may

have a structural explanation, but the available binding data

for smooth-Tm was less well fitted (see text under Table 2),

and for this system the value of A may be unreliable.

Myosin binding data of Tobacman and Butters (2000)

for mutant tropomyosins with internal deletions suggests

that myosin kink energy has been raised, perhaps because

of a shift in the resting orientation of the chain toward the

outer domain of actin. Their binding curves for mutant

and wild-type tropomyosins should be compared with

those in Fig. 4, B and A respectively, with the same value

of n. Fitting the CFC model to their data should reveal

whether the persistence length is also altered by these

mutations.

In general, the fitted binding curves overshoot the curve

KS1=ð11KS1Þ expected in the absence of inhibition, by 1.5–
3% at KS1 ¼ 4: We have argued that this effect is an artifact

of the model, produced by the neglect of chain-induced

interactions between bound myosins not reducible to pair

interactions. Hence the best-fit value of the second-order

affinity ~KKS1 should be corrected upwards so that the

hyperbola KS1=ð11KS1Þ does not lie below the measured

binding curve; this procedure gives affinity corrections of the

order of 10% for the data presented here. It is desirable to

predict myosin binding curves from the chain model without

invoking the pair approximation. The inclusion of triplet

interactions complicates the transfer-matrix approach con-

siderably and a different methodology may be required; this

task should be addressed in the future.

In conclusion, the CFC model is able to generate similar

results to the rigid-unit model for the binding of S1 to

regulated actin systems. In addition, the optimum values of

fitted parameters appear to be consistent with thin-filament

structure within the assumption of a continuous semiflexible

tropomyosin chain.

DISCUSSION

Any discussion of the merits and predictive power of models

of thin-filament regulation inevitably reverts to the structural

assumptions underlying each model. The structural motiva-

tion for the CFC model is given in the Introduction and

under Fig. 1. As the key assumption of this model (that

tropomyosins act as a continuous semiflexible chain which

fluctuates about a single resting position in the absence of

myosin and troponin) runs counter to all previous regulatory

TABLE 2

Regulated actin system

(size of Tm molecule in

actin monomers)

Binding constant
~KKS1 (M�1)

Kink energy

bA

Kink size

2n 1 1 x2/N

Skeletal-Tm* (7) 2.2 3 107 1.6 6.4 6 0.2 (6.8) 0.11

Skeletal-Tmy (7) 2.2 3 107 1.7 6.6 6 0.2 1.6

Skeletal-Tm-Tn1Ca* (7) 1.7 3 107 1.6 8.4 6 0.2 (8.8) 0.12

Smoothy (7) 2.2 3 107 0.93 (10.0) �
Fibroblasty (6) 4.2 3 107 1.5 10.0 6 0.6 0.065

Yeast 1y (5) 7.9 3 106 0.95 6.6 6 0.2 0.045

Yeast 2y (4) 1.1 3 107 0.91 5.0 6 0.4 0.19

Fitting parameters and goodness-of-fit for myosin binding curves of Maytum et al. (*1999, y2001) for various actin-tropomyosin systems, fitted to Eq. 20.

Least-squares fitting was performed with the Levenberg-Marquardt method. Fits were made to raw data as shown and to data filtered by averaging both

coordinates over a centered running window of 50 points. Fitted parameter values were not significantly affected by filtering, but listed values of x2/N (chi-

squared per data point) are for filtered data, relative to a standard deviation of 0.02 for raw data points. Bracketed values of the kink size were obtained by

weighted fitting in favor of the lowest S1 concentrations, which did not change the fitted values of ~KKS1 and A. Where bracketed values are not given,

weighted and unweighted fits gave the same results. Values of ~KKS1 have not been corrected for the overshoot effect described in the main text.
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models, a closer look at the evidence is desirable before

returning to the models themselves.

The structural basis of regulatory models

The steric blocking model of Haselgrove and Huxley

supposed that individual tropomyosin molecules switched

between two discrete orientational states on actin, and did

not determine whether these regulatory units switched in-

dependently or not. Two discrete orientations are observed

but under different conditions: the closed state is observed in

the absence of myosin and the open state in the presence of

enough bound myosin to force all tropomyosins open. This

observation does not imply that each unit has two possible

resting orientations in the absence of myosin, as assumed by

all previous models except the alternative model of Hill et al.

(1980b). The observation of a third orientation, in the Tm-

Tn-Ca system only (Vibert et al., 1997), appears to confirm

the model of McKillop and Geeves (1993) in which three

orientational states of tropomyosin are always present, with

myosin and calcium (through troponin-I) acting as allosteric

effectors by changing the balance of equilibrium between

them (Lehrer and Geeves, 1998). More recent cryo-EM

studies of various actin-tropomyosin systems with no trop-

onin reveal only a single resting orientation; however, this

orientation may vary significantly with troponin and actin

isoforms (Lehman et al., 2000). Studies of filaments sparsely

decorated with myosin show a gradual shift in tropomyosin

position toward the closed state on moving away from the

border of a myosin-decorated area, as far as 100 nm (Vibert

et al., 1997). The spatial persistence of this effect is larger

than the persistence lengths estimated in this article, perhaps

because of hidden myosins. Similar effects are found in x-ray

diffraction studies of the thin filament in vertebrate muscle

stretched to zero overlap (Poole et al., 1995, 1996). The

corresponding effect on moving away from a bound

troponin-I has been reported by Lehman et al. (2001). Thus

there is reasonable evidence for a single resting orientation of

tropomyosin on actin, but with the capacity to depart from

that orientation by 10–208 in either direction in the presence

of bound myosin or troponin-I. On the other hand, a double

orientational potential well, with minima separated by an

energy barrier of order kBT, cannot be ruled out.

Evidence for semiflexible rather than rigid tropomyosins,

and for the end-to-end interactions required to make a chain,

is given in the Introduction. In fact, the observed flexibility

of polymeric Tm in solution implies a bending stiffness at the

lower end of values quoted in this article. It is possible that

tropomyosin is stiffened by electrostatic interactions with

actin, in addition to the postulated confining potential in Eq.

1. If end-to-end interactions are interpreted as an elastic link,

the resulting chain will appear homogeneous if the bending

stiffness of the link is similar to that between tropomyosin

residues. With troponin present, this may be achieved by

end-to-end interactions via troponin-T, which also links the

other components of troponin to tropomyosin and is required

for activation (Greaser and Gergely, 1971). The validity of

the CFC model for tropomyosin-only systems is less clear,

but is supported by comparing estimated kink sizes in

systems with tropomyosins of different length, as discussed

in the previous section.

Weakly-bound actomyosin states (Chalovich et al., 1991)

have not been incorporated in the chain model. This was done

for simplicity, and because these states are not populated at

the low myosin concentrations used for titrations. Neverthe-

less, a weakly-bound actin-myosin-products state may be an

intermediate in the ATP-hydrolyzing actin-myosin cycle, and

one can ask how it would be affected by tropomyosin in the

present model. Atomic reconstructions of the actin-myosin

interface suggest that weak-binding regions lie at negative

angles in Fig. 1 B, not substantially covered by tropomyo-

sin in its thermal fluctuations ;f ¼ 0, whereas the strong-

binding interface requires additional contacts over a wider

range of angles of both sign (Holmes, 1995;Hodgkinson et al.,

1997), requiring myosin to skew as well as tilt axially in the

force-generating transition (Corrie et al., 1999). Thus, only

strongly-boundmyosin states are inhibited by tropomyosin in

the closed state of the CFC model, as assumed by McKillop

and Geeves for the closed state of the rigid-unit model. In the

presence of a more strongly-bound final state, as expected for

nucleotide-free myosin and myosin-ADP (Geeves, 1991), the

weakly-bound state will not be populated significantly and its

omission should not be significant.

The quadratic angular confining potential used in Eq. 1 is

necessary for mathematical developments and is intended

only as a parody of orientational confinement of tropomyosin

by electrostatic interactions, which also provide radial

confinement. Hence the CFC model does not address

tropomyosin binding data, in particular the observation that

the binding of vertebrate tropomyosin to actin is increased

fourfold by one bound myosin-S1, or 47-fold when all seven

sites are occupied (Tobacman and Butters, 2000). This

suggests that when myosin binds to regulated actin, it

captures the tropomyosin chain at a point of contact after

displacing it to the open position (Fig. 1), leaving it pinned to

actin rather than free to make larger displacements; in fact

this assumption was made in developing the model. The

related observation that myosin-S1 binds four times more

strongly to actin-tropomyosin than unregulated actin implies

only that the second-order myosin affinity ~KKS1 of the model

is not transferable to unregulated actin. An operational

definition may not be available, since ~KKS1 was defined in the

absence of chain distortion and the chain must distort to

allow myosin binding at low density.

Outlook

The form of the myosin binding curve against myosin

concentration does not provide a complete test of the CFC

model, and can generally be fitted by all current models.
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Better tests are posed by 1), the calcium dependence of

myosin binding, which requires an explanation of its high

cooperativity and asymmetry as observed in the muscle fiber;

and 2), the calcium dependence of calcium binding to TnC,

which is more cooperative when the troponin complex is

bound to tropomyosin on actin and more cooperative again

with bound myosin present. These tests are addressed in the

accompanying article.

The available models can be ranked in order of com-

plexity, both conceptual and numerical (more complex

models generally contain more parameters). The McKillop-

Geeves model, despite its use of three regulatory states, is

perhaps the simplest as it divides the tropomyosin assembly

into independent rigid units, using four parameters in general

and three parameters for A-Tm and A-Tm-Tn1Ca systems;

in its current form this model does not make predictions as

a function of calcium level. The model of Hill, Eisenberg,

and Greene (1980a) has only two regulatory states,

equivalent to the closed and open states of the preceding

model, and identifies the tropomyosin molecule as the rigid

regulatory unit, but invokes state-dependent and calcium-

dependent interactions between units, requiring 17 param-

eters in all. This model has been applied to a variety of

experiments. Motivated by the modulation of actin-myosin

affinity by tropomyosin, the recent model of Tobacman and

Butters (2000) adds complexity by postulating a cooperative

conformational change in the actin filament. This four-

parameter model also fits myosin binding curves for different

filament systems.

What level of complexity in a mechano-kinetic model is

desirable? One way of answering the question is by reference

to molecular structure. In this sense, a model with in-

dependent regulatory units is inadequate when the unit size

does not match the tropomyosin molecule. The CFC model

is able to deal with filament systems with shortened

tropomyosins and show that the regulatory unit can be

dynamically determined and unrelated to the length of the

tropomyosin molecule. The Hill-Eisenberg-Greene models

apparently require calcium-dependent end-to-end tropomy-

osin interactions which cannot easily be interpreted in terms

of known interactions between calcium, TnC and TnT.

Devising mechanokinetic models which encapsulate key

features of the wealth of structural information on these

proteins will continue to be a major challenge.

On the other hand, the CFC and Tobacman-Butters

models have not been tested against a sufficient variety of

experiments. The CFC model needs to be developed further

to explore kinetic aspects of thin filament regulation, which

has been treated empirically by Razumova et al. (2000). The

time courses of myosin binding and tropomyosin movements

in A-Tm-Tn have been interpreted in terms of a regulatory

FIGURE 7 Derivative of the switching function F(K1) of the Appendix,

computed for the chain model with A ¼ 1.5 kBT. The abscissa is defined as

K1 [ ~KK1½S1� where the apparent second-order affinity ~KK1 is determined

numerically as described in the Appendix. For each value of the persistence

number n, the inset table gives the coordinates K*,S* of the maximum,

which characterize the cooperative binding curve, and ~KK1: When n[ 2, S*

is very close to n. The values of ~KK1 are within 2% of those predicted by the

expression expf�b½A1Vð2Þð1=nÞ�g:

FIGURE 8 Contour maps for the switching

variables K*(A,n), S*(A,n) of the Appendix,

computed for the chain model as functions of

its parameters A and n.
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unit of 10–12 monomers moving between discrete orienta-

tions (Geeves and Lehrer, 1994), but a similar kink size in

the CFC model might not be necessary.

APPENDIX: A SWITCHING FUNCTION FOR AN
AUTO-COOPERATIVE BINDING CURVE

Suppose an enzyme M binds auto-cooperatively to a substrate, so that M

binds with low affinity at a low concentration of M and binds with high

affinity at high concentration. We seek to characterize this transition by

a switching function F(x) which ranges from zero at low x to unity at high x,

where x ¼ [M]. The essential parameters of this function are the switching

concentration x* at which F(x) has a point of inflection, and the slope S* at

this point. x* is an inverse measure of the sensitivity of the transition to

enzyme concentration. S* measures intrinsic cooperativity, and 1/S* is the

range of concentrations over which switching occurs. In the context of this

article, the motivation for constructing a switching function is to estimate the

parameters of the chain model from a given binding curve without fitting to

the model.

An auto-cooperative binding curve, which switches from a weak binding

form with affinity ~KK� at small x to a strong binding form with affinity ~KK1 at

large x, can be described by the function

uðxÞ ¼ ð1� FðxÞÞ
~KK�x

11 ~KK�x
1FðxÞ

~KK1x

11 ~KK1x
; (A1)

where F(x) is a function which switches smoothly from zero for x � x* to

unity for x � x*. The binding curves predicted by our model are of this

form. The switching function for a given binding curve can be calculated by

the following procedure. An empirical partition function is first constructed

numerically from the integral form

lðxÞ ¼ exp

ðx

0

qðx9Þ
x9

dx9

� �
(A2)

of Eq. 18, where l(0) ¼ 1. The expected forms of l(x) at low and high

concentrations are straight lines of slopes ~KK6, which can be extracted

graphically once asymptotic straight-line behavior has been established. The

point of maximum slope locates the switching concentration x*. The

maximum slope S* of F(x) is a useful measure of cooperativity if defined

with respect to a dimensionless unit of concentration, such as first-order

affinity. For this purpose, F(x) should be plotted against the first-order

affinity K1 ¼ ~KK1x and S* defined as the maximum value of dF=dK1:

The switching function has been calculated for modeled and experimental

myosin-S1 binding curves. We describe results for the model curves of Fig.

4A. For this purpose, it is convenient to set x¼KS1 rather than [S1], which is

equivalent to setting ~KKS1 ¼ 1: Figure 7 shows the resulting plots of dF=dK1

and values of the switching parameters K*, S*. Their relation with the

parameters A,n of the chain model is shown graphically in Fig. 8, which

enables the latter to be determined numerically. The empirical relations

K�ðA; nÞ �
4bA

3bA1 8n
; S�ðA; nÞ � n (A3)

are generally accurate to 10%, though the second equation is unreliable

when bA[ 2.

Values of ~KK6 determined by this procedure were in good agreement with

those predicted from the expressions ~KK� ¼ expð�bAÞ and ~KK1 ¼
expf�b½A1V ð2Þð1=nÞ�g: The latter is generally close to unity except when

n � 1 and/or bA[ 2, when the chain is unable to open fully for actin sites

next to an occupied site. Thus ~KK1 is only a lower estimate for the

fundamental second-order myosin affinity ~KKS1, although the difference is

usually small if n[ 2.

A Fortran program for generating the switching function and values of
~KK6, K*, S* from an experimental binding curve is listed on the website

mentioned at the end of the Introduction.
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