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Molecular Dynamics Simulations of Peptides and Proteins
with Amplified Collective Motions

Zhiyong Zhang, Yunyu Shi, and Haiyan Liu
Key Laboratory of Structural Biology, and School of Life Sciences, University of Science and Technology of China,
Chinese Academy of Sciences, Hefei, Anhui 230027, China

ABSTRACT We present a novel method that uses the collective modes obtained with a coarse-grained model/anisotropic
network model to guide the atomic-level simulations. Based on this model, local collective modes can be calculated according
to a single configuration in the conformational space of the protein. In the molecular dynamics simulations, the motions along
the slowest few modes are coupled to a higher temperature by the weak coupling method to amplify the collective motions. This
amplified-collective-motion (ACM) method is applied to two test systems. One is an S-peptide analog. We realized the refolding
of the denatured peptide in eight simulations out of 10 using the method. The other system is bacteriophage T4 lysozyme. Much
more extensive domain motions between the N-terminal and C-terminal domain of T4 lysozyme are observed in the ACM
simulation compared to a conventional simulation. The ACM method allows for extensive sampling in conformational space
while still restricting the sampled configurations within low energy areas. The method can be applied in both explicit and implicit
solvent simulations, and may be further applied to important biological problems, such as long timescale functional motions,
protein folding/unfolding, and structure prediction.

INTRODUCTION

In recent years there has been an increasing use of theoretical

methods, especially molecular dynamics (MD) simulations,

to gain insights into structure-function relationships in

proteins (Doniach and Eastman, 1999). One of the main

questions to be answered when assessing the usefulness of

MD simulations of proteins in understanding biological

functions is the degree to which the simulations adequately

sample the conformational space of the protein. If a given

property is poorly sampled over the MD simulations, the

results obtained have a limited usefulness.

A straightforward way to solve this problem is to increase

the simulation time. With the improvements in computer

power and algorithms, we have progressed to tens of nano-

seconds now (Daggett, 2000). This timescale is still too

short to observe many important protein processes, such as

slow conformational changes and protein folding/unfolding.

The inefficiency in sampling is a result of the frustrated

nature of the energy landscape. While the exploration of

different conformational states and the mechanism of tran-

sitions between different conformational states are of more

interest than examining local fluctuations during a simula-

tion, the system will spend most of the time in locally sta-

ble states—interesting escaping events being rarely observed

in a conventional simulation (Eastman et al., 1999).

To extend the capability of atomic simulations, new tech-

niques need to be developed to improve the sampling effi-

ciency considerably. Various methods have been proposed,

such as the multicanonical ensemble algorithm (Hansmann

and Okamoto, 1993; Nakajima et al., 1997), adaptive

umbrella sampling (Bartels and Karplus, 1998), conforma-

tional flooding (Grubmuller, 1995), chemical flooding

(Muller et al., 2002), and essential dynamics simulation

(Amadei et al., 1996). Among them, the last three are based

on collective coordinates.

The use of collective coordinates has become an important

technique to extract functionally relevant motions from

simulation results (Kitao and Go, 1999; Berendsen and

Hayward, 2000). Computational techniques to determine

collective motions are varying. Principal component analysis

(PCA) or essential dynamics analysis (EDA) (Amadei et al.,

1993) can be carried out on a large number of configura-

tions in MD or Monte Carlo (MC) trajectories, or a large set

of experimental structures. The CONCOORD method (de

Groot et al., 1997) uses a very crude approximation of atomic

interactions to generate a large number of configurations that

satisfy a set of atomic distance constraints and then PCA or

EDA can be applied. Normal mode analysis (NMA) uses

a harmonic approximation of the full atomic force field and

a single experimental structure suffices. The most time-

consuming aspects of NMA are energy minimization and

diagonalization of the Hessian matrix using an atomic force

field. Coarse-grained models, such as the Gaussian network

model (GNM) (Haliloglu et al., 1997) and the anisotropic

network model (ANM) (Atilgan et al., 2001), have been

designed to reproduce a few collective modes using

simplified pairwise Hookean potential and have been

successful in predicting atomic fluctuations. By the above

methods, an ‘‘essential subspace’’ spanned by a small

number of collective modes can be obtained. Collective

coordinates are widely employed to investigate protein

dynamics. Recent studies have shown that functionally

relevant motions occur along the direction of a few collective
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coordinates, which dominantly contribute to atomic fluctu-

ation. Kitao et al. (1998) have used PCA and a jumping-

among-minimum model to elucidate the energy landscapes

of proteins. The analyses applied to a 1-ns MD trajectory of

the human lysozyme in water indicate that, 1), the energy

surfaces of individual conformational substates are nearly

harmonic and mutually similar; and 2), protein motions

consist of three types of collective modes, namely, multiply

hierarchical modes (the number of which accounts for only

0.5% of all modes, yet dominate contributions to total mean-

square atomic fluctuation), singly hierarchical modes, and

harmonic modes. Intersubstate motions are observed only

in a small-dimensional subspace spanned by the axes of

multiply and singly hierarchical modes.

Collective coordinates can be used as a basis set for

efficient sampling. In MC simulations, normal modes are

used as variables and the sampling step size is scaled by

normal mode amplitudes (Noguti and Go, 1985). In the

conformational flooding (Grubmuller, 1995) and chemical

flooding methods (Muller et al., 2002), according to the

collective modes obtained from short MD simulations,

a coarse-grained description of conformational substate is

derived from which bias potential can be constructed. The

bias potential destabilizes the initial conformation and lowers

free energy barriers of structural transitions, thus complex

conformational transitions and chemical reactions may be

observed and followed in a simulation. The Berendsen group

developed an ‘‘essential dynamics’’ simulation method. In

this method, protein motions are constrained to move along

the essential collective modes, while the motions along the

other degrees of freedom obey the usual equations of motions

(Amadei et al., 1996). de Groot et al. (1996a,b) have applied

this technique in the study of a 13-residue peptide hormone,

guanylin, and a 85-residue protein, HPr. The region of

conformational space obtained from the essential dynamics

sampling includes the area sampled by the normal MD and

extends beyond. Abseher and Nilges (2000) applied

restraints in essential subspace on an ensemble of MD tra-

jectories that proceed otherwise independently in parallel.

The results show that weak restraints on the ensemble var-

iance suffice for an increase in sampling efficiency along col-

lective modes by two orders of magnitude.

One disadvantage of the essential dynamics method is that

the collective modes need to be obtained from a predeter-

mined set of protein conformations, usually from a relatively

short period of simulation. Such a set usually represents only

local fluctuations. As collective modes are treated as linear

combinations of Cartesian coordinates, they are, in principle,

conformation-dependent. That is, the essential subspace may

vary when the protein conformation belongs to different local

states. The method we introduced here uses the collective

modes obtained by the coarse-grained model ANM (Atilgan

et al., 2001) to guide the atomic-level MD simulation. Using

the ANM, the collective modes are estimated using a single

protein conformation without carrying out a long simulation.

These modes can be updated frequently during the sim-

ulation since computation of the collective modes using

ANM is rapid, which allows us to give up the severe as-

sumption that the essential subspace is invariant in the

conformational space. Another key strategy in our method is

that the motions along the collective modes are amplified by

coupling them to a thermal bath at higher temperature than

the remaining motions, which is achieved by taking advan-

tage of the weak-coupling algorithm (Berendsen et al., 1984).

The idea comes from the molecular dynamics docking

method (Di Nola et al., 1994; Mangoni et al., 1999). The

original method consists of a separation of the center-of-mass

motion of the substrate from its internal motions, and

a separate coupling to different thermal baths for both types

of the motions of the substrate and for the motions of the

receptor. Using higher center-of-mass temperature and room

temperature for the internal degrees of freedom of the

substrate, an efficient search in the translational and rota-

tional subspace is achieved without disturbance of the inter-

nal structure. The separate temperature bath approach has

also been employed in a novel MD simulation, in which the

protein and solvent have been simulated at different temper-

atures to demonstrate the key roles of solvent in controlling

functionally important fluctuations (Vitkup et al., 2000).

Algorithmatically, our amplified - collective - motions

(ACM) approach comprises the following steps: 1), estimate

the collective modes according to a single protein configu-

ration in the MD simulation using ANM, and the collective

modes updated frequently during the simulation; 2), project

the velocities of the atoms into two subspaces: the subspace

spanned by the limited number of slow collective modes

(essential subspace) and the rest; and 3), couple the velocities

in different subspaces with different thermal baths, the

essential subspace coupled to higher temperature and the

remaining coupled to normal temperature bath. We expect

the essential subspace can be sampled adequately and large

amplitude motions of the protein can be observed during the

ACM simulation. In the meanwhile, local interactions and

higher frequency motions are kept at normal temperature,

allowing local structures to relax to accommodate the large

amplitude motions in the collective coordinates.

Here, we briefly describe the construction of the follow-

ing sections. We firstly describe the theory and methods of

ACM, and then computational details for two test systems,

an S-peptide analog and bacteriophage T4 lysozyme (T4L).

Subsequently, we provide some results and discussion,

which demonstrate the efficiency of the ACM method.

Finally, we provide concluding remarks.

THEORY AND METHODS

Gaussian network model and the anisotropic
network model

The Gaussian network model (GNM) assumes that the protein in the folded

state is equivalent to a three-dimensional elastic network (Kloczkowski et al.,
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1989; Erman et al., 1989). The junctions are identified with the Ca atoms in

the protein, and the interactions between residues in close proximity are

replaced by harmonic springs (Miyazawa and Jernigan, 1985; Tirion, 1996;

Bahar et al., 1997). Applications to several proteins demonstrated that

the predicted equilibrium fluctuations of Ca from GNM show excellent

agreement with experiments. It should be noted that GNM is a scalar model

and all fluctuations are implicitly assumed to be isotropic. In fact, the

fluctuations of the proteins are in general anisotropic, and it is important to

assess the directions of collective motions, as these can be directly relevant

to biological functions and mechanisms. So, an extension of GNM, called

the anisotropic network model (ANM), has been developed (Atilgan et al.,

2001). Recently, Ming et al. (2002a,b) have developed a quantized elastic

deformational model that combines and enhances the above elastic network

models and the vector quantization method for computing intrinsic

deformation motions of protein structures by using low-resolution electron

density maps.

In our method, we adapted ANM. For a folded protein, the junctions are

identified with the center-of-mass of each residue. According to ANM,

harmonic potential can be written as

V ¼ +
i;j6¼i

1

2
kijðrij � r

0

ijÞ
2
; (1)

where kij, rij, and r
0
ij are the force constant, distance, and equilibrium distance

between center-of-mass of residues i and j, respectively. In this work, kij are
given by

kij ¼
1:00 if rij # rcs
0:01 if rcs\ rij # rcl;
0:00 if rij[rcl

8<
: (2)

where rcs is the cutoff distance of the first interaction shell, and rcl is the

longer cutoff distance, which is set to avoid more than six �0� eigenvalues, as
Atilgan et al. (2001) suggested.

In the case of Nr residues, the Cartesian coordinates are ri ¼ (xi, yi, zi),

and the second derivatives of the overall potential can be organized in the

3Nr 3 3Nr Hessian matrix H. H is composed of Nr 3 Nr super-elements,

each of size 3 3 3:

H ¼

h11 h12 � � � h1Nr

h21 h22 � � � h2Nr

..

. ..
.

hNr1 hNr2 � � � hNrNr

2
6664

3
7775: (3)

The ijth super-element hij (i 6¼ j) is

hij ¼
@
2
V=@xi@xj @

2
V=@xi@yj @

2
V=@xi@zj

@
2
V=@yi@xj

@
2
V=@yi@yj @

2
V=@yi@zj

@
2
V=@zi@xj @

2
V=@zi@yj @

2
V=@zi@zj

2
4

3
5: (4)

The elements of hij are given by

@
2
V=@xi@yj ¼ �kij

ðxj � xiÞðyj � yiÞ
r
2

ij

����rij ¼ r
0

ij: (5)

The diagonal super-elements are

hii ¼
@
2
V=@x

2

i @
2
V=@xi@yi @

2
V=@xi@zi

@
2
V=@yi@xi @

2
V=@y

2

i @
2
V=@yi@zi

@
2
V=@zi@xi @

2
V=@zi@yi @

2
V=@z

2

i

2
4

3
5: (6)

The elements of hii are given by

@
2V=@xi@yi ¼ +

j6¼i

kij
ðxj � xiÞðyj � yiÞ

r
2

ij

����rij ¼ r0ij: (7)

The symmetric matrix H can be diagonalized by a unitary coordinate

transformation U,

H ¼ ULU
T
: (8)

Here L is the diagonal matrix consisted of the eigenvalues (li) of H,

organized in ascending order. The ith column of U is the eigenvector

associated with li. There are 3Nr eigenvalues, of which the initial six

associated with overall translations and rotations are zero. The remaining

3Nr-6 nonzero eigenvalues and corresponding eigenvectors reflect the

respective frequencies and Cartesian components of the individual modes.

The first few slow, long wavelength collective modes may represent

functionally relevant motions of the protein.

The amplified collective motion method

Before going into the technical details of the ACM method, we first

introduce the weak-coupling method briefly (Berendsen et al., 1984). The

weak-coupling method is usually used to couple MD simulations to external

baths in, for example, constant temperature (T0) simulations. In a constant

temperature simulation, the kinetic energy of the protein at time t (Ek(t)) can

be given as

EkðtÞ ¼ +
Na

i¼1

1

2
mi
~VV

2

i ðtÞ; (9)

where mi and Vi(t) are atomic mass and velocity of atom i, respectively. Na is

the number of atoms in the protein. The instantaneous temperature T(t) is

TðtÞ ¼ 2EkðtÞ=NdfkB; (10)

in which Ndf is the number of degrees of freedom of the protein and kB the

Boltzmann constant. According to the weak coupling scheme, a temperature-

scaling factor can be calculated

S ¼ 11
Dt

tT

T0

TðtÞ � 1

� �� �1=2

; (11)

where Dt is the MD time step, and tT is the temperature relaxation time (a

larger tT indicates a weaker coupling). The factor S is used to uniformly

scale the velocities of the next time step, making the actual temperature relax

toward T0.

Our technique is based on the weak-coupling method. From V(t), we can
obtain the velocity of the center-of-mass of each residue,

f~VVa

rc; a ¼ 1; 2; . . . ;Nrg;
where Nr is the number of residues in the protein. The dimension of the Vrc

vector is 3Nr, and the dimension of each mode calculated by ANM is also

3Nr. If we select the first nl collective modes to form an essential subspace,

the projection of Vrc along these nl modes is given as

~VV1ðtÞ ¼ +
Nl

l¼1

ð+
Nr

a¼1

~VV
a

rc �~ee
a

l Þ~eel
� �

; (12)

where el is the lth collective mode and el
a the component of the Cartesian

coordinates of residue a in el. V1(t) is the projection of the velocities into the

essential subspace. The projection of V(t) in the rest subspace can be simply

calculated as

~VV2ðtÞ ¼ ~VVðtÞ �~VV1ðtÞ: (13)

We apply the weak-coupling method to these two parts of the velocities,

separately. For V1, the reference temperature is higher (Th) and the

corresponding temperature-scaling factor is Sh. V2 is coupled to the normal

temperature (Tl), the scaling factor being Sl, and
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~VVðtÞ ¼ Sh
~VV1ðtÞ1 Sl

~VV2ðtÞ: (14)

By this method, we try to enhance sampling efficiency along the collective

modes by coupling them to the higher temperature thermostat. We expect to

observe large-magnitude collective motions in the protein within a relatively

short simulation.

COMPUTATIONAL DETAILS

S-peptide analog

The first set of test simulations were undertaken to study the

folding/unfolding of a 15-residue a-helical analog of Ribo-

nuclease A S-peptide (Tirado-Rives and Jorgensen, 1991).

The peptide consists of a-helix (residues 4–12), N-terminal

(1–3), and C-terminal (13–15) random coils (Fig. 1 a).
We had performed several MD simulations for this peptide

with an explicit water model (Zhang et al., 2001). Our results

indicated that, at low temperature (278 K) the helix is stable,

whereas at high temperature (358 K), after 20-ns simulation,

the native a-helix is denatured completely (Fig. 1 b). Here,
we selected two structures as the starting structures: the

initial native structure and the final unfolded structure for

further simulations (Fig. 1). Instead of an explicit water

model, we used an implicit solvent model—the generalized

Born/surface area (GBSA) water model (Still et al.,

1990)—for the peptide simulations. Multiple simulations

were performed, which are divided into four groups based on

the starting conformation and simulation procedure. These

groups are: conventional simulations starting from the native

structure at 274 K (noted as NA); ACM simulations starting

from the native conformation (noted as NA_ACM);

conventional simulations starting from the unfolded confor-

mation (noted as UN); and ACM simulations starting from

the unfolded conformations (noted as UN_ACM).

Stochastic dynamics simulations (van Gunsteren et al.,

1981) have been used for the implicit solvent simulations,

and the GBSA model has been used in conjunction with the

GROMOS96 43A1 force field (Zhu et al., 2002). After

energy minimization with the steepest descent method, the

system was equilibrated by 50-ps GBSA simulations, during

which the positions of nonhydrogen atoms were restrained.

All atoms were given an initial velocity obtained from

a Maxwellian distribution at 274 K. Since the system only

contains the peptide (151 atoms), we believe the above

procedures were enough to generate equilibrated structures

for the successive sampling simulations. The simulations

within each of the four groups were started using different

sets of initial velocities.

During the normal GBSA simulations (NA and UN), the

peptide was coupled to a temperature bath of reference

temperature 274 K with a relaxation time of 0.1 ps. Bonds

were kept rigid using the SHAKE method (relative geo-
metric tolerance ¼ 10�4) (Ryckaert et al., 1977). The

nonbonded interactions were calculated without cutoff. A

time step of 2 fs was used. The ACM simulations (NA_ACM

and UN_ACM) were otherwise the same as the control

simulations, except that a few of the slowest collective

modes and the rest have been coupled to separate tem-

perature baths, respectively. The short (rcs) and long-range

cutoff distances (rcl) in the ANM analysis were set as 0.7

nm and 1.4 nm, respectively. Either the first three or the first

five modes were coupled to the higher temperature (Th ¼
358 K), with a relaxation time of 0.01 ps, and the other

modes were coupled to the lower temperature (Tl ¼ 274 K

and tTl ¼ 0.1 ps). The collective modes were recalculated

either every 10 or every 25 time steps, according to the new

current configuration of the peptide. The computational cost

of recalculating the ANM modes with such frequencies can

be nearly ignored relative to the simulation steps. Average

temperatures of the selected lowest collective modes and the

rest during one UN_ACM simulation were listed in Table 1.

Since only a few modes (five slowest modes) were coupled

to the higher temperature (Th ¼ 358 K), the actual tem-

peratures of them have large fluctuations. The average value

is 345 K, lower than the reference temperature. This may be

caused by the weak coupling between motions along the

slowest modes and the remaining motions, and the mixing of

FIGURE 1 Structures of the S-peptide analog. (a) Native structure. (b)

Denatured structure after 20-ns MD simulation at 358 K (Zhang et al., 2001).

The figures are created by MOLSCRIPT (Kraulis, 1991).

TABLE 1 Temperatures (in K) of the ACM simulations on the

S-peptide analog and T4 lysozyme

S-peptide analog* T4 Lysozyme

Five higher-

temperature

collective modes

Other

modes

Three higher-

temperature

collective modes

Other

modes

Tref
y 358 274 800 300

Tav
z 345(105) 274(19) 751(112) 299(5)

*Results of one of the ACM simulations starting from the unfolded S-pep-

tide analog.
yThe reference temperatures in the weak-coupling scheme.
zThe average temperatures of the corresponding degrees of freedom in the

simulations (30 ns of the S-peptide analog and 3 ns of T4 lysozyme).

Numbers in parentheses are standard deviations of the averaging.
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different modes as they evolve with the conformation. The

other degrees of freedom have much smaller fluctuations in

temperature and the average temperature is nearly the same

as the reference temperature. Although a few modes were

coupled to the higher temperature, the average temperatures

of the entire system in the ACM simulations are only ;1 K

higher than that in the conventional simulations.

The software used was based on the simulation package

GROMOS96 (van Gunsteren et al., 1996) with modifications

to introduce ACM. Some analyses were performed using

GROMACS tools (van der Spoel et al., 1999), and DSSP

was used for calculations of secondary structures (Kabsch

and Sander, 1983).

Bacteriophage T4 lysozyme

Bacteriophage T4 lysozyme (T4L) is composed of two

domains connected by a long a-helix. There is a deep

opening between the N-terminal and C-terminal domains,

which is the active site cleft for oligosaccharide binding

(Anderson et al., 1981). Many crystal structures of T4L and

its mutants have been found that indicate the hinge-bending-

type domain motion opening or closing up the cleft (Faber

and Matthews, 1990; Zhang et al., 1995).

The crystal structure of T4L (entry 2LZM of the PDB)

determined at 1.7 Å resolution was used as the starting

structure (Weaver and Matthews, 1987). Rectangular pe-

riodic boundary conditions were used with box length of

5.263 nm 3 5.687 nm 3 7.827 nm (the minimum distance

between the solute and the box boundary is 1.0 nm). SPC

water molecules were added from an equilibrated cubic box

containing 216 water molecules (Berendsen et al., 1981).

Some of the added water molecules were removed so that no

water oxygen atom is closer than 0.23 nm to a nonhydrogen

atom of the protein or another water oxygen atom. The

system, protein and water, was initially energy-minimized

for 500 cycles using the steepest descent method. Eight Cl�

ions were added to compensate the net positive charge on

the protein. These ions were introduced by replacing water

molecules with the highest electrostatic potential. The energy

was again minimized using steepest descent method. The

final system contains 1703 protein atoms, eight Cl� ions

and 7018 water molecules, leading to a total size of 22,765

atoms. 200-ps equilibration MD runs were performed, in

which the temperature was gradually increased from 50 K

(20 ps), 100 K (20 ps), 150 K (20 ps), 200 K (20 ps), 250 K

(20 ps), and 300 K (100 ps), together with an increase of

the temperature coupling constant (from 0.01 to 0.1 ps) and

a decrease of the position restraints force constant (from

50,000 to 10,000 kJ mol�1 nm�2). Then two 3-ns productive

runs were performed, respectively.

One conventional MD at 300 K (S300) was performed

using an isothermal-isobaric simulation algorithm (Berend-

sen et al., 1984). Protein and solvent was coupled separately

to temperature baths of reference temperature with a coupling

time of 0.1 ps. The pressure was also kept constant by weak

coupling to a bath of reference pressure (P0 ¼ 1 atm;

coupling time tp ¼ 0.5 ps). Bonds were kept rigid using the

SHAKE method with a relative geometric tolerance of 10�4

(Ryckaert et al., 1977). Long-range forces were treated using

twin-range cutoff radii of Rcp ¼ 0.8 nm for the charge group

pair list, and Rcl ¼ 1.4 nm for the longer-range nonbonded

interactions. The pair list was updated every 20 fs. Reaction-

field forces were included (Tironi et al., 1995), originated

from a dielectric permitivity of 54 for SPC water (Smith and

van Gunsteren, 1994). A time step of 2 fs was used. The

other is ACM simulation (SACM), which was otherwise the

same as the control simulation, except for modifications to

temperature coupling. Short- and long-range cutoff distances

of 0.7 nm and 1.0 nm, respectively, were used in ANM. We

selected the three slowest collective modes (nl ¼ 3). These

three degrees of freedom were coupled to the higher

temperature Th ¼ 800 K, with a relaxation time of 0.01 ps,

and the other modes were coupled to the temperature Tl ¼
300 K (tTl ¼ 0.1 ps). The average temperatures were 751 K

and 299 K for the collective modes and the rest, respectively

(Table 1). The total number of degrees of freedom of T4L

is over 5000 and only three collective modes were coupled

to 800 K. The temperature averaged over all degrees of

freedom of the system in SACM is almost the same as in

S300. The collective modes were recalculated every 100 time

steps according to the new current configuration of the

protein. The most time-consuming part of the ACM al-

gorithm compared to usual MD is the diagonalization of

the 3Nr 3 3Nr Hessian matrix (Dhillon, 1997). However, Nr

is only the number of residues and the updating of ANM

modes is not done for every step. For the S-peptide analog

the additional cost of ACM over usual MD is ignorable. For

T4L, ACM increases the computational cost by only ;10%

over usual MD with the above setup.

The same software has been used as in the simulations of

the S-peptide analog. EDA (Amadei et al., 1993) was per-

formed with WHAT IF (Vriend, 1990).

RESULTS AND DISCUSSION

Folding/unfolding of S-peptide analog

Although we performed multiple simulations of the peptide,

considering the similar results among simulations within one

group, we only report the results of one simulation from each

group, respectively.

Root-mean-square deviations (RMSD) from the starting

structure for the backbone atoms from residues 4–12 were

calculated (Fig. 2). The helix is stable during the NA

simulations (Fig. 2 a), which show agreement with our

previous results (Zhang et al., 2001). Compared with Fig. 2 a,
during the NA_ACM simulations, the native a-helix is also

kept very well, only with significantly larger structural

fluctuations (Fig. 2 b). In the UN simulations, RMSD are
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stable and show little change after a period of time, which

indicate the peptide has been ‘‘trapped’’ in a single non-

native substate (Fig. 2 c). We have carried out 10 UN_ACM

simulations. In eight of them, the unfolding peptide refolds

into the native helix (Fig. 2 d ). The refolding time (the first

time when the RMSD from the native structure is\0.1 nm)

ranged from 20 to 90 ns. After refolding, the behaviors of

the peptide in the UN_ACM simulations are similar to its

behaviors in the NA_ACM simulations (Fig. 2 b). In only

two UN_ACM simulations, refolding has not been observed

within 100 ns.

The potential energies (the GBSA free energy of solvation

included) of each group of simulations were calculated (Fig.

3). Several conclusions can be drawn according to the

results. First, the average potential energy of the denatured

structures (�2808.2 6 30.6 kJ mol�1) is higher than that of

the native structures (�2831.3 6 29.8 kJ mol�1). Second,

the energies during the ACM simulations (�2828.2 6 31.1

kJ mol�1 and �2814.9 6 32.1 kJ mol�1 for simulations

starting from the native and unfolded states, respectively)

have only slightly larger fluctuations than that in the

conventional simulations. This is because a few collective

modes have been coupled to a higher temperature. However,

the average energy values in the ACM simulations are still in

a reasonable range. Third, the potential energy decreases

with simulation time in the UN_ACM simulation (Fig. 3 b,
solid line), in agreement with the RMSD figure indicating the

refolding process (Fig. 2 d ).
The results of the UN_ACM simulations indicate that the

ACM method can drive the system to escape the unfolded

local minima and expand the sampling region selectively,

without extending the accessible conformational space to

FIGURE 2 Root-mean-square deviations (RMSD) of

backbone atoms between residues 4–12 in the S-peptide

analog during some simulations. RMSD from the native

structure (dotted lines); RMSD from the denatured

structure (solid lines). (a) Conventional simulation begin-

ning with the native structure (NA). (b) ACM simulation

beginning with the native structure (NA_ACM). (c)

Conventional simulation initiated with the denatured

structure (UN). (d ) ACM simulation initiated with the

denatured structure (UN_ACM).

FIGURE 3 Potential energies in the

simulations of the S-peptide analog. (a)

NA (dotted line); NA_ACM (solid line).

(b) UN (dotted line); UN_ACM (solid
line). The energy values are averaged

every 30 ps.

3588 Zhang et al.

Biophysical Journal 84(6) 3583–3593



irrelevant high-energy regions. That is, the efficiency of the

ACM method comes from that the technique can both

expand the accessible conformational space while still

restricting the sampling within lower-energy region of the

conformational space. The ACM method is quite different

from conventional simulations at elevated temperatures. In

the latter the system may also escape from local minima, but

only at the cost of destabilizing local interactions, extending

the accessible conformational space to irrelevant high-

energy unfolded states (Zhang et al., 2001). As the overall

density of states increases rapidly with elevated temperature,

conventional high temperature simulations generally de-

crease the overall efficiency of the sampling. In the ACM

simulations of the peptide, only a few collective modes are

coupled to a higher temperature. The motions along these

modes are expected to dominate the conformational transit-

ions during the refolding. The higher temperature increases

the chance of escaping local traps both off and along the

refolding pathway, whereas the accessible conformational

space does not expand to the same intractable extent as in

usual high temperature simulations.

Among the 10 UN_ACM simulations, peptide refolding

was observed in eight simulations. It is interesting to study

the folding/unfolding pathways based on these multiple

trajectories. The forming and breaking of five native i1 4! i
hydrogen bonds, i.e., Phe8:NH-Ala4:CO (HB1), Leu9:NH-
Ala5:CO (HB2), Arg10:NH-Ala6:CO (HB3), Glu11:NH-
Lys7:CO (HB4), and His12:NH-Phe8:CO (HB5), were

monitored (Fig. 4), which shows correspondence with the

folding/unfolding of the peptide (Fig. 2). The five hydrogen

bonds are stable in the NA simulations (Fig. 4 a) and less

stable in NA_ACM simulations (Fig. 4 b). No native

hydrogen bonds formed during the UN simulations. In the

refolding process of UN_ACM simulations, the hydrogen

bonds near the N-terminal of the peptide formed first, and

then the hydrogen bonds near the C-terminal (Fig. 4 c).
Instead, the breaking of the hydrogen bonds took place first

near the C-terminal in the unfolding process (Zhang et al.,

2001). The results indicate that the a-helical hydrogen bonds

near the N-terminal may be intrinsically more stable than

those near the C-terminal, forming earlier in the folding

process and being disrupted later in the unfolding process.

Domain motions in bacteriophage T4 lysozyme

Besides the experimental structures, theoretical studies also

reveal that the first two largest amplitude essential modes

determined from the MD trajectories of T4L, which describe

the domain motion, are identified as being the closure and

twist modes (de Groot et al., 1998).

Root-mean-square fluctuations (RMSF) of the Ca atoms

from residues 1–162 were calculated for the two simulations

(Fig. 5 a). SACM shows significantly larger fluctuations than

S300. As expected, the increased motions in the ACM

simulation mainly come from the interdomain motion in

T4L. Root-mean-square deviations (RMSD) from the

starting structure of the Ca atoms from residues 1–162

(Fig. 5 b), N-terminal domain (residues 13–65, Fig. 5 c), and
C-terminal domain (residues 75–162, Fig. 5 d ) indicate that
the larger amplitude motions in SACM do not come from the

intradomain motions of the N- and C-terminal domains. The

secondary structures as well as the structures of each domain

have been well-maintained in the ACM simulation.

The essential dynamics analysis (EDA), which is based on

the diagonalization of the covariance matrix, can distinguish

large, concerted internal motion from small, random internal

motion (Amadei et al., 1993). First, EDA was performed on

a cluster of 38 x-ray crystallographic structures, which may

be representatives of accessible conformations of T4L under

physiological conditions (Zhang et al., 1995). The EDA

results are nearly the same as published data (de Groot et al.,

1998), although only Ca atoms of residues 1–162 are used to

construct the covariance matrix. The results indicate that the

FIGURE 4 Forming and breaking of the five native hydrogen bonds

(HB1-HB5) of the S-peptide analog during some simulations. (a) NA. (b)

NA_ACM. (c) UN_ACM. A maximal distance of 0.25 nm between

hydrogen and acceptor and a maximal angle of 608 between donor-

hydrogen-acceptor were used. The numbering of hydrogen bonds:

Phe8:NH-Ala4:CO (HB1); Leu9:NH-Ala5:CO (HB2); Arg10:NH-Ala6:CO

(HB3); Glu11:NH-Lys7:CO (HB4); and His12:NH-Phe8:CO (HB5).
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first two eigenvectors contribute;90% to the total positional

variations among the experimental structures.

As indicated by de Groot et al. (1998), the first mode

obtained by EDA on the x-ray cluster corresponds to

a closure motion (defined by an effective hinge axis

perpendicular to the line connecting the centers of mass of

the two domains) and the second mode consists of a twist of

the two domains, with the effective hinge axis being more

parallel to the line connecting the two centers of mass. We

projected the x-ray structures and the trajectories of the two

simulations onto the plane defined by the above two modes

to compare the extent of variations in the x-ray structures and

the two simulations (Fig. 6). Along the first mode, there seem

to be two distinct clusters of the x-ray structures. Structures

to the left region are open structures, and structures to the

right are closed. The MD simulation (S300), which started

with a closed structure (indicated by an arrow in Fig. 6),

spend most of the time at the intermediate region between

the two clouds of the x-ray structures, but does not reach

positions corresponding to either the most open or the most

closed configurations in the x-ray cluster. The ACM sim-

ulation (SACM), started with the same structure as S300, fluc-
tuates much more significantly toward all directions in

the plane than the usual MD and x-ray clusters. These results

suggest that the expanded sampling in SACM is mainly the

interdomain motion in T4L. Among the set of 38 x-ray

structures, we selected the structure with the maximum and

the minimum projections on the closure and twist modes,

respectively. In Fig. 7 a, each pair of structures was

superimposed. Between the extreme structures along the

closure mode, the RMSD of Ca atom positions is 0.40 nm

(Fig. 7 a, left). Along the twist mode the corresponding

RMSD is 0.14 nm (Fig. 7 a, right). The same were performed

on the sets of conformations sampled in the usual (Fig. 7 b)
and ACM simulations (Fig. 7 c), respectively. In SACM, both
the closure and the twist motions have larger amplitudes than

in S300 and in the x-ray structure set, in agreement with Figs.

5 and 6.

In SACM, we only coupled the three slowest collective

modes to the higher temperature. We used the initial structure

in the ACM simulation to calculate the ANM modes and

estimated the overlaps between the slow collective modes

and the first two essential modes calculated using the set of

x-ray structures. These overlaps are computed as the

FIGURE 5 Some properties during the T4 lysozyme

simulations. The control simulation S300 (dotted lines) and

the ACM simulation SACM (solid lines). (a) Root-mean-

square fluctuations (RMSF) of Ca atoms from residues

1–162. (b) RMSD from the starting structure of the Ca

atoms from residues 1–162. (c) RMSD of the Ca atoms of

the N-terminal domain (residues 13–65). (d ) RMSD of the

Ca atoms of the C-terminal domain (residues 75–162).

FIGURE 6 Two-dimensional projections of the T4 lysozyme structures

from x-ray and the two simulations onto the plane defined by the closure and

the twist mode. 38 x-ray structures (solid circles). The initial structure of

MD, 2LZM (arrow); trajectory of the S300 simulation (solid line); and

trajectory of the SACM simulation (dotted line).
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projections of the x-ray essential modes on the subspace

formed by the slow ANM modes. We found that the first

three ANM modes significantly cover the x-ray modes. The

overlap coefficients are 0.87 for closure mode and 0.76 for

twist mode, respectively, with a coefficient of 1.0 for com-

plete coverage. This explains why the interdomain motion of

T4L in SACM is much more obvious than in S300. The

intradomain motion in SACM is nearly the same as in S300,
because all the other modes except the first three were cou-

pled to the normal temperature (300 K), the same as in S300.
In our conventional MD simulation of T4L, a large part of

the regionof x-ray structures could not be sampledwithin 3 ns,

but the ACM simulation seemed to cover the x-ray struc-

tures within the same simulation time (Fig. 6). Dynamical

transitions among the x-ray structures are muchmore obvious

in SACM. We expect further such simulations with ACM may

grasp the essential motions at much longer timescales, which

can have more extensive relations with functions.

Comparisons with other sampling methods

Collective coordinates have been used in the study of protein

motions for quite some time. In the ACM method presented

here, the collective modes are obtained using the coarse-

grained model ANM (Atilgan et al., 2001). The ANM

approximation seems sufficient to reproduce the slow

dynamics as well as the harmonic modes obtained by

NMA, using all-atom empirical potentials. In the case of

T4L, the first few slowest ANM modes are able to sig-

nificantly cover the first two essential modes obtained on

a set of crystal structures. ANM is computationally more

efficient than NMA and EDA. More importantly, by using

ANM we can update the collective modes �on the fly�. We

also do not need a known set of conformers to determine

the essential modes or to assume the essential modes to be

invariant. This is not the case in the essential dynamics

simulation method (Amadei et al., 1996). For large systems,

the updating of the ANM modes can be computationally

expensive if it is done every MD step. This is, however,

unnecessary. An ‘‘ideal’’ updating frequency is that it can

catch up with the changes in the essential subspace with

minimum additional computational cost. This should not be

an issue in practice, because while larger systems require

more efforts to obtain the ANM modes, the physical

processes of interest generally take place at longer time-

scales. For T4 lysozyme in explicit water, updating the ANM

modes every 100 steps (0.2 ps) only increases the com-

putational cost by 10%. One does not need to risk vio-

lating the physical requirement by reducing the frequency

further to gain little in additional computational efficiency.

For both systems we studied, we expect the conformational

changes, that may lead to significantly different slow con-

formational subspaces, to take place for significantly longer

than the respective time intervals for ANM updating.

One key strategy in the ACM approach is to couple only

the first few low-frequency collective modes to a higher

temperature. Compared with other previously described

sampling methods employing higher temperatures, such as

the multicanonical ensemble algorithm (Hansmann and

Okamoto, 1993; Nakajima et al., 1997), the temperatures

of the entire system are elevated in the latter approaches. As

a result, the higher energy regions are nondiscriminatively

sampled. This significantly expands the accessible confor-

mational space, introducing additional burden on sampling.

The other methods, such as adaptive umbrella sampling

(Bartels and Karplus, 1998), conformational flooding

(Grubmuller, 1995), and chemical flooding (Muller et al.,

FIGURE 7 Superimposed structures indicating the observed domain

motions of T4 lysozyme. From three set of structures: (a) x-ray structures,

(b) conformations sampled in the usual MD simulation, and (c)

conformations sampled in the ACM simulation; the structures with the

maximum (red ) and the minimum (blue) projections along the closure mode

are superimposed on the left, and the structures with the maximum (red ) and

the minimum (blue) projections along the twist mode are superimposed on

the right. RMS deviations of Ca atom positions between the superimposed

structures are indicated under each set of the structures. The graphs have

been created with MOLSCRIPT (Kraulis, 1991).
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2002), achieve higher sampling efficiency by flattening the

potential energy surface. In the ACM method, the potential

energy function is the same as in the conventional simulation.

The expansion of sampling is along the slow modes, i.e., low

potential energy valleys on the potential energy surface.

There are still some disadvantages to our method. In the

ACM simulations, a number of collective modes are coupled

to a higher temperature at all times; that is, the system is

always in a nonequilibrium state. There remains the question

of how to extract the thermodynamics properties of the

system from such simulations. Another disadvantage has to

do with our selection of the slowest modes for higher

temperature coupling. In some cases, the functional motions

of the proteins we are interested in may not occur along these

slowest collective modes. Future work is needed on how to

pick up the collective modes of functional importance in

such cases and selectively excite them in simulations.

CONCLUSIONS

Teeter and Case (1990) showed that the collective modes

are sensitive to the force field; however, the frequency

distributions and fluctuations were remarkably similar. In

addition, the subspace spanned by a small number of col-

lective coordinates is invariant in many cases and is almost

independent of the details of actual approximations to the

physical interactions between atoms and residues (Kitao and

Go, 1991; Kitao et al., 1994). Based on the coarse-grained

model ANM, we can calculate the collective modes of the

protein at little cost. We have shown that by coupling these

modes to higher temperatures, the most important collective

motions can be amplified significantly and the essential sub-

space of protein dynamics can be sampled more adequately.

In our first application to demonstrate the method, mul-

tiple GBSA simulations of the S-peptide analog were per-

formed. For the ACM simulations starting from the native

structure, the native structure is stable, but larger fluctuations

than the conventional simulations are observed. Among

the total 10 ACM simulations started from the denatured

structure, peptide refolding was observed in eight simu-

lations; the peptide was not trapped in local, non-native

minima as is the case in conventional simulations. It seems

that the ACM method can expand the conformational space

of the peptide extensively while restricting the sampling

within the low-energy regions. The peptide results are in-

teresting also in the sense that, to our knowledge, ANM

has only been used to investigate the collective motions of

folded structures before our work.

In the T4 lysozyme case, compared with the conventional

simulation which sampled a restricted area in the conforma-

tional space, the interdomain motions observed in the ACM

simulation (SACM) are much more obviously and in good

agreement with the observed variances of different x-ray

structures. As in the peptide case, the amplified motions are

restricted to the long wavelength collective modes, with the

secondary structures and individual domains almost undis-

rupted, compared with the conventional simulation.

Applications of the ACM method may be abundant, such

as large-magnitude functional motions of protein, folding/

unfolding pathways of peptides and proteins, and structure

predictions. Our results indicated that the method could be

used in both explicit and implicit solvent simulations and

may be generally applicable to many different MD and MC

formalisms. Of course, the method needs further improve-

ments to investigate these important biological problems

efficiently.
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