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ABSTRACT We demonstrated previously that the two continuum theories widely used in modeling biological ion channels
give unreliable results when the radius of the conduit is less than two Debye lengths. The reason for this failure is the neglect of
surface charges on the protein wall induced by permeating ions. Here we attempt to improve the accuracy of the Poisson-
Boltzmann and Poisson-Nernst-Planck theories, when applied to channel-like environments, by including a specific dielectric
self-energy term to overcome spurious shielding effects inherent in these theories. By comparing results with Brownian
dynamics simulations, we show that the inclusion of an additional term in the equations yields significant qualitative
improvements. The modified theories perform well in very wide and very narrow channels, but are less successful at
intermediate sizes. The situation is worse in multi-ion channels because of the inability of the continuum theories to handle the
ion-to-ion interactions correctly. Thus, further work is required if these continuum theories are to be reliably salvaged for
quantitative studies of biological ion channels in all situations.

INTRODUCTION

Continuum theories of electrolytes, such as the Poisson-

Boltzmann (PB) and Poisson-Nernst-Planck (PNP) equa-

tions, have been widely used in studies of ion channels

during the last two decades. For example, the PB equation

has been employed in calculation of the forces and energy

profiles seen by ions in channels (e.g., Levitt, 1985; Jordan

et al., 1989; Weetman et al., 1997; Adcock et al., 1998;

Cheng et al., 1998), and to determine the ionization states of

side chains (Roux et al., 2000; Ranatunga et al., 2001) under

equilibrium conditions. Similarly, the PNP equations have

been used to investigate the permeation properties of many

channels (for review see Eisenberg, 1999; and for recent

applications see Kurnikova et al., 1999; Cardenas et al.,

2000; Nonner et al., 2000; Hollerbach et al., 2000;

Hollerbach and Eisenberg, 2002). Recently the application

of continuum theories to narrow ion channels (i.e., radius

smaller than the Debye length of the electrolyte) was called

into question, as they were found to overestimate electrolytic

shielding effects (Moy et al., 2000, Corry et al., 2000, Graf

et al., 2000). The PB equation predicts that high concentra-

tions of counterions accumulate around a fixed test ion in a

narrow channel, which act to eliminate the repulsive image

forces due to the polarization charges induced at the channel

walls. Such high concentrations of counterions around a test

ion are not seen when the mobile ions are treated explicitly as

in Brownian dynamics (BD) simulations. In BD, the image

forces felt by individual counterions prevent them from

easily entering the channel and thereby suppress the large

degree of shielding seen in the PB theory. Similarly, in PNP

calculations the currents passing through narrow channels

are found to be much larger than in corresponding BD sim-

ulations, again as a direct consequence of higher ionic

concentrations found in the former method.

Extensive comparisons with BD simulations indicate that

the problems in both continuum theories arise from the fact

that the dielectric self-energy contribution to the ions’ po-

tential energy is not properly taken into account (Moy et al.,

2000, Corry et al., 2000). Because the self-energy is propor-

tional to the square of the charge, it is positive for all ions,

and it would repel them from the dielectric channel boun-

daries leading to a suppression of their concentrations. In

numerical solutions of the PB and PNP equations, however,

the charge of mobile ions is distributed throughout the

channel and only a fraction of an ionic charge is found in

a given region. This leads to a reduced amount of induced

charges on the channel boundary, and the quadratic depen-

dence of the self-energy on charge means that its effect is

significantly underestimated. In reality, an ion carrying a unit

charge of e induces charges on the channel boundary in an

all-or-nothing way—either a large image force is induced

(repelling the ion away from the boundary) or there is no ion

and thus no force. The lack of dielectric self-energy was

accentuated in many of the PNP calculations carried out

previously, in particular those with no fixed charges in the

channel walls (Corry et al., 2000). In these PNP results equal

amounts of positive and negative electrolyte were found in

the channel, and so there was no net charge at any given

point. Thus, no charge was induced along the dielectric

boundaries. This was in contrast to the BD simulations in

which the positive and negative ions entered the channel

at different times, and so each induced a large amount of

surface charges and felt a large repulsive force from the
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channel boundaries. As shown by Corry et al., 2000, the

failure to treat induced charges correctly in standard PNP

models leads to currents much larger than those observed

in BD.

Mean field theories of electrolytes have been commonly

used to determine charge transport in semiconductors

(Haensch, 1991; Assad et al., 1998) as well as to describe

the electric field around globular proteins (Davis and

McCammon, 1990; Sharp and Honig, 1990). Thus it may

be surprising that the lack of dielectric self-energy has only

been noted as a problem relatively recently. However,

generally the dimensions of these systems are much greater

than the Debye length. In such cases the effects of image

forces can be shielded out by the surrounding electrolyte.

Image forces are also more significant inside channels where

the ion is surrounded by dielectric boundaries rather than

facing them on just one side (Kuyucak et al., 2001). Thus,

there has been little need to deal with the interaction with

dielectric boundaries more carefully in semiconductors or

around globular proteins as is required in ion channels.

Given the computational simplicity of the continuum

theories compared to simulation approaches and their wide-

spread use, it would be desirable to find a solution to the

problem of dielectric self-energy highlighted above. A pos-

sible approach is to include an explicit self-energy term in

the formalism that would mimic the effect of the induced

surface charges on ions entering the channel. Such a term

would prevent the buildup of large counterion concentrations

around a test ion and may eradicate the spurious shielding

effects seen in the continuum models. This approach to

correct the continuum theories is being pursued elsewhere

(Schuss et al., 2001; Mamonov et al., 2002; Coalson et al.,

2002), but no explicit tests of its performance have been

published. Here we examine the consequences of including

a dielectric self-energy term in the PB and PNP formalisms.

The forces calculated using the modified Poisson-Boltzmann

and the currents found from the modified Poisson-Nernst-

Planck equations are again compared with Brownian

dynamics simulations to assess whether the suggested modi-

fication improves the performance of the continuum ap-

proaches in ion channels.

Another potential problem in applications of the contin-

uum theories to ion channels is the spurious self-energy that

arises from continuous distribution of an ion’s charge. Dis-

tributing an ionic charge across a region leads to interactions

of the charge with itself that are not present when the charge

is localized at a single point. In single-ion channels, this is

a relatively minor problem compared to that of dielectric

self-energy, and perhaps because of this, it has not been

considered in earlier literature. The significance of this effect,

however, grows rapidly with the number of ions resident in

a channel. Therefore, to understand and interpret the results

obtained in multi-ion channels we will also discuss this

spurious self-energy contribution in continuum theories in

some detail.

METHODS

Modified PB equation

In Poisson-Boltzmann theory, the mobile ions are treated as a continuous

charge density distributed according to the Boltzmann factor

nnðrÞ ¼ n0n expð�Un=kTÞ; Un ¼ znefðrÞ: (1)

Here n0n is a background (or reference) density of ions of species n,Un is the

electrostatic potential energy of an ion with charge zne, and f(r) is the

average potential at the position r determined from the solution of Poisson’s

equation

e0= � ½eðrÞ=fðrÞ� ¼ �+
n

znenn � rex; (2)

where rex represents all the other external charge sources in the system such

as fixed charges in the protein. The PB equation follows upon substituting

the density from Eq. 1 into Eq. 2.

A crucial assumption of PB theory is that at a given point, the same

average potential acts on all ions regardless of their valence, and hence the

potential energy of anions and cations have opposite signs. This is a rea-

sonable assumption to make in a homogeneous system but it cannot be

justified in an inhomogeneous one with dielectric boundaries. Near a water-

protein interface, a mobile ion with charge zne induces polarization charges

of the same sign on the boundary. These charges, in turn, generate a reaction

potential fR that acts to repel the ion from the boundary. The potential

energy due to this reaction field, called the dielectric self-energy, is given by

UnR ¼ 1

2
znefRðrÞ: (3)

Since fR is itself proportional to zne, UnR depends on the square of the ionic

charge, and hence it is always positive regardless of the valence of ions.

Thus the dielectric self-energy contribution to the total potential energy of an

ion is the same for cations and anions, which is incompatible with the

assumption in Eq. 1. The upshot is that the PB equation cannot lead to

a suppression of ionic densities near a dielectric boundary because it fails to

take into account the dielectric self-energy contribution. A similar problem

occurs in the Gouy-Chapman solutions of the PB equation where coun-

terions build up at a charged electrode. In that case, this unphysical behavior

is avoided by introducing a Stern or Helmholtz layer that excludes ions from

the immediate neighborhood of the boundary. While the presence of this

layer is motivated by the finite size of ions or the effect of the solvent layer,

in practice its thickness is used as a free parameter to fit the experimental

data. In any case, the physics of repulsive self-energy is very different and

cannot be modeled by such a simple exclusion zone for ions.

The above discussion about the lack of dielectric self-energy in the PB

equation also suggests an apparently simple remedy: modify the Boltzmann

factor in Eq. 1 by adding a dielectric self-energy term to the potential energy

nnðrÞ ¼ n0n exp½�ðUn 1UnRÞ=kT�; (4)

so that the modified PB equation in a 1:1 electrolyte becomes

e0=3 ½eðrÞ=fðrÞ�¼2en0 sinh½efðrÞ=kT�exp½�UR=kT��rex:

(5)

As an ion approaches a dielectric boundary, UR grows rapidly, and the

exponential factor in Eq. 5 provides a natural mechanism to suppress the ion

densities. The difficulty in this scheme, of course, lies in the calculation of

UR in a many-body system in a self-consistent manner. For a single ion, the

self-energy is well-defined—one just needs to solve Poisson’s equation for

the single ion and substitute the computed reaction potential in Eq. 3. In a

dilute electrolyte solution, where the effect of the reaction field created on

one ion by another can be neglected, this simple recipe should be quite

adequate for the self-energy correction. However, at higher concentrations,
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the approximation of the reaction potential with that of a single ion becomes

problematic. Ion-to-ion correlations can be included into continuum electro-

lyte theories, such as has been done to describe the formation and behavior

of highly charged �macro-ions� and DNA molecules (e.g., Grosberg et al.,

2002; Gelbart et al., 2000). In most cases these studies do not include the

effect one ion has on another due to the reaction potential created at a

dielectric interface as the calculations are carried out in a region of uniform

dielectric constant, although some include dielectric boundaries with simple

geometries (Nguyen et al., 2000). In continuum theories, incorporating the

effect that the reaction field that is created by one ion has on another with

more complicated geometries is a difficult problem. Thus, it is of interest to

see whether the inclusion of the self-energy correction at the single-ion level

(i.e., only the influence the reaction field created by an ion has on itself)

improves the accuracy of the PB solutions sufficiently so that they can be

used in ion channels with some confidence. For this purpose, we compare

the results of the modified PB equation with those obtained from BD simu-

lations.

The modified PB equation is solved using a finite difference method as

described previously for the standard PB equation (Moy et al., 2000). The

values of dielectric self-energy are calculated by solving Poisson’s equation

using the same technique, but with all the electrolyte concentrations set to

zero. A unit charge is placed at each of the grid points used in the finite

difference computation and the calculated values of UR are stored on the

computer in a table. Entries from this table are utilized during the solution of

the modified PB equation (Eq. 5).

Modified PNP equations

The conduction of ions in an electrolyte solution is described by the Nernst-

Planck equation

Jn ¼ �Dn =nn 1
znenn

kT
=f

� �
; (6)

where Dn is the diffusion coefficient of the ions of species n. When Eq. 6 is

combined with Poisson’s equation (Eq. 2), one obtains the PNP equations,

which provide a consistent framework for the description of ion transport in

homogenous systems. As in the case of the PB theory, the presence of

dielectric boundaries creates problems for the application of PNP to narrow

channels because the dielectric self-energy of ions is not properly taken into

account.

The PNP equations can be modified in a similar manner to the PB

equation by including a specific dielectric self-energy term in the potential

energy of an ion:

Jn ¼ �Dn =nn 1
znenn

kT
=ðf1fR=2Þ

� �
: (7)

The analogy between Eq. 7 and the modified PB equation can be seen most

clearlywhen the current vanishes. ThenEq. 7 can be easily integrated yielding

the modified Boltzmann factor given in Eq. 4. Here we solve Eq. 7

simultaneously with Eq. 2 using a finite difference procedure as described

previously for the PNP equations (Corry et al., 2000). The values of dielectric

self-energy are implemented in this process using a table as in the solution of

the modified PB equation.

Self-energy in continuum theories

In continuum electrostatics, self-energy refers to the intrinsic potential

energy of a charge (or charge distribution) with itself. This is different from

the dielectric self-energy discussed above, which arises from the interaction

of a charge with a dielectric boundary. Because an ion’s self-energy is

constant and has no effect on the results, it is routinely ignored in

electrostatic calculations involving discrete charges, and only the Coulomb

interactions among the charges are considered. In continuum theories,

however, charges are distributed continuously and it is not possible to isolate

the self-energy from the Coulomb interaction. Thus when Poisson’s

equation is solved in the PB and PNP theories, the calculated potential

energy of ions necessarily contains a spurious self-energy contribution. This

is not a concern in typical applications of continuum theories, which involve

a large number of ions (N� 1) in a nearly neutral electrolyte solution. First,

the self-energy is proportional to N whereas Coulomb interaction scales as

N2, so its relative contribution would be negligible for large N. Secondly,
near electroneutrality in a large system means that the self-energy due to any

excess charge has to be small. To give an example, when a charge q is

uniformly spread in a water-filled sphere of radius R, the self-energy

associated with this distribution is given by

Us ¼
1

4pe0ew

3q
2

5R
: (8)

For a unit charge with a dielectric constant of ew ¼ 80, this yields Us ¼
4.2 / R kT where R is in Å. Thus, in a large system (e.g., R[ 100 Å), self-

energy due to an excess ionic charge is completely negligible.

Ion channels do not satisfy either condition. They contain a rather small

volume of electrolyte which is far from being electroneutral—at least for the

majority of channels that are either cation- or anion-selective. Because the

PB and PNP equations strive to maintain electroneutrality, this was not an

apparent problem in earlier applications of the continuum theories to ion

channels. The introduction of a dielectric self-energy term, however, leads to

a suppression of the counterions in the channel and thereby exposes the

problem of self-energy more conspicuously. To appreciate the magnitude of

this effect, we show in Fig. 1 its influence in the simple case of electrolyte

contained within a sphere. In Fig. 1 A, a single ionic charge is confined inside

a 4 Å radius sphere with e ¼ 80 everywhere so that there are no dielectric

boundaries. A single ion should, thus, move freely within the sphere

occupying all space evenly. In contrast, the average concentration found

using the (standard) PB equation (Fig. 1 A) exhibits a central depression,

which is simply caused by the Coulomb repulsion among the charges

distributed at all grid points. The potential energy of this charge distribution

is ;1 kT. This self-energy is, of course, entirely spurious because the

potential energy of an isolated ion is zero.

When the number of ions in the system is increased, the magnitude of the

error increases before it starts to decrease at the large N limit. This is

illustrated in Fig. 1 B, where the potential energy of the system is plotted as

a function of the number of monovalent ions in the sphere. The solid line

shows the potential energy obtained from the solution of the PB equation at

room temperature (T ¼ 298 K). As the charge in the sphere is increased, the

potential energy is seen to increase roughly proportional to the charge

squared. Thus, for two ions it is;4 kT, and for three ions, 9 kT. The dash-dot
line in the figure shows the minimum electrostatic energy of the system that

would be obtained at T¼ 0 K when all the charges collapse to the boundary.

Because the two curves are quite similar, we simply present the minimum

electrostatic potential energy for the corresponding discrete charge

configurations (dashed line in Fig. 1 B). The discrepancy between the

continuum and discrete representations of the potential energy is seen to

grow with increasing number of ions. For two ions, the contribution of the

spurious self-energy to the total potential energy is ;3 kT which we expect

to have a sizable impact on the results of the continuum theories. The error

introduced by spurious self-energy would obviously be much greater when

dealing with divalent ions.

While channels are cylindrical and do not absolutely confine ions, we

expect the order-of-magnitude estimates presented above will have a bearing

on the results of the modified PB and PNP equations, particularly in ion

channels occupied by more than one ion. Whenever there is a net charge

buildup inside the channel, the repulsion arising from the spurious self-

energy will tend to push the electrolyte out of the channel, leading to

a lowering of the concentration inside. This additional repulsion mechanism

is required to understand some of the results presented below, especially in

the case of multi-ion channels.
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Brownian dynamics

Brownian dynamics simulations are carried out to compare results for the

force on ions in the channel and the current across the channel with those

found in the modified PB and PNP equations. BD provides a useful

comparison as the mobile ions in the electrolyte are treated explicitly,

whereas the dielectric boundaries are handled using continuum electrostatics

in a similar manner to the continuum approach. Thus differences between

BD and continuum theory results arise directly from using discrete ions

rather than a continuous charge distribution.

The use of Brownian dynamics in ion channel simulations has been

described previously in our previous articles (Chung et al., 1999; Moy et al.,

2000; Corry et al., 2000, 2002; Kuyucak et al., 2001), and indeed some of

the same data are utilized here as in those earlier studies. Very briefly, in BD

the motions of individual ions are simulated using the Langevin equation in

which the effects of surrounding water molecules are represented by

frictional and random forces. The electric forces acting on the ion at each

time step, including Coulomb interactions, interactions with the dielectric

channel boundary, and any applied membrane potential are calculated by

solving Poisson’s equation using an iterative boundary element method

(Hoyles et al., 1998). Additional forces that represent the short range

interaction of ions, hydration effects, and interactions with the channel

boundary are also employed (Corry et al., 2001). Ions are initially given

random positions in reservoirs attached to each end of the channel, and the

Langevin equation is solved at discrete time steps of 100 fs following a third-

order algorithm (van Gunsteren and Berendsen, 1982). In the multi-ion

channels, a shorter time step of 2 fs is utilized for ions inside the channel.

When comparing forces on an ion in the channel with the solutions of the

modified PB equations, an ion is held at a fixed position in the channel while

the other ions are free to move throughout the system. The force acting on

the ion is averaged over the simulation period. When comparing with the

modified PNP equations, all ions are free to move.

RESULTS

Because our aim is to see how much the inclusion of the

dielectric self-energy term improves the continuum theories,

we will compare the results of the modified PB and PNP

equations with those obtained from BD simulations as well

as from the standard PB and PNP equations. As the latter two

theories have been compared extensively previously (Moy

et al., 2000; Corry et al., 2000), we will rely on some of those

results here. Therefore, the same schematic cylindrical

channel with rounded corners is adapted in most of the

comparisons (Fig. 2). The channel has a fixed length of 35 Å

and its radius is varied from r ¼ 3 to 13 Å. Two reservoirs

with a radius of 30 Å and a variable height are attached to the

channel. The height of the reservoir varies with the radius of

the channel. For example, the height is h ¼ 25 Å when the

pore radius is 3 Å. For larger channel radii, h is adjusted to

keep the entire volume of the system constant. The dielectric

constants are set to 2 in the protein and 80 for the water. An

average concentration of 300 mM is used in all cases,

corresponding to 24 Na1 and 24 Cl� ions in the BD simu-

lations. The Debye length for this concentration is 5.6 Å.

Modified PB equation

The modified PB equation is tested by calculating the force

on a fixed test ion as well as potential and concentration

profiles within model channels. Rather than repeating all the

tests made in Moy et al. (2000), we present a selected few

that convey the main results in a compact way. Because the

cylindrical channel with no fixed charges exposes the prob-

lem of dielectric self-energy most clearly, we consider this

case first. The test ion is held fixed at z ¼ 12.5 Å, where the

force on the ion is greatest, and the average force on the ion

and the net screening charge within the channel are calcu-

lated using the modified PB equation. The results are

compared to those obtained from the BD simulations and

standard PB equation in Fig. 3 as a function of the channel

radius. Fig. 3 A shows that the inclusion of the dielectric self-

energy term dramatically reduces the concentration of coun-

terions in the channel, well below that of the standard PB

equation and the BD simulations. Only in the narrowest

channel studied (r¼ 3 Å), where there is no screening charge

FIGURE 1 Spurious self-energy contribution to the total potential energy

when the ionic charges are distributed continuously. In both cases the charge

is contained inside a 4-Å radius sphere and e ¼ 80 is used everywhere. (A)

The concentration found using the standard PB equation is plotted against

the radial position when there is a net charge of e in the sphere. (B) The

energy of the system as the charge in the sphere is increased. Results are

shown as found from the PB equation at 298 K (solid line), 0 K (dash-dot

line), and as calculated with discrete ions at 0 K (dashed line).
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in the channel, does the modified PB results agree with those

of BD. Thus the unwanted shielding effects found in the

standard PB equation are removed in channels with radius

r # 3 Å as desired. But, at larger channel radii, the amount

of countercharge in the channel stays below that found in

theBD simulations, indicating that the electrolyte screening is

suppressed too much. Suppression of the countercharges in

modified PB persists even after an agreement between the

standard PB and BD results is obtained at r[ 12 Å. How-

ever, this is due to the exclusion of ions from the immediate

vicinity of the channel boundary by the dielectric self-energy

term in Eq. 5, and does not affect the dynamics of an ion on

the central axis. This is demonstrated in Fig. 3 B, where the
axial component of the forces on the ion in modified PB and

BD are seen to agree for r[ 10 Å. Otherwise, the forces on

the test ion mirror the behavior seen in Fig. 3 A. That is, in
the r ¼ 3 Å channel, both the BD and modified PB results

agree with the single-ion result as there are no screening

charges in the channel. But in intermediate radii channels,

the modified PB predicts larger forces than BD because the

screening charges are suppressed.

The overall conclusion from Fig. 3 is that the inclusion of

the dielectric self-energy term leads to a dramatic improve-

ment in the PB results, especially for the narrow channels.

However, in the intermediate radii channels, the discrepancy

in the force when compared to BD is still large (;50%),

and is likely to be important in quantitative studies of ion

channels. In a nutshell, the modified PB equation overcom-

pensates for the dielectric self-energy in the standard PB

equation, and now underestimates shielding rather than

overestimating it.

Biological ion channels contain fixed charges in the

protein walls that create valence selectivity. For complete-

ness, we examine the more realistic case of a r ¼ 4 Å chan-

nel with negative charges at the entrances. These negative

charges cancel the energy barriers encountered by cations,

while roughly doubling their height for anions, thus making

the channel cation-selective. Here, we place a ring of eight

negative monopoles each with charge �0.09 e spread evenly
near the channel mouths at z ¼ 612.5 Å and set 1 Å inside

the boundary. In Fig. 4 A we plot the potential profile

through the channel as found from the PB equation (upper
dashed line), modified PB equation (MPB, solid line), BD
simulations (dash-dot line) and Poisson’s equation with no

electrolyte (lower dashed line). Here there is no test ion in

FIGURE 3 Pore size dependence of the screening charge and force on

a cation held at z¼ 12.5 Å. (A) The net screening charge in the channel (from
z¼�15 to 15 Å) is plotted as a function of the channel radius. The modified

PB (MPB) results are shown by the solid line, standard PB by the dashed

line, and the BD values by the solid circles fitted with the dash-dot line. (B)

The axial component of the force on the test ion normalized by the force on

a single ion (calculated by solving Poisson’s equation) is plotted as the

channel radius is increased. Symbols are as in A.

FIGURE 2 Cylindrical channel models used in comparisons of PB and

PNP theory with BD simulations. A three-dimensional channel model is

generated by rotating the cross section about the central axis by 1808. The

cylindrical section is 25 Å in length, and the rounded corners have a radius of

curvature of 5 Å, bringing the total length of the channel to 35 Å. The radius

of the cylinder r is varied from 3 to 13 Å. The reservoir height h is adjusted

so as to keep the total (reservoir and channel) volume constant when the

radius is changed.
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the channel as this has already been considered above. The

potential found from the modified PB equation shows

a significant improvement compared to the standard PB

results. Interestingly, although the modified PB potential

displays a considerable drop, it does not overshoot the BD

result as in Fig. 3.

A similar improvement is observed in the cation

concentration profiles in Fig. 4 B. In this case, the modified

PB concentrations slightly overshoot those of BD. Again this

is caused by the suppression of ionic concentrations near the

boundary by the dielectric self-energy term. We stress that

unlike the PB equation, the modified PB equation is not self-

consistent because the additional term representing dielectric

self-energy is included in Eq. 5 in an ad hoc manner. In the

potential plot, the modified PB results lie closer to the

standard PB results than those found from BD. However, in

the concentration plot the reverse is true. The reason for this

is that the potential plotted in Fig. 4 A is f found from Eq. 5,

whereas the concentration in Fig. 4 B is determined from

f 1 fR/2 as indicated in Eq. 4.

We next consider the gramicidin A channel, which offers

a more realistic case study. A model of the channel is

constructed from the recent NMR data (Ketchem et al.,

1997), including the partial charges of all the protein atoms as

described previously (Edwards et al., 2002). In Fig. 5, A and

B, we show the potential profile and concentration of cations

found in this channel in a similar manner to Fig. 4. In the

absence of an electrolyte, the potential has a deep well created

by the partial charges in the protein, which act to attract

cations into the channel. Using the standard PB equation, the

potential is flattened out because, as seen in Fig. 5 B, a large
concentration of cations enters the channel and almost can-

cels the Coulomb potential of the partial charges. When the

modified PB equation is used, however, we find that this

potential profile remains largely unchanged from the solution

of Poisson’s equation because the dielectric self-energy term

leads to a large suppression of the cation concentration in the

channel. The potential found from the modified PB equation

is remarkably similar to that found from the BD simulations,

the two agreeing within a few percent. Comparing the con-

centration profiles in Fig. 5 B, we find that in both cases

the concentration of ions in the channel is quite low. Thus in

the gramicidin A channel, the inclusion of the dielectric self-

energy term in the PB equation yields a dramatic improve-

ment. This may not be surprising as the channel is very

narrow and is found to be occupied only 10% of the time by

a single cation. This means that the dielectric repulsion from

the channel boundary is a dominant effect, and it can be

approximated quite well by the repulsion felt by a single ion.

As a final test of the modified PB equation, we consider

the KcsA potassium channel. Not only does this channel

have a more complicated geometry, it is also always oc-

cupied by multiple ions. The contribution of dielectric self-

energy calculated by using a single ion is likely to be a poor

approximation. Also, ion-to-ion interactions that are difficult

to describe in a continuum approach may become important,

and errors due to the spurious self-energy are more likely

to be significant. An open-state shape of the channel is con-

structed from the KcsA crystal structure (Doyle et al., 1998)

as described previously (Chung et al., 2002). The profile of

this channel shape is shown at the top of Fig. 6. The narrow

selectivity filter of the channel is surrounded by carbonyl

oxygen atoms whose partial negative charges create a deep

potential well as seen from the solution of Poisson’s equation

(lower dashed line in Fig. 6 A). These negative charges

attract potassium ions into the channel, whose presence de-

creases the size of this well. When the standard PB equation

is used, enough cations enter the channel so as to cancel out

the potential well. In BD simulations, two ions are found in

the selectivity filter on average. Because the volume of this

section of the channel is very small, this leads to a very large

concentration there as seen in Fig. 6 B. The two peaks in the

concentration plot show the likely positions of the ions.

These ions again act to cancel the potential well in the

channel. The discrepancy between the potential profiles ob-

tained with the BD and the modified PB is greater than that

FIGURE 4 (A) Potential profiles found in a 4-Å radius cylindrical channel

with charges in the protein and no fixed test ion found using the standard PB

equation (upper dashed line), modified PB equation (solid line), and BD

(dash-dot line) with 300 mMNaCl solution in the baths. The potential found

from Poisson’s equation with no electrolyte is shown by the lower dashed

line. (B) Concentration profiles corresponding to the results in A.
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obtained with the BD and the standard PB (Fig. 6 A). Less
cation concentration builds up in the channel, which results

in a very deep potential well (;700 mV) in the modified PB

equation.

Examining the concentration profiles in Fig. 6 B, we note
that even the standard PB equation predicts a much lower

concentration than is found using BD. Indeed, whereas BD

predicts a total of four ions in the channel, the PB equation

predicts 2.5 and the modified PB only 1.5 ions. (Note that the

channel is wider at the left-hand side, and so even though the

peak in concentration there looks small, it represents at least

one ion.) The most likely reason for this suppression in the

concentration is the spurious self-energy in the PB solutions.

In the KcsA channel, multiple ions are present in the narrow

selectivity filter, and the spurious self-energy of this charge

distribution acts to reduce the concentration there in the PB

solutions. A second observation is that the inclusion of the

dielectric self-energy term has a relatively small impact on

the concentration compared to the dramatic suppression seen

in single-ion channels. This happens because the dielectric

self-energy is taken into account at the single-ion level and

when there are multiple ions in the channel, its effect is un-

derestimated. The overall conclusion is that, unlike the single-

ion channels, the modified PB equation leads to inferior

results in this multi-ion channel compared to the standard

PB equation. It appears that the spurious self-energy in a

multi-ion channel more than compensates for the lack of

dielectric self-energy in the PB equation, and hence its ex-

plicit inclusion results in an overestimate of the magnitude of

the repulsive forces acting on ions.

FIGURE 5 (A) Potential and (B) concentration profiles as in Fig. 4 except

in the gramicidin A channel. A concentration of 500 mMKCl is used in both

cases. The shape of the channel is shown in the inset.

FIGURE 6 (A) Potential and (B) concentration profiles as in Fig. 4 except
in the KcsA potassium channel. A concentration of 300 mM KCl is used in

both cases. The shape of the channel is indicated in the inset.
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Modified PNP equations

As a first test case, we again consider the schematic cy-

lindrical channel shown in Fig. 2 without any charges in the

protein. Following the tests carried out in a previous article

(Corry et al., 2000), we calculate the current passing through

this channel using the modified PNP equations and compare

them to currents derived from BD simulations. All calcu-

lations are carried out using a symmetrical 300 mM NaCl

solution and an applied potential of 105 mV between the

reservoir ends. In Fig. 7, we plot the channel conductance for

cylindrical channels as a function of the channel radius. Here

the conductance is normalized by the cross-sectional area of

the channel to factor out the trivial increase in current with

increasing area. The old PNP results of Corry et al. (2000)

are indicated by the dashed lines and show the slight down-

ward trend created by access resistance effects. The currents

in narrow channels found from BD (data points fitted by

dash-dot lines) are well below the PNP values due to the

repulsive self-energy barrier retarding the permeation of ions

through the channel. A similar suppression occurs in modi-

fied PNP, when the dielectric self-energy term is included

explicitly in the PNP equations. Indeed, the currents carried

by both cations and anions are essentially zero in the 3-Å

radius channel in agreement with the BD results. The nor-

malized conductance climbs as the channel radius is increased

in a similar manner to that seen in BD. There are some

differences in intermediate radii channels, but the differ-

ences are remarkably small (;35%). It appears that the in-

clusion of an explicit dielectric self-energy term in the PNP

equations can reproduce the BD results reasonably well in

these bare channels.

Next we consider the simple cation-selective channel

studied in Fig. 4. The presence of the negative charges has

been shown to spoil the coexistence of anions and cations

and reduce the perfect shielding seen in PNP studies of bare

channels (Corry et al., 2000). As a result, discrepancy be-

tween PNP and BD results gets smaller in charged channels,

especially for cation currents (Fig. 8 A). The results obtained
with the modified PNP (Fig. 8, solid lines) lie below those

obtained with BD, and the previous agreement between PNP

and BD for cation currents at intermediate radii channels is

spoiled. In the intermediate radii channels, there remains

roughly a factor-of-2 discrepancy between the cation cur-

rents found from modified PNP and BD. The results from

both techniques converge again at larger radii.

The reason for the discrepancy between the modified PNP

and BD results is explained in Fig. 9, where we plot the

cation (Fig. 9 A) and anion (Fig. 9 B) concentrations in the

4-Å radius channel with fixed charges. In Fig. 9 B, inclusion
of the dielectric self-energy term is seen to stop anions from

entering the channel, preventing the large concentration

found using the standard PNP equations and yielding a much

better agreement with BD. But Fig. 9 A shows that the cation

concentration is reduced too much at the channel entrances

in the modified PNP compared to BD. Obviously, the

lower cation concentration results in a smaller current in the

modified PNP theory. The inclusion of the dielectric self-

energy term has led to a dramatic improvement in bare chan-

nels, but the improvement is not as good in charged channels

because the modification appears to overcompensate for the

electrolyte shielding. Although the conductance results are

more realistic and demonstrate a more accurate qualitative

behavior, quantitatively there are still significant deviations

from the BD predictions.

So far we have considered single-ion cylindrical chan-

nels in testing the modified PNP equations. We next discuss

multi-ion channels, where our attempt to remedy the defect in

the continuum approximation may not be as successful as

in channels occupied by a single ion. First we examine the

currents flowing through a model L-type calcium channel

discussed previously (Corry et al., 2001). The shape of the

channel is shown in the inset at the top of Fig. 10, and

includes a narrow selectivity filter surrounded by four

FIGURE 7 Conductance of Na1 (A) and Cl� (B) ions for bare (no fixed

charge) channels of varying radii normalized by the cross-sectional area. The

results of the modified PNP equations (solid lines), standard PNP (dashed

lines), and BD simulations (data points fitted by dash-dot lines) are shown.

The ions are driven across the channel with an applied field of 105 mV

between the reservoir ends and a 300 mM NaCl solution is maintained in the

reservoirs.
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negatively charged glutamate residues. These residues

strongly attract cations, holding one calcium ion, or two

sodium ions permanently in the channel. Conduction requires

the entry of another ion making it a two-calcium or a three-

sodium ion process (Corry et al., 2001).

The standard PNP equations give very poor results in this

channel. The magnitude of the calcium currents predicted

are too large by an order of magnitude. Indeed the calcium

currents are slightly greater than the sodium currents, the

reverse of what is found using BD and in experiment. The

results found using the modified PNP equation are more

sensible. Notably, the calcium current is reduced to a more

appropriate value, only ;35% greater than expected. The

current shows an initial nonlinearity at low concentrations,

suggesting that saturation has been obtained. But after this it

appears to increase fairly linearly. The sodium current is only

reduced a small amount when the dielectric self-energy term

is added. The calcium current is reduced much more due to

the larger dielectric self-energy experienced by divalent ions.

Another difference between the modified PNP and BD

results worth noting is the different number of ions that are

found in the channel. The average number of cations and

anions in the channel with either 150 mM CaCl2 or 150 mM

NaCl that were found using the different theories are shown

in Table 1. In BD simulations the conduction of calcium ions

is essentially a two-ion process. One calcium ion resides in the

selectivity filter, and a second must enter for conduction to

take place. Indeed, the most common situation is for two ions

to reside in the selectivity filter, and the rate-limiting step in

conduction is for one of these ions to exit the selectivity

filter. Thus, it is found that there are, on average, almost two

ions in the channel. The modified PNP equations, however,

predict just over one ion in the channel. It also predicts a more

realistic number of sodium ions in the channel, but overall

the inclusion of the dielectric self-energy term does not im-

prove the results of the theory when considering the number

of ions in the channel.

The differences in ion numbers in the channel is

highlighted in Fig. 11, in which the channel is divided into

layers, and the average number of ions in each determined.

Here we show the number of ions in the right-hand half of

the channel (selectivity filter and external vestibule) using

FIGURE 9 Concentration profiles for (A) Na1 and (B) Cl� ion in a 4-Å

radius cylindrical channel with fixed charges as found from the modified

PNP equations (solid line), standard PNP (dashed line), and BD simulations

(bars). The pore is divided into 16 equal segments along the channel axis,

and the average concentration in each segment is plotted.

FIGURE 8 Normalized conductance in cylindrical channels with fixed

charges in the channel walls; otherwise, as in Fig. 7.

3602 Corry et al.

Biophysical Journal 84(6) 3594–3606



150 mM CaCl2. In the BD simulations, two ions are usually

present in this region, and this is clearly seen in the two large

concentration peaks which indicate the most likely positions

of the ions. The standard or modified PNP theory, however,

shows a broader peak in the selectivity filter which only

represents approximately one ion.

As the continuum approach cannot capture the dynamics

of permeation, it is more limited in the types of questions it

can be used to answer. For example, in our BD studies of the

calcium channel, we have been able to simulate mixtures of

calcium and sodium ions to better understand channel selec-

tivity. The divalent calcium ions are more strongly bound to

the glutamate charges than a sodium ion. A shortcoming of

the present continuum approach is that this feature cannot be

reproduced as it requires the localization of divalent and

monovalent charges in discrete positions and a representation

of their movement in time.

Finallywe examine currents in a potassium channel. Rather

than using the full-atom model described earlier when using

the Poisson-Boltzmann equation, we have employed a sim-

plified channel that gives similar currents as described

elsewhere (Chung et al., 2002). The reason for using this

model is that it is simpler to include in the PNP routines and

we can also adjust the dimensions of the model more easily,

such as, for example, widening the intracellular pore diameter

to examine how such alterations vary the results of the PNP

theory. The shape of the channel is shown at the top of Fig. 12.

In Fig. 12 we show how the current in the channel varies as

we widen the intracellular pore diameter as done elsewhere

(Chung et al., 2002) using the PNP and modified PNP

equations or BD simulations. When we consider the mag-

nitude of the currents shown in Fig. 12 A, the results look

remarkably similar to those in the cylindrical channels. The

standard PNP equations predict too great a current in all cases,

but the modified PNP equations appear to give more re-

asonable results at narrow andwide radii. The discrepancies in

the magnitude of the modified PNP and BD currents are

largest in the intermediate radii channels, where the modified

PNP yields currents that are;23 larger than the correspond-

ingBD results. It is worth noting that themodified PNP theory

overestimates the current by a factor of [100 in the 2-Å

channel. The agreement is much better in wider channels,

where the difference between the BD and modified PNP

results are 74% and 8% in the 4- and 5-Å channels.

When we consider the average number of ions in the

channel, we find that the modified PNP equations again

predict too few ions as shown in Table 2, particularly in the

narrower channels. Whereas the BD simulations find 3.5 ions

in the narrow 2-Å radius channel, themodified PNP equations

find one less: only 2.5 ions. Although this may not seem

important if the currents are reasonably accurate, knowing the

number of ions involved in the permeation process is essential

if we are to understand the process properly. Thus the

inclusion of the dielectric self-energy term certainly improves

the PNP results, but substantial errors are still encountered in

the predicted currents and ion concentrations.

FIGURE 10 Current-concentration relationships for (A) CaCl2 and (B)
NaCl in the L-type calcium channel. Results found from BD simulations

(data points fitted by dash-dot line), the standard PNP equations (dashed

line), and the modified PNP equations (solid line) are shown. The shape of
the channel and the locations of two of the four glutamate residues (squares),

and the negative ends of the intracellular helix dipoles (diamonds) are shown

in the inset. Diffusion coefficients used are 1.33 and 0.793 10�9 m2 s�1 for

sodium and calcium.

TABLE 1 Number of ions in L-type calcium channel with

either 150 mM CaCl2 or 150 mM NaCl, estimated from

PNP, modified PNP, and BD

Number of ions in channel,

150 mM CaCl2

Number of ions in channel,

150 mM NaCl

Ca21 Cl� Na1 Cl�

PNP 1.98 0.48 3.31 0.22

MPNP 1.12 0.01 2.61 0.01

BD 1.91 0.08 3.03 0.07
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DISCUSSION AND CONCLUSIONS

Compared to simulation methods such as Brownian and

molecular dynamics, the continuum theories offer a consid-

erably simpler and less time-consuming alternative for

studying ion channels. Thus it is desirable to find a solution

to the recently raised dielectric self-energy problem that limits

the application of continuum theories to very large channels

with radius r[10 Å. The simplest method to achieve this is to

modify the PB and PNP theories by including an explicit

dielectric self-energy term when calculating electrolyte

concentrations, as the lack of such a self-energy is at the

root of the problem. The tests presented here show that

inclusion of the dielectric self-energy term at a single-ion

level leads to a significant improvement in the performance of

the PB and PNP equations in ion channels.

When using the modified PB equation, the greatest im-

provement is obtained in the narrowest single-ion channels

studied. This is because the dielectric self-energy term has the

largest effect in such channels, and its inclusion in the PB

equation almost eradicates ion concentrations in the channel

in accordance with the BD simulations. Agreement between

the modified PB theory and BD simulations is also retained in

wide channels with r[ 2 Debye lengths. However, at inter-

mediate channel radii the agreement is not as good, and errors

of up to 50% are common. The validity of the modified PNP

theory in single-ion channels mimics that of the modified PB

equation. Accurate results are obtained in very narrow and

very wide channels, but errors are present at intermediate

radii. Inclusion of the dielectric self-energy term yields a

general qualitative improvement, but where the standard

continuum equations overestimate electrolyte shielding, the

modified continuumequations underestimate it inmany cases.

The overall performance of the modified continuum

equations is worse in the multi-ion potassium and calcium

channels considered here. In the KcsA potassium channel,

the concentration obtained from the modified PB equation is

found to be too low in the selectivity filter. The qualitative

shape and magnitude of the potential also exhibit significant

discrepancies when compared to the BD results. The mo-

dified PNP equations do better when applied to a highly

charged calcium channel model. The predicted calcium cur-

rents are a little too high and the sodium currents too low,

but, overall the inclusion of dielectric self-energy yields

FIGURE 11 Average number of ions in layers comprising the right-half

of the calcium channel as found from BD simulations (bars) as well as the
standard (dashed line) and modified (solid line) PNP equations using 150

mM CaCl2. The section of the channel for which the concentration is plotted

is indicated by the dashed box in the inset.

FIGURE 12 Current passing through the simplified potassium channel

model plotted against the intracellular pore radius of the channel as found

from BD simulations (data points fitted by dash-dot line), the standard

(dashed line), and modified (solid line) PNP equations. The shape of the

channel is shown in the inset.

TABLE 2 Number of ions in differing radii potassium

channels found from various models

Number of ions in channel,

2-Å radius

Number of ions in channel,

5-Å radius

K1 Cl� K1 Cl�

PNP 3.38 0.24 3.98 0.47

MPNP 2.51 0.06 2.92 0.04

BD 3.51 0.09 3.00 0.03
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more realistic current values. In both the KcsA and calcium

channel models, the channel is highly charged and there are

multiple ions resident in the channel. The interactions be-

tween the discrete ions are expected to play an important role

in ion dynamics, which is difficult to describe in the contin-

uum picture. For example, the magnitude of the dielectric

repulsion acting on an ion will be modified in the presence of

a second ion. Because the dielectric self-energy correction is

introduced at the single-ion level, this effect is likely to

be underestimated in a multi-ion channel. In addition, the

spurious self-energy associated with a continuous charge

distribution becomes more important in a multi-ion channel,

although this may somewhat counteract the lack of dielectric

self-energy. The incorrect numbers of ions inhabiting the

multi-ion channels predicted by the continuum theories may

be a manifestation of the inaccuracies involved in describ-

ing interactions between ions in the channel. The problems

highlighted in these and earlier studies also indicate that the

validity of using the PB equation for calculating pKA values

in ion channels needs to be assessed.

More sophisticated statistical mechanical descriptions of

electrolytes are being developed, but as far as we are aware,

none of these theories attempt to take into account the

dielectric self-energy term in ion channels. The primary ap-

plications of density functional theory in inhomogene-

ous systems are concerned with electrolytes near a highly

charged plane (Henderson et al., 2000) or hard-sphere fluids

in a cavity (Gonzalez et al., 1997), neither of which is

directly relevant to ion channels. In the former, the image

forces are simply ignored (considering the high charge on the

planes, this is presumably a good approximation), whereas in

the latter there are no image forces.

Recently, there have been a number of attempts to build

finite ion size effects into continuum models of ion channels

using the mean spherical approximation or density functional

theory (Nonner et al., 2000; Goulding et al., 2000; Boda

et al., 2002). It is worth considering whether the discrep-

ancies between the modified continuum theories and BD

simulations could be improved by doing this. The BD sim-

ulations differ from the continuum models by allowing

finite sizes for ions, as well as by including them as discrete

charges which induce surface charges. Thus, it is possible

that this is creating discrepancies between the results of

the models, as well as the lack of dielectric surface charge.

However, the inclusion of ion sizes would only worsen the

level of agreement seen between the modified PB theory and

BD simulations seen here. This is clear if we look at the cases

where the theories disagree. As stated above, the modified

PB theory tends to overestimate the size of the repulsive

forces acting on ions in the channel. This means that the

concentrations of ions are below that found from BD. Taking

into account the finite size of ions in the continuum theory

would act to limit how densely charge can be packed into the

channel. This, of course, would tend to decrease the con-

centration in the channel further and worsen the agreement

with BD simulations. Thus, it is important that the effects of

dielectric self-energy are considered in future mean field

studies of ion channels.

The continuum theories are designed for use in sys-

tems containing a large number of ions, which is obviously

not satisfied in ion channels. Therefore, their application to

ion channels needs to be continuously monitored to check

against spurious and nonphysical effects. Here we have

shown that attempts to improve the PNP and PB equations

by including a specific dielectric self-energy term work

reasonably well in some cases, but not all. This appears to be

a promising direction for improvement, but further work is

required to remove all the shortcomings highlighted in this

work. Until a more sophisticated continuum description can

be developed that overcomes the problems raised here, sim-

ulation methods remain as more reliable tools for investi-

gation of ion channels. Brownian and molecular dynamics

are now well-developed for this purpose. They can be used

to predict basic permeation properties of channels such as

conductance that used to be the forte of the continuum

theories. In addition, they allow exploration of phenomena

such as ionic mixtures and ion selectivity that cannot be

studied using continuum approaches.

The calculations upon which this work is based were carried out using the

Fujitsu VPP-300, the Linux alpha cluster of the ANU Supercomputer

Facility, and the Compaq AlphaServer SC of the Australian Partnership for

Advanced Computing.
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