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Nucleosome Repositioning via Loop Formation

I. M. Kulić and H. Schiessel
Max-Planck-Institut für Polymerforschung, Theory Group, Mainz, Germany

ABSTRACT Active (catalyzed) and passive (intrinsic) nucleosome repositioning is known to be a crucial event during the
transcriptional activation of certain eukaryotic genes. Here we consider theoretically the intrinsic mechanism and study in detail
the energetics and dynamics of DNA-loop-mediated nucleosome repositioning, as previously proposed by earlier works. The
surprising outcome of the present study is the inherent nonlocality of nucleosome motion within this model–being a direct
physical consequence of the loop mechanism. On long enough DNA templates the longer jumps dominate over the previously
predicted local motion, a fact that contrasts simple diffusive mechanisms considered before. The possible experimental
outcome resulting from the considered mechanism is predicted, discussed, and compared to existing experimental findings.

INTRODUCTION

The nucleosome, the most abundant DNA-protein com-

plex in nature, is the basic unit of eukaryotic chromatin

organization. It is roughly a cylinder of 6-nm height and 10-

nm diameter, consisting of a protein octamer core and 147

basepairs (bp) of DNA tightly wrapped around it in 1 and 3/4

left-handed superhelical turns. The genes of all higher or-

ganisms, ranging from simple ones such as yeast, to the

most elaborate, such as those of humans, are all organized

in long arrays of nucleosomes with short DNA segments

(linkers) of 50–100 bp interpolating between them, com-

parable to a beads-on-a-string chain (Widom, 1998; Kornberg

and Lorch, 1999; Wolffe, 1999). The higher order organiza-

tion of these units, being most probably a solenoid or zig-zag,

crossed-linkerlike fiber with a 30-nm diameter, is still under

great dispute, although it received increasing theoretical and

experimental support in recent years. Above that scale of

organization, the higher order structures which link the 30 nm

to the final big-X-like structure, the packed chromosome,

are still unknown. Although there are several biologically

motivated speculations about the chromosome, its definite

structure remained a puzzle for the last 20 years, defying all

biophysical, biochemical, and molecular genetics efforts to

resolve it because of its intrinsic softness and fuzziness.

An additional obstacle for understanding the chromatin

structure is the fact that it is highly dynamic on all or-

ganization scales. Starting at the macroscopic chromosome

level we see that its structure can strongly vary throughout the

cell cycle on timescales of hours or days. Below that on

timescales of seconds and minutes, the structure of the 30-nm

fiber itself is subjected to great variations due to transcription,

replication, biochemical modification, and other dynamic pro-

cesses. Finally, at the lowest organization level, the nucleo-

some itself has been shown to be a dynamical structure being

moved along the DNA by chromatin remodeling complexes

on expense of ATP (Vignali et al., 2000; Peterson, 2000).

Interestingly, it was experimentally observed (Beard, 1978;

Spadafora et al., 1979; Pennings et al., 1991; Meersseman

et al., 1992) that nucleosomes can even move autonomously

on short DNA segments. This intrinsic repositioning behavior

was shown to be strongly temperature-dependent. At room

temperature it occurs roughly on timescales of ;1 h, indi-

cating the existence of significant energetic barriers. Besides

the fact that the repositioning does indeed occur and is of in-

tramolecular nature (the nucleosome stays on the same DNA

segment), the underlying scenario could not be figured out.

It was speculated by Pennings and co-workers (Pennings

et al., 1991; Meersseman et al., 1992) that the mechanism was

some type of nucleosome sliding or corkscrew motion. An

alternative explanation which appears to be more consistent

with the discrete jumps and large barriers observed by

Pennings and co-workers has been recently proposed by

Schiessel et al. (2001). In this model, the basic step in the

repositioning process is a partial unwrapping of DNA from

the very ends of the nucleosome (Polach and Widom, 1995;

Anderson and Widom, 2000), followed by a backfolding of

DNA with a small 10-bp mismatch (compare to Fig. 1). The

result of this process is the formation of a small DNA bulge or

loop on the octamer surface. Once trapped on the nucleosome

surface, this small defect carrying some discrete quantum of

DNA extra length (a multiple of 10 bp, the DNA repeat length)

can propagate by diffusion in both directions. If the loop

happens to surround the nucleosome and comes out at the

opposite side (with respect to where it was created), the

nucleosome is eventually repositioned by a distance given by

the pulled-in extra length. The energetic barrier and rates of

repositioning were computed and were shown to be consistent

with the experiment by Pennings and co-workers (Pennings

et al., 1991; Meersseman et al., 1992). Moreover, the 10-bp

discrete step repositioning observed in the experiment

(discrete bands, no 1-bp spaced intermediates) came out as

a natural consequence of the loop length quantization. The

latter is enforced by the strongly preferred DNA minor

groove-octamer interaction and the discrete binding sites at
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the nucleosome surface as deduced from the crystallographic

structures (Luger et al., 1997).

In Schiessel et al. (2001), small loops with short excess

length of typically ;1 � 2 3 10 bp were considered, and

it was shown that the looping energies involved increase

rapidly with the excess length, implying that only the

shortest (10-bp) loop contributes significantly to the re-

positioning mechanism. Consequently, the model predicts

a classical discrete random walk with a jump size of 10 bp,

—instead of a 1-bp motion that would be implied by a

sliding/corkscrewing mechanism. Apart from this discrep-

ancy in the elementary step size, both models predict very

similar behavior: a local one-dimensional diffusive motion

along the DNA chain.

In this article we will carefully reanalyze the idea of loop-

mediated repositioning by applying the classical tool of the

Kirchhoff kinetic analogy, which provides us with analytic

solutions of the loop problem and enables us to look at loops

of any given excess length. The main outcome of our study

will be a different picture of the repositioning that physically

results from the looping mechanism: on short up to mod-

erately long segments of up to 2 � 3 3 lP (lP: DNA per-

sistence length), the repositioning occurs via jumps, with

the largest possible loops being the most dominant ones in

contrast to short 10-bp steps as conjectured before. For longer

and very long (infinite) DNA segments there is an optimal

jump size of order ;O(lp) and the behavior is superdiffusive

in contrast to the previously predicted diffusive mechanism.

As we will see below, these predictions allow us to clearly

distinguish between different repositioning mechanisms in

experiments expected to be performed in near future (S.

Mangenot, private communication).

ENERGETICS OF LOOPS

Let us now consider the energetics of an intranucleosomal

DNA loop. We will describe it within the framework of the

Euler-Kirchhoff theory for the static equilibrium of rods

(Fig. 2). For simplicity, we can in first approximation assume

the nucleosome and the loop-forming DNA to be in one

plane and the DNA to be free of any twisting deformation.

(The first assumption is justified by the fact that the loop

touches the octamer surface at roughly the same height on

both sides, i.e. the tangents of the loop at its boundaries are

close to being in the nucleosome plane. Because we will be

interested in energy-minimizing states only, we neglect the

twist containing shapes that always show a higher elastic

energy.) In this case the energy cost for the loop formation

is simply divided into two components—the planar elastic

DNA-bending and a histone octamer-DNA interaction:

Utot ¼ Ubend 1Uads: (1)

The bending energy (within the linear elasticity approxima-

tion) can be written in terms of the local DNA curvature k:

Ubend ¼
A

2

ðL=2

�L=2

k2ðsÞds; (2)

with A� 50 nm 3 kBT being the bending rigidity of DNA at

room temperature and physiological salt concentrations

(Hagerman, 1988). The rod is assumed to be parameterized

by its contour length parameter s ranging from �L/2 to L/2,

with L being the total length of the loop. The latter can be

expressed in terms of two independent quantities: the excess

length DL and the nucleosome opening angle a (Fig. 2):

Lða;DLÞ ¼ 2aR1DL; (3)

FIGURE 1 The basic problem setting: how does the histone octamer

move along the DNA template? (Bottom) The DNA loop mechanism as

proposed in Schiessel et al. (2001).

FIGURE 2 The Kirchhoff kinetic analogy between the spinning top and

the bent/twisted rod depicted for a special case: the plane pendulum–planar

rod equivalence. The inset shows how an intranucleosomal loop can be

constructed by inscribing the octamer (gray disk) into the bent rod. The

nucleosome opening angle 2a accounts for the adsorption energy cost (see

text for details).

3198 Kulić and Schiessel

Biophysical Journal 84(5) 3197–3211



where R � 4 nm is the effective nucleosome radius, or more

precisely, the distance from the center of the nucleosome

to the central DNA axis. Because the DNA can enter the

nucleosome only in quantized orientations (with its minor

groove phosphates) and bind only to discrete positions on the

protein surface (Luger et al., 1997), the excess length DL¼ n
3 hDNA is a good approximation to an integer multiple of the

DNA repeat length hDNA ¼ 3.4 nm.

The second part Uads in the total energy Eq. 1 comes

from the predominantly electrostatic interaction between

the positively charged protein surface and the negatively

charged DNA. It can be roughly measured from experiments

probing the competitive protein binding to nucleosomal

DNA (Polach and Widom, 1995; Anderson and Widom,

2000). Neglecting the discreteness of charges (binding sites)

on the histone octamer surface, it can, in first approximation,

be assumed to be proportional to the opening angle a and the

adsorption energy density eads:

Uads ¼ 2aReads; (4)

with eads � 0.5 � 1.0 kBT/nm as roughly extracted from

Polach and Widom (1995). (In Eq. 4 we assume that the

interaction is only short-ranged (contact interaction), which

is justified by the very short Debye screening length of �1

nm under physiological salt conditions. We note here also

that eads is the net adsorption energy per length, i.e., the

difference between the pure adsorption energy and the

bending energy density A/2R2.) Here and in the following,

we assume an intermediate value of eads ¼ 0.7 kBT/nm.

Ground states of trapped loops

To compute the ground state for a trapped intranucleosomal

loop, we have to consider shapes that minimize the total

energy 1 under two constraints.

The excess length DL is prescribed. Therefore, we have

the relation Eq. 3 between the opening angle and the total

loop length L:

DL ¼ L� 2aR ¼ const: (5)

At the two ends s ¼6L/2, the rod has to be tangential on an

inscribed circle of given radius, representing the nucleosome

(because of the symmetry, we have to impose the conditions

only on one side):

R ¼
���� yðL=2Þ
�x9ðL=2Þ

���� ¼ const: (6)

Here, xðsÞ and yðsÞ are the Cartesian coordinates of the

rod axis as a function of the arc-length parameter s (Fig. 2).

The absolute value in the second constraint needs to be

introduced formally for dealing with crossed rod solutions

(which we consider later on), and can be omitted for simple

uncrossed loops.

For an analytical description it is convenient to use the

angle u ¼ uðsÞ between the DNA tangent and the y-axis

(compare to Fig. 2) as a variable describing the DNA

centerline. In this case the integrated sine (cosine) of uover the

arc-length parameter s gives the x (y) Cartesian coordinate of

any point along the rod, and the squared derivative ðu9Þ2
gives

the rod curvature k. Furthermore, the nucleosome opening

angle a is simply related to u at the boundary:

a ¼ uðL=2Þ for simple loops

p � uðL=2Þ for crossed loops
:

�

The two constraints Eq. 5 and Eq. 6 can be rewritten in

terms of u and then be introduced into the minimization by

two Lagrange multipliers m1/2. We then arrive at the fol-

lowing functional

ÛUtot ¼ A

ðL=2

0

ðu9Þ2
ds1 2aReads 1m1½L� ðDL1 2aRÞ�

1m2

ðL=2

0

cos u ds� R sina

� �
: (7)

Here, the first line is the bending plus adsorption energy

contribution, and the second and third lines are the imposed

length and tangency constraints. Eq. 7 can be rearranged in

a more familiar form:ðL=2

0

ðAðu9Þ2
1m2 cos uÞds1 b:t: (8)

Here, b.t. denotes the boundary terms (depending on uðL=2Þ
only) that obviously do not contribute to the first variation

inside the relevant s interval. The integral in Eq. 8 is evi-

dently analogous to the action integral of the plane pendu-

lum, with Aðu9Þ2
corresponding to the kinetic and �m2 cos u

to the potential energy of the pendulum. The latter analogy is

indeed nothing but the Kirchhoff’s kinetic mapping between

deformed rods and the spinning top, which contains our

present problem as a simple special case. The Kirchhoff’s

analogy states that the equilibrium conformations of weakly

deformed thin rods can be mapped on the time dynamics of

a symmetric spinning top subjected to a gravitational force. It

has been repeatedly applied (with or without direct reference

to Kirchhoff) to DNA-related problems during the last 20

years (e.g., see Benham, 1977, 1979; Le Bret, 1979, 1984;

Coleman et al., 1995; Swigon et al., 1998; Tobias et al.,

2000; Shi and Hearst, 1994; Fain and Rudnick, 1997, 1999;

Schiessel et al., 2000). For a nice visual review on the spin-

ning-top-elastic-rod analogy, the reader is referred to Nizette

and Goriely (1999), where the general solutions together

with a kinetic dictionary (time t $ length parameter s;
gravitational force $ rod tension m2; axis of revolution $
tangent vector; etc.), are also provided.

The nice thing about Kirchhoff’s analogy, apart from its

esthetic content, is that it provides us with explicit expressions

for DNA shapes subjected to twist, bending, and various

geometric/topological constraints. In our simple planar and

twistless case, the spinning top simply reduces to the simple

plane pendulum. The conformations of the corresponding
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planar and twistless rods, also called the Euler elastica, are

most generally given by

cos uðsÞ ¼ 1 � 2msn2 s

l

����m
� �

; (9)

which can be integrated to obtain the general planar rod

shape in Cartesian coordinates:

xðsÞ ¼ 2
ffiffiffiffi
m

p
lcn

s

l

����m
� �

; (10)

yðsÞ ¼ 2lE
s

l

����m
� �

� s; (11)

with sn, dn, cn(.jm) being the Jacobi elliptic functions with

the parameter m and

EðujmÞ ¼
ðu

0

dn2ðvjmÞdv (12)

denoting the incomplete elliptic integral of the second kind in

its practical form. (Some useful formulas and relations for the

elliptic functions and integrals are briefly sketched in Nizette

and Goriely, 1999, and found in Abramowitz and Stegun,

1972, in full depth.) The two parameters m[0 and l[0 in

Eqs. 10 and 11 characterize the shape and the scale of the

solution, respectively. These solutions are up to trivial plane

rotations, translations, reflections, and shifting of the contour

parameter s ! s1 s0, the most general planar Euler elastica

corresponding to the plane pendulum. For different param-

eters m, one obtains different rod shapes corresponding to

different solutions of the spinning top (plane pendulum)

motion (Nizette and Goriely, 1999). The casem¼ 0 describes

a pendulum at rest corresponding to a straight rod; for 0\m\
1 one has strictly oscillating pendulums corresponding to

point symmetric rod shapes, where the turning points of

pendulum have their counterparts in points of inflections of

the rod. For m\0.72, the rod is free of self-intersections like

the one depicted in Fig. 2, and for m larger than 0.72, the rods

show varying complexity with a multitude of self-intersec-

tions. For m¼ 1, one has the so-called homoclinic pendulum

orbit corresponding to a rod solution having only one self-

intersection and becoming asymptotically straight for

s ! 6‘ (for details, see Nizette and Goriely, 1999). For

even higher values of m, i.e., for m $ 1, we have revolving

pendulum orbits corresponding to rods with self-intersections

lacking point symmetry and points of inflection. (Usually the

parameter m is artificially assumed to be confined to 0 #m#

1, but by the Jacobi’s real transform for elliptic functions—see

Abramowitz and Stegun, 1972—they stay well defined even

for m[ 1). Finally, the limiting case m ! ‘ corresponds to

the circular rod shape.

To describe a trapped loop, we need to use Eqs. 10 and 11,

imposing the constraints of Eqs. 5 and 6. It turns out to be

more convenient to replace the parameter set (l,m,L) with the

new (but equivalent) set ðl;m;s ¼ L=2lÞ, where we in-

troduced the new dimensionless parameter s, which we call

the contact parameter. (A more intuitive parameter set,a,m,l,

using the opening angle a ¼ a(s,m), produces technical

problems with non-uniqueness of loop representation.) From

Eq. 6 together with 10 and 11, we can immediately extract the

scaling parameter l and the opening angle, in terms of the

contact parameter s and the shape parameter m:

lðs;mÞ ¼ R

���� snðsjmÞdnðsjmÞ
2EðsjmÞ � s

����; (13)

aðs;mÞ ¼ arccos½6ð2dn2ðsjmÞ � 1Þ�; (14)

with6 ¼ signð2EðsjmÞ � sÞ: (15)

Plugging this back into Eq. 5, we obtain the final form of the

implicit constraint

DL

2R
¼ s

���� snðsjmÞdnðsjmÞ
2EðsjmÞ � s

����
� arccos½6ð2dn2ðsjmÞ � 1Þ�: (16)

The curvature kðsÞ and the bending energy Eq. 2 follow from

the explicit solution Eq. 9 to be

kðsÞ ¼ 2
ffiffiffiffi
m

p

l
cn

s

l

����m
� �

;

Ubend ¼
4mA

l

ðs

0

cn2ðtjmÞdt; (17)

¼ 4A

l
½ðm� 1Þs1EðsjmÞ�: (18)

The latter expression, together with Eqs. 1, 4–15, gives the

final expression for the total energy with the sign chosen 6

as in Eq. 15.

Utotðs;mÞ ¼
4A

R

���� ½2EðsjmÞ � s�½EðsjmÞ1 ðm� 1Þs�
snðsjmÞdnðsjmÞ

����
1 2Reads arccos½6ð2dn2ðsjmÞ � 1Þ�: (19)

Now our problem of finding the ground-state loop for a given

excess length DL reduces to a two-variable (s,m) minimi-

zation of Eq. 18 under the constraint Eq. 16. This final step

has to be performed numerically; we present the results of

this minimization in the next chapter.

LOOP ZOOLOGY: SIMPLE AND
CROSSED LOOPS

We can scan now through thes�m parameter plane and look

at the shapes of the solutions and their energies. In Fig. 3, we

see a small (but most important) part of the whole parameter

space and the corresponding different loop geometries. The

dashed lines indicate parameter values which lead to constant

excess length DL¼ 10 3 3.4 nm (corresponding to 100 bps)

in accordance with the constraint Eq. 16. The shapes 1–7 are

examples of such 100-bp loops with different geometries. The

whole parameter plane is subdivided by separation lines

(solid) into regions of structurally different solutions. The
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large region starting at s ¼ 0 contains exclusively simple

loops (like 1, 2, and 3) without self-intersections and

nucleosome penetration. Above that simple-loop region we

find loops with a single self-intersection (4, 5, and 6), and to

the right the loops penetrate the nucleosome, like loop 10.

There are also three other regions with single and double

crossing points (7, 8, and 9) where the loop can also be on the

‘‘wrong’’ side of the nucleosome, as in Eqs. 7 and 8.

We are interested in the energy-minimizing loops and the

underlying minimal energies as functions of the excess

length DL. A density plot of these energies as function of

the parameters s and m together with the corresponding lines

of constant DL (with DL ¼ 1, 2, . . . , 50 3 3.4 nm) is given

in Fig. 4. As can be seen from Fig. 3 there are, for a given

DL, different branches of (s,m) values corresponding to

uncrossed, simply crossed, and other exotic structures. Of all

these structures for the short excess length DL 20 3 3.4 nm,

the energetically dominant ones are the simple (uncrossed)

loops, which we study first. Loops with larger and excess

length form crossed structures, and are studied in Crossed

and Entropic Loops, found further below.

Simple loops

For simple uncrossed loops, it is a straightforward numerical

task to minimize Eq. 18 under the constraint of constant

excess length, Eq. 16. For eads ¼ 0.7 kBT/nm and all the other

parameters as above (A ¼ 50 nm 3 kBT, R ¼ 4 nm), the

ground-state energy Umin as a function of the excess length

DL is shown in Fig. 5 (forDL# 60 nm; for longerDL-values,

crossed loops are more favorable, as discussed in the next

section). Remarkably, we find that the loop energy is

nonmonotonous: for small DL Umin increases with DL as

ðDLÞ1=3
(in accordance with Schiessel et al., 2001, where only

small loops were studied). At some critical excess length DL
¼ DLcrit (which is approximately DLcrit � 2.2 3 3.4 nm for

eads¼ 0.7 kBT/nm), the loop energy reaches a maximum (here

Umin(DLcrit) � 26 kBT ). Beyond that, the energy decreases

with increasing DL.

In the following we show how this behavior can be

explained on the basis of the loop geometry. Naively, one

might argue as follows; for excess lengths shorter than the

persistence length of DNA, it is increasingly difficult to store

additional length into the loop because it requires increasing

DNA deformation. On the other hand, for loops longer than

lP, the bending energy contribution becomes very small, and

hence one expects such ground-state loops relaxing with

increasing DL. However, the reason for occurrence of a

maximum of Umin around �2 excess DNA lengths, a value

which is considerably smaller than the persistence length,

is not obvious. To understand this finding, one has to go

beyond the simple handwaving heuristics and take a close

look at the details of the loop geometry.

To this end, we introduce here a simple approximation

technique that leads to explicit expressions which can be more

easily handled than the exact, yet complicated expressions

given above. We call this method the circle-line approxima-
tion, and give a detailed exposition in the Appendix. As we

will see, this method is quite accurate and, at the same time,

very intuitive.

FIGURE 3 The set of possible ground-state solutions is

characterized by two parameters—the contact point

parameter s and the loop shape parameter m. Solutions

with constant excess length DL (here 10 3 3.4 nm) are

located along the dashed lines (e.g., loops 1–7). The solid

lines separate loops with different geometric character-

istics: simple (1, 2, and 3), crossed (4, 5, and 6), and

‘‘exotic’’ (7, 8, 9, and 10) loop shapes.
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Looking at the geometrical shapes of the loops in Fig. 3,

we notice that each of them is subdivided into several sections

of very high and very low curvature (see also Eq. 17). In first

approximation, we replace the high curvature regions by

sections of circles, and the low curvature regions by straight

lines (compare to Fig. 6). Furthermore, to keep the smooth-

ness we assume that the lines are tangents to the circles.

Generally, to have reasonable approximations of all possible

loop shapes, we would need to consider compositions of seve-

ral circles and lines (see loops 3, 6, and 7). However, if the

adsorption energies are not too high, i.e., if the opening angle

a is soft enough� and does not impose such a severe bending

as in loop 3, such multiply-bent loops will not be relevant as

ground-state solutions. As it turns out for our problem we

already obtain a quite-good approximation by assuming that

the loop consists of a single circular arc and two lines only. It

is characterized by two quantities : 1), the arc radius r, and 2),

the nucleosome opening angle a (compare to Fig. 6 and

Appendix). With these assumptions and after some elemen-

tary geometry, the constraint Eq. 5 becomes simply:

FIGURE 4 Density plot of the total loop energy Eq. 18

(grayscale level sets) as a function of s and m (same

parameter range as in Fig. 3). The white contours denote

lines of constant excess length DL¼ 1, 2, 3, 5, 10, 20, 50 3

3.4 nm. For given excess length, the ground state is the

point on the corresponding white line with the darkest

background (note the different branches for given DL). The

parameters are eads ¼ 0.7 kBT/nm, A ¼ 50 nm 3 kBT, and

R ¼ 4 nm.

FIGURE 5 The ground state loop energy plotted versus

the excess length DL. Note the energy maximum occurring

for shorter loops. For much longer loops (;DL ¼ 60 nm)

a transition from simple uncrossed to crossed loop shapes

occurs leading to a kink in Umin(DL). In the regime of low

DLK lP, the elastic energy prevails strongly over entropy,

whereas for large loops, the entropy starts to dominate the

behavior, producing a shallow energy minimum in the

crossover regime which roughly defines the predominant

loop size.
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DL ¼ 2ðR� rÞðtana� aÞ ¼ const: (20)

Note that the (more complex) second constraint Eq. 6 is

eliminated through the ansatz per se. The total loop energy is

given in terms of the loop radius r and the opening angle a,

Utotða; rÞ ¼ A
a

r
1 2aReads;

and by applying the constraint Eq. 20 (which this time can be

solved explicitly), we obtain Utot in terms of a and given DL,

UtotðaÞ ¼ 2a A
tana� a

2Rðtana� aÞ � DL
1Reads

� �
; (21)

which is explicit in a. We note that this approximation for

Utot is only reasonable for 2Rðtana� aÞ[DL; i.e., for not

too small an a (versus DL), otherwise the bending con-

tribution diverges or even becomes negative (the latter is

obviously absurd). The reason for this is that for very small

angles a, compared to DL, uncrossed circle-line loops can-

not exist for geometrical reasons. There, this most basic

approximation breaks down, and we would have to

approximate the loop by more than one circular segment.

But as mentioned above, such loops (a small compared to

DL) are not candidates for the ground state for moderate

eads ;Oð1Þ; and we therefore dispense with giving a discus-

sion of this case.

The nice thing about Eq. 21 is that despite its simplicity

and approximate nature it reproduces the position of the

maximum in Fig. 5 quite well. We find the condition for the

critical excess length DLcrit from a simple geometric dis-

tinction between two loop shapes: the subcritical loop (Fig. 6

a) with its tangents not being parallel to the x-axis (a¼ p/2),

and the supercritical loop (Fig. 6 b) having two or more

tangents parallel to the line a ¼ p/2 . Suppose now that we

add excess length to a subcritical loop by keeping the angle

a ¼ const. Obviously the loop energy increases because the

loop radius r becomes smaller. On the other hand, in the

supercritical case, we have the opposite situation: the loop

energy decreases with increasing DL. This is simply because

we could cut the loop at two points (XL and XR in Fig. 6),

introduce there the additional length (without changing the

energy), and then relax the shape by letting it evolve to the

new equilibrium while keeping a ¼ const. Thus, we can

obtain the condition for the critical excess length DLcrit by

assuming that the corresponding minimum a-min of Utot just

crosses the critical line p/2 line, i.e., aminðDLcritÞ ¼! p=2 for

the searched DLcrit:

d

da

����
a¼p=2

UtotðaÞ¼
!

0; (22)

which can be solved for DLcrit:

DLcrit ¼ 4R

p
1

8R3

pA
eads: (23)

The latter can now be inserted in Eq. 21, leading to

Ucrit
tot ¼ pA

2R
1pReads: (24)

For the given values of R, A, and eads (R¼ 4 nm, A¼ 50 nm

kBT, and eads ¼ 0.7 kBT/nm), we obtain DLcrit ¼ 7.37 nm

and Ucrit
tot ¼ 28:4 kBT , which is in satisfactory agreement

with the exact numeric results (DLcrit ¼ 7.19 nm and Ucrit
tot ¼

26:7 kBT). More generally, for not-too-high adsorption

energies (eads ¼ 0.5 � 2.0 kBT/nm), the circle-line ap-

proximation works well, and Eqs. 23 and 24 reproduce the

exact positions of the critical point with, typically, a 5–15%

accuracy.

For an explicit parametric representation of the minimal

energy curve within the circle-line approximation, which in

particular implies the upper results, the reader is referred to

the Appendix, where the usefulness of this approach is also

demonstrated for some other examples.

Crossed and entropic loops

A closer inspection of Fig. 4 shows that the ground state of

loops switches from simple uncrossed loops to crossed loops

when one reaches an excess length ;50 nm (note that this

switching behavior was previously observed by Coleman

et al., 1995 for DNA held at the ends at different orientations;

the mechanical (T ¼ 0) stability of crossed/uncrossed struc-

tures was considered by Tobias et al., 2000). However, as

can be seen for the crossed structures 4–6 in Fig. 3, these

loops have a self-penetration at the crossing point. Therefore,

a planar theory is, in principle, not sufficient to describe such

structures. One possible formal cure for this problem would

be to leave the plane geometry and to consider the rod’s self-

contacts with the corresponding point forces, etc., in three

dimensions, as done by Coleman et al. (2000) in a general

theory of rod self-contacts. However, such a procedure leads

to a significant loss of transparency, not only because of

the third dimension entering the scene but also due to the

necessity to subdivide the rod into different regions with

FIGURE 6 Two generic types of simple loop geometries (in the circle-line

approximation): (a) the subcritical loop with opening angle a\p / 2, and

(b) the supercritical loop with a[p / 2. In the former case, the introduction

of further excess length leads to an energy increase, but in the latter case, to

a relaxation of stress; the introduction of additional length at points XL and

XR followed by a relaxation of the structure obviously decreases the total

energy.
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different forces acting in each of them. Instead of following

Coleman et al. (2000), we decided to treat the self-interaction

in a perturbative manner as follows. If the self-contact point

is not too close to the nucleosome, the rod is not severely

deflected out of the plane by its self-interaction. Thus, the

loop is nearly planar, with some out-of-plane bending in

Z-direction of the rod sections between the nucleosome and

the crossing point. This costs some additional bending

energy, Udef, that is approximately given by (see Appendix):

Udefðs;mÞ ¼
2A

R

r arctan
r tanaðs;mÞ

tan2 aðs;mÞ � r2

� �
tan2 aðs;mÞ � r2

: (25)

Here, r ¼ d/R with d � 1 nm denoting the DNA radius. We

neglect the slight twisting of the rod induced by the non

planarity of the DNA and consider the bending only. The

deflection energy Eq. 24 can be phenomenologically incorpo-

rated into the model by simply adding it to Eq. 18 as a cor-

rection term to obtain the final form of the total energy U�
tot:

U�
totðs;mÞ ¼

Utotðs;mÞ for uncrossed ðsimpleÞ loops

Utotðs;mÞ1Udefðs;mÞ for crossed loops
:

�

With this additional modification of Utot we numerically

computed the minimal energy (ground-state) solution for any

given excess lengthDL. The graph of the ground-state energy

versus DL is shown in Fig. 5. We find that, even with the

inclusion of the out-of-plane deflection, there is still a criti-

cal length DLcross (here � 60 nm) where the crossed loops

become energetically more favorable than the simple un-

crossed. This behavior that we call the crossing transition
can be rationalized by noting that, for long-enough loops, the

adsorption energy (proportional to a) starts to dominate over

the bending energy so that loops with smaller a become

increasingly favorable. From the critical lengthDLcross on, the

gain in adsorption energy (by diminishing a) is more than

sufficient to outweigh the (slight) increase in bending energy,

together with the additional self-interaction term, Eq. 24.

Increasing the length even further, we leave the elastic

energy dominated regime in which the entropic effects can

be neglected due to short loop length (persistence length).

For larger lengths, entropic effects become more and more

important, and we ultimately enter the entropic loop regime.

The crossover between these two regimes is hard to handle

analytically (Yamakawa, 1997); for the case of closed loops,

a perturbative description has been given by Yamakawa and

Stockmayer (1972). For our purpose, it is sufficient to con-

sider the asymptotic behavior only. In the large loop limit

where the loop is longer than several lP, the chain loses its

orientational memory exponentially, and behaves roughly as

a random walk which starts from and returns to the same

point. The entropic cost for gluing the ends of a random walk

(long loop) together is then given by

U ¼ 3

2
kBT lnðDL=lPÞ1E0 1 S0: (26)

The first constant, E0 � 6.5 kBT, is the bending 1 adsorption

energy contribution of the overcrossing DNA segments

leaving/entering the nucleosome, which can be determined

by minimizing the crossed-loop energy (see Appendix;

see also Eq. 30) for DL ! ‘: The second additive constant,

S0 ; O(kBT ), accounts for the entropic contribution of

DNA-histone octamer interaction volume (the proximity ne-

cessary for the histone octamer and DNA to see each other).

Although the latter constant is not easy to estimate, the

following prediction is not sensitive to any additive constant.

The free energy minimum occurs at the overlap between the

elastic ðDLK lPÞ and entropic ðDL � lPÞ regions, where the

decreasing elastic energy is overtaken by the increasing

entropic contribution.

The free energy, Eq. 25, leads to an algebraically decay-

ing probability w(DL) for the jump-lengths scaling as w;

expð�U=kBTÞ; ðDLÞ�3=2
: In general, power law distribu-

tions of the formw; ðDLÞ�g
withg[1 lead to superdiffusive

behavior of the random walker (here, the nucleosome).

According to Levy’s limit theorem, the probability distribu-

tion of the random walker (more precisely, the distribution of

the sums of independent random variable drawn out from

the same probability distribution, w; ðDLÞ�g
) converges

to a stable Levy distribution of index g � 1 (Bouchaud and

Georges, 1990; Klafter et al., 1993; Sokolov et al., 1997). This

so-called Levy flight differs in many respects from the usual

diffusion process, as for short time intervals big jumps are still

available with significant probability. Moreover, all moments

(possibly besides the first few ones) diverge. For our case g¼
3/2, even the first moment does not exist. We note that the

value 3/2 is based on the assumption of an ideal chain (no

excluded volume); in general, the excluded volume leads to

self-avoiding-walk statistics with a slightly larger value of

g ; 2.2 (Sokolov et al., 1997; see also de Cloizeaux and

Jannick, 1990). In that case, one has a finite value of the first

moment, i.e., of the average jump length.

THE DYNAMICS OF
NUCLEOSOME REPOSITIONING

In the preceding sections we have computed the typical

energies involved in the formation of arbitrary-sized loops.

We start now considering the repositioning dynamics by

assuming that a slow creation followed by a fast thermal

migration of loops around the nucleosome is the governing

mechanism for nucleosome repositioning. To describe the

time-dependent evolution of the nucleosome position, we

consider its probability distribution along a DNA segment

with free length (i.e., total DNA length minus the nucleo-

some-covered 147 bp) of N 3 10 bp, and write the master

equation governing the jump process,

d

dt
pi ¼ +

N

j¼1;j6¼i

wjipj � pi +
N

j¼1;j6¼i

wij; (27)
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where pi is the probability for the nucleosome being at the

admissible position i (spaced by a multiple of 10 bp from the

initial position) on the DNA segment. The transition rate

matrix, W ¼ ðwijÞ, is given by

wij ¼
CA exp � 1

kBT
UminðhDji� jjÞ

� 	
for i 6¼ j

�+
N

k¼1;k 6¼i
wij for i ¼ j

;

8<
: (28)

where hD ¼ 3.4 nm (DNA helical pitch). CA denotes the

Arrhenius constant involved in the loop formation process

that has, in principle, to be determined experimentally. The

rough estimate of C�1
A ¼ 10�6 s is provided in Schiessel et al.

(2001), where it was shown that CA is essentially given by

the inverse lifetime of the loop (denoted by A in that article).

This means that typical repositioning times range from

seconds to hours.

The (formal) explicit solution of Eqs. 27 and 28, together

with the previously obtained minimal energyUmin, is given by

pðtÞ ¼ expðWtÞpðtÞ:

The latter solution can now be considered for different

cases—for short or long DNA chains, and for the nucleo-

some placed in the middle or at the end of the chain.

For short DNA segments, we expect a slow repositioning

rate due to high energies involved in small loop formation. In

Fig. 7 we depict the repositioning of a nucleosome on a DNA

piece of a length 1471 90 bp. Starting from an end-positioned

nucleosome (Fig. 7 a), we observe a behavior that is comp-

letely different from a local diffusion mechanism: the jumps

bigger than �2 3 3.4 nm start to dominate over the smaller

local ones, which follows from the loop formation energy; see

Fig. 5. Consequently, in the initial phase of repositioning

of such an end-positioned population, the nucleosomes will

predominantly jump between the two end positions. Later, on

a much larger timescale, they gradually start to explore the

positions toward the middle of the DNA segment.

Could such a behavior be extracted from an experiment

using gel-electrophoretic separation (as in Pennings et al.,

1991, and Meersseman et al., 1992)? The basis of such sep-

arations is the fact that the gel-electrophoretic mobility of

nucleosomes on DNA pieces (longer than 147 bp) increases

roughly linearly with its distance from the middle position;

i.e., DNA pieces with the nucleosome sitting close to the end

run much faster in gels than do equivalent middle-positioned

nucleosomes. We can exploit this (empirical) fact to mimic

the outcome of a gel-electrophoresis experiment (see Figs. 8

and 10). In Fig. 8 a, we depict such a simulated gel pattern for

the middle-positioned nucleosome. Since symmetric species

are not distinguished by this experimental method and are

projected onto the same bands (symmetric left/right positions

lead to the same mobility), the expected nonlocality of motion

cannot be extracted from the structure of the bands.

For the same short DNA segment, but with the nucleo-

some starting from the middle position (Fig. 7 b), the situ-

ation is slightly different: the neighboring positions are

populated more homogeneously, although there is a small

initial underpopulation of the 2 3 3.4 nm distant position as

expected from the energy maximum occurring there. In this

case, a slight initial population gap can be observed in gel

electrophoresis (Fig. 8 b), which in this case would be suf-

ficient to distinguish between a large jump and a diffusive

behavior, inasmuch as the latter would obviously lack the

population gap.

In the case of longer DNA (but still not entropic segments)

like the 147 1 300 bp segment in Figs. 9 and 10, similar

effects as for the short segments are expected but with

significantly faster relaxation times by typically 2–3 orders of

magnitude as compared to the corresponding short segment

populations. The corresponding (simulated) electrophoretic

gels are shown in Fig. 10, where, for the centrally-positioned

case (Fig 10 b), the population-gap effect is even more

pronounced than in the short-segment case.

For even longer DNA segments, we expect the gap effect

to persist and the optimal jump size to be ;2 � 3 3 lP,

corresponding to the free-energy minimum in Fig. 5. For very

long DNA segments, the nucleosome repositioning behav-

ior implied by the big-loop mechanism becomes strongly

nonlocal, which contrasts a local diffusive motion as expec-

ted, from a corkscrew motion (Beard, 1978; Spadafora et al.,

1979; Pennings et al., 1991; Meersseman et al., 1992), or

a small-loop repositioning, as considered by Schiessel and

co-workers (Schiessel et al., 2001). As mentioned above,

FIGURE 7 Relaxation dynamics of two

initial states of nucleosome positions on a short

DNA segment (147 1 90 bp): (a) the nucleo-

some starting from an end, and (b) the nucleo-

some starting from the middle position. The

time unit is the inverse Arrhenius activation

factor C�1
A (compare text).
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this superdiffusive behavior has diverging moments which

strongly imply enhanced nucleosome transport along very

long DNA pieces. However, such an ideal superdiffusion of

nucleosomes could hardly occur in vivo, because free DNA

segments between subsequent nucleosomes (DNA linkers)

are never longer than ;O(lP). Furthermore, the neighboring

nucleosomes might be significant barriers for loop migration

(if not for loop formation) around the nucleosome, which is an

indispensable event for loop-mediated repositioning.

CONCLUSIONS AND DISCUSSION

In this study, we examined a possible mechanism for the

repositioning of nucleosomes along DNA, which is based on

the formation and diffusion of intranucleosomal loops. The

most important outcome of this study is the prediction of two

classes of loops that might occur: 1), small 10-bp loops; and

2), large loops with a wide distribution of stored lengths with

a weak peak at roughly two times the DNA persistence length.

The small loops were already discussed by Schiessel et al.

(2001) and led to the prediction of repositioning steps of 10

bps. Furthermore, the repositioning time should be of the

order of an hour, a consequence of the large activation energy

required to form a loop. This might explain the strong-

temperature dependence of the typical repositioning time

(Meersseman et al., 1992). In fact, by lowering the tem-

perature from 378 to 48C, no redistribution within 1 h was

detected in that experiments. Assuming a loop-formation

energy of 23 kBT, one finds, indeed, a slowing down of this

process by a factor of 13.

On the other hand, the large loop repositioning considered

here turns out to be energetically much more favorable. Loops

with an extra length of 2 lP have an energy that is roughly 12–

13 kBT smaller than that of a 10-bp loop. To a certain extent

this is because such loops can have a very small nucleosome

opening angle by forming crossed loops, but the main con-

tribution stems from the significantly decreased DNA bend-

ing energy. One therefore expects that repositioning via large

loops should be the dominant process on sufficiently large

DNA pieces, and that the typical times are much shorter than

the one for small loop repositioning (say, of the order of

minutes).

So far, however, the experiments did not report such events.

Meersseman and co-workers (Pennings et al., 1991; Meersse-

man et al., 1992), for instance, found, on short DNA pieces

of 207-bps length, results that are consistent with 10-bp

repositioning—as we would expect for such short DNA frag-

ments. However, when they redid the experiment with a 414-

bp-long piece, a tandem repeat of the 207-bp DNA, their

analysis of the complicated band patterns observed in two-

dimensional gel electrophoresis did not show any indication

that the nucleosome was able to move from one half to the

other.

Hence, the question arises if the repositioning observed in

these experiments was facilitated via the loop mechanism

or if it occurred via a different process. An analysis of the

results is made especially difficult by two complications: 1),

FIGURE 8 Typical (one-dimensional) gel electrophoresis signatures

expected for the relaxation dynamics of the two species from Fig. 7: (a)

nucleosome starts from an end, and (b) from the middle position. Lanes 1–5

correspond to incubation times (1, 5, 10, 20, 100) 3 108 C�1
A , respectively.

Note that the population of distant bands in b, lanes 2–4 occurs first, in sharp

contrast to what we expect from a simple (local) diffusive behavior.

FIGURE 9 Relaxation dynamics of two

initial states of nucleosome positions on

a longer DNA segment (147 1 300 bp): (a)

end-positioned and (b) centrally-positioned

initial species. Note the initial difference in

relaxation timescales for a and b (which are due

to different loop energies involved).
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the nucleosomes seem to prefer to sit on the ends of the DNA

fragments, and 2), most of the experiments use strong posi-

tioning sequences (like the 5S rDNA sequence). This means

that, independent of what the repositioning process might be,

the nucleosomes have certain preferred positions, and these

might obscure the underlying repositioning process.

With regard to this fact, let us consider two other re-

positioning mechanisms that one could imagine. The first one

is that the nucleosome detaches completely from the DNA and

attaches at some other position (or even a different DNA

molecule). This process, however, seems to be excluded by

two facts (among others). First, that no repositioning from one

half to the other of the 414-bp DNA or to competitor DNA

fragments was observed (Pennings et al., 1991; Meersseman

et al., 1992); and secondly, once completely detached from

the DNA template, the histone octamer becomes unstable and

disintegrates into one tetrameric and two dimeric subunits,

which makes an effective nucleosome reconstitution difficult.

The other mechanism could be a local corkscrew motion,

as already suggested by Pennings and co-workers (Pennings

et al., 1991). This process would lead to a repositioning with

one bp per step. The preponderance of 10-bp steps observed

for the 5S rDNA experiments could then be explained as

being due to the fact that the positioning sequence prefers the

nucleosome rotationally positioned on one side of the DNA,

where it can be easily bent around the octamer. Also, 10-bps

(and even a few multiples of 10 bps) apart, this effect can still

be seen and hence the nucleosome would prefer positions in

multiples of 10-bps apart. To our best knowledge, the experi-

ments to date do not allow us to distinguish whether the 10-

bp repositioning works via small loops or via corkscrew

motion.

It would therefore be important to perform experiments

on DNA pieces that do not provide the nucleosome with

a preferred rotational setting. In that case, the 10-bp footprint

should disappear if nucleosomes reposition themselves via

corkscrew motion. It would also be important to perform

experiments with rather long DNA fragments, since we

expect that large-loop repositioning can be detected in such

systems.

Finally, we note that nucleosome repositioning in vivo is

facilitated via so-called chromatin remodeling complexes

—huge multiprotein complexes that harness energy by

burning ATP (Vignali et al., 2000; Peterson, 2000; Kornberg

and Lorch, 1999). There are basically two major classes:

ISWI and SWI/SNF. The first one seems to induce small-

scale repositioning which might work via twisting DNA that

leads to a corkscrew movement as discussed above. It might,

however, also be possible that this complex induces small

loops on the nucleosome as recent experiments on nicked

DNA suggest (Längst and Becker, 2001). The other class of

remodeling complexes seems to induce large loop structures,

as they have been observed recently via electron spectros-

copy (Bazett-Jones et al., 1999). Independently of what the

detailed functions of these remodeling complexes might

be, it is tempting to speculate that they catalyze and direct

processes which might even take place when they are not

present—like small-loop and large-loop formation as well as

corkscrew motion. In this case, the computed looping energy

(Fig. 5) and repositioning rates might give a first hint about

ATP requirements and the dynamics of enzymatic reposi-

tioning.

Another interesting and very prominent system known

to mediate nucleosome repositioning via loop formation is,

FIGURE 10 The (one-dimensional) gel-electrophoresis signatures simulated for the relaxation dynamics of the two initial species from Fig. 9. (a) End-

positioned lanes 1–5, corresponding to incubation times (1, 2, 3, 10, 50)3 104 C�1
A , and (b) centrally-positioned lanes, corresponding to incubation times (1, 2, 3,

10, 50) 3 106 C�1
A .
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unexpectedly, the ubiquitous RNA-Polymerase (RNA-P). It

is found to be able to transcribe DNA through nucleosomes

without disrupting their structure, yet moving them upstream

of the DNA template, i.e., in the opposite direction of

transcription (Felsenfeld et al., 2000). To rationalize this

seemingly paradoxical finding, Felsenfeld and co-workers

introduced a DNA looping model which assumes that the

RNA-P crosses the nucleosome in a loop. This would indeed

explain the backwards directionality of repositioning. An

interesting question in this context is how our intranucleo-

somal loops considered above relate to those formed by the

RNA-P. Can we say something about the repositioning

distance distribution, and does the looping energy (Fig. 5)

apply here? The geometry of RNA-P–DNA complex on

a nucleosome is certainly different from the simple loop case,

as ingoing and outgoing DNA from RNA-P enclose a rather

soft, yet preferential angle of �1008 (dependent on RNA-P

type; see Rees et al., 1993; Rivetti et al., 1999; Schulz et al.,

1998). The latter facilitates the loop formation as the free

DNA has to bend less to fold back onto the octamer surface.

Besides the apparent differences from the naked intra-

nucleosomal loops problem, a slight generalization of our

present model which incorporates the preferential RNA-P

opening angle can be performed within the same mathemat-

ical framework developed here. It would be interesting to

compute the resulting nucleosome transfer distance on short

and long DNA templates in an analogous manner as per-

formed above. An outcome of such a study could be, for in-

stance, an answer to a question such as: what is the highest

linear nucleosomal density in polynucleosomal arrays, up to

which nucleosomes are not to be removed from the DNA

template (due to loop formation and nucleosome trans-

fer prohibited by the neighboring nucleosome) during trans-

cription?

Such fundamental biological questions make a further

elaboration of intranucleosomal loop theory, its generaliza-

tion to different loop geometries and, finally, its application

to different loop-creating proteins (SWI/SNF, RNA-P), an

intriguing task for future work.

APPENDIX: THE CIRCLE-LINE APPROXIMATION

Although Kirchhoff’s analogy provides us with essentially analytic solutions

for the rod deformed in plane, the occurrence of boundary conditions (like

Eqs. 5 and 6) prevents us, in most cases, from obtaining analytical ex-

pressions of all the parameters characterizing the solution (like s and m

above). To overcome this problem, we suggest here a simple geometric

approximation scheme which will prove to be useful in obtaining analytic

results for loops within a reasonable accuracy (usually with a deviation of

5–15% from the exact numeric results).

The main idea is the following. The curvature and the energy (Eqs. 17

and 18) of the loop contains the cn(sjm) function, which for 0\m\1 has

the typical oscillatory behavior depicted in Fig. 11 (left). This suggests us to

approximate the curvature function simply by a step function consisting of

an alternating sequence of negative, zero, and positive piecewise constant

curvatures. Consequently the corresponding rod shape (Fig. 11, right) is

approximated by a sequence of circles (positive/negative constant cur-

vature) and lines (zero curvature). An analogous approximation procedure

can also be performed in the case m[1 where the cn function has a natural

analytical continuation into a dn function with a modified second argument

(see Abramowitz and Stegun, 1972).

Using this approximation ansatz, several problems concerning planar

rods reduce to elementary geometry, as seen from the following simple but

illustrative examples.

The Yamakawa-Stockmayer angle

Yamakawa and Stockmayer (1972): Two points on the rod are glued

together without restricting the orientation of the tangents, e.g., a protein

connects two distant points on DNA (Fig. 12 a). What is the preferred angle

x between the tangents in the ground state of the rod? By imposing a fixed

total rod length L we have the simple constraint L ¼ ð2 cotðx=2Þ1x1pÞr,
from which we can eliminate r and write the elastic energy of the con-

figuration as Ubend
DNA ¼ A=2Lðx1pÞð2 cotðx=2Þ1 x1pÞ: Its minimization

leads to the transcendent condition xmin 1 p ¼ tanxmin with the only

relevant solution, xmin � 77.58. The latter angle differs by 5% from the exact

result xmin � 81.68 by Yamakawa and Stockmayer (1972), which is

satisfactory regarding the simplicity of the computation.

Simple and crossed loops (Fig. 12, b and c)

We can easily derive an approximate energy expression for simple/crossed

loops as a function of the excess length DL and the opening angle a.

By applying simple geometry the excess length constraint can be easily

eliminated (the tangency constraint is trivially fulfilled by the ansatz) and we

arrive at

FIGURE 11 The circle-line approximation

for planar rods. The curvature of an equilibrium

rod shape (cn function), Eq. 17, is approximated

by a periodic sequence of step functions. The

latter corresponds to an approximation of the

rod shape by a sequence of straight lines (k¼ 0)

and circles (k ¼ const.) glued together in

a smooth manner (continuous tangents).
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UsimpðaÞ ¼ 2a A
tana� a

2Rðtana� aÞ � DL
1Reads

� �
(29)

for simple loops, and

UcrossðaÞ ¼ 2a A
p1 tana� a

DL� 2Rðtana� aÞ 1Reads

� �
1UdefðaÞ

(30)

for crossed loops, where A, R, and eads are defined as above and Udef is the

excluded volume interaction at the crossing point, which is considered

below (and applied in the main text as Eq. 24). We remark that the above

expressions for Usimp and Ucross are valid within certain a intervals, which

are given by the restriction 0 \ a\ p and by the condition that the first

terms in the brackets of Eqs. 29 and 30 are positive (these are the necessarily

positive bending-energy contributions in the two cases).

These fairly simple expressions can now be used in the two cases to

obtain explicitly the ground-state energies by minimizing Eq. 29 and Eq. 30

with respect to a. For instance, settingU9simpðaÞ ¼ 0 we obtain a transcenden-

tal equation for a. We can now use the fact that this condition is algebraic in

DL so that we can solve it for DL ¼ DLðaÞ: Thus, instead of finding a ¼

a(L) (which cannot be given in an explicit form), we obtain explicitly its

inverse:

DLðaÞ
R

¼ð2 � cÞGðaÞ1 cHðaÞ
1 � c

1 x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð2 � cÞGðaÞ1 cHðaÞ�2 � 4ð1 � cÞG2ðaÞ

q
1 � c

(31)

with the abbreviations

GðaÞ ¼ tana� a; and HðaÞ ¼ a tan2ðaÞ:

In Eq. 31 the introduced dimensionless constant is c ¼ ð112R2eads=AÞ�1

(0 \ c\ 1, and c ¼ 0.69 here) and x is the sign accounting for different

branches of the a-parameterized solution

x ¼ �1 for 0#a#p=2

61 for p=2#a#amaxðcÞ
:

�
(32)

FIGURE 12 Three applications of

the circle-line approximation. Problems

with complex constraints reduce to

simple geometries leading to good

approximations: (a) the Yamakawa-

Stockmayer angle, (b) simple loops,

and (c) crossed loops (see the Appendix

text for details).

FIGURE 13 Comparison of the adsorption and bending

energy contributions (Uads and Ubend) as well as the total

ground-state energy Utot of the simple loop. The fat lines

represent the circle-line approximation (see Eq. 29),

whereas the thin lines show the corresponding exact

expressions, Eqs. 1 and 18 (thin line). The parameters are

eads ¼ 0.7 kBT/nm, A ¼ 50 nm 3 kBT, and R ¼ 4 nm.
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Note that for a # p / 2 there is only one branch, but for a[p / 2 we have

two branches (61) for DL(a). (The latter means that for p/2 # a # amax

there are two different excess loop lengths leading to the same (equilibrium)

angle a, i.e., with increasing DL the nucleosome angle a opens but after

passing some critical point on the DL axis, it starts closing again). The

maximal opening angle amaxðcÞ is obtained by setting the discriminant

(expression below the square root) in Eq. 31 equal to 0.

From Eq. 31 together with Eq. 29 we obtain an explicit parametric

representation of the minimal-energy curve for simple loops. A comparison

of the approximate minimal energies (Eq. 31 and Eq. 29) with the exact

minimal energy (Fig. 5 for DL # 60 nm), is shown in Fig. 13. We find that

the quantitative agreement is quite satisfactory, taking the simplicity of our

ansatz into account. We note here that analogous computations, as we have

shown for simple loops, can be performed for crossed loops as well.

For DL ! 0, we find, after an appropriate expansion of Usimp ; a ¼ 0,

that the ground-state energy scales as Usimp ; ðDL=RÞ1=3
, in agreement with

Schiessel et al. (2001). Further, we obtain the excess length at which the loop

ground-state energy is maximal by setting @UsimpðaÞ=@aja¼p=2 ¼ 0: From

this follows the critical length DLcrit as discussed in the main text (see Eq.

23). This simple approximate expression for DLcrit agrees within 2–15%

with the exact numerical result for a wide range of adsorption energies, with

deviations becoming larger for adsorption energies above eads ¼ 2.0 kBT/nm

(data not shown).

The overcrossing potential for
crossed loops (Fig. 14)

The outgoing DNA path is perturbed out of the plane due to the interaction

with the ingoing DNA (and vice versa in a symmetrical manner). Because

of that, our simple planar phantom model (no self-interaction) needs

modifications. Instead of solving this (nonplanar) problem within the general

theory of self-interacting deformed rods as in Coleman et al., 2000 (which is

a feasible but rather technical numerical task), we can treat the out-of-plane

deformation perturbationally. The first assumption we make here is that the

overall shape of the crossed loop does not deviate much from a planar

configuration, although the orientation of its (effective) plane might be

slightly deflected from the nucleosomal plane. Consequently, the small

perturbation out of the plane and the deformation in plane essentially

decouple into a sum of two energy contributions as in Eq. 30. Again by

simple geometry (Fig. 13), the second (out of the plane) term in Eq. 30 can,

in first approximation, be written as

UdefðaÞ ¼ 2A
d arctan



2dxðaÞ

x2ðaÞ�d2

�
x2ðaÞ�d2 for xðaÞ[d

‘ otherwise
;

(
(33)

where d � 1 nm is the thickness of DNA and xðaÞ ¼ R tana the length of

the crossed segment. In our simple approximation. the self-interaction

energy diverges for x! d1 0 as p=2Aðx� dÞ�1
(extreme deformation) and

approaches zero for x ! ‘ as 4Ad2x�3 (weak deformation). (Here, we

neglected the electrostatic contribution to the self-energy of the crossing

point that is minimized for perpendicular crossing (a ¼ p/4); using the

classical result of Brenner and Parsegian (1974), this energy can be

estimated to be of order 1 kBT/sin(p � 2a), which is much smaller than the

bending energy contribution, Eq. 33),

We finally note that, besides the above-given examples, it is possible to

apply the circle-line approximation to several other standard problems of rod

theory like the first, and especially the higher order Euler buckling

instabilities, to qualitatively obtain the known results from buckling theory

with very little effort. Thus, the circle-line approximation, when applied

appropriately, turns out to be very useful, and generally allows com-

putationally inexpensive qualitative and quantitative insights into the behav-

ior of (planary) deformed rods.

We thank S. Mangenot, R. Bruinsma, W. M. Gelbart, J. Widom, and R.

Everaers for useful discussions.
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