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Structural Studies of MS2 Bacteriophage Virus Particle Disassembly
by Nuclear Magnetic Resonance Relaxation Measurements
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ABSTRACT In this article we studied, by nuclear magnetic resonance relaxation measurements, the disassembly of a virus
particle—the MS2 bacteriophage. MS2 is one of the single-stranded RNA bacteriophages that infect Escherichia coli. At pH 4.5,
the phage turns to a metastable state, as is indicated by an increase in the observed nuclear magnetic resonance signal
intensity upon decreasing the pH from 7.0 to 4.5. Steady-state fluorescence and circular dichroism spectra at pH 4.5 show that
the difference in conformation and secondary structure is not pronounced if compared with the phage at pH 7.0. At pH 4.5, two-
dimensional 15N-1H heteronuclear multiple quantum coherence (HMQC) spectrum shows ;40 crosspeaks, corresponding to
the most mobile residues of MS2 coat protein at pH 4.5. The 15N linewidth is ;30 Hz, which is consistent with an intermediate
with a rotational relaxation time of 100 ns. The average spin lattice relaxation time (T1) of the mobile residues was measured at
different temperatures, clearly distinguishing between the dimer and the equilibrium intermediate. The results show, for the first
time, the presence of intermediates in the process of dissociation of the MS2 bacteriophage.

INTRODUCTION

High-resolution solution nuclear magnetic resonance (NMR)

is a powerful technique to study protein structure and dy-

namics. Large protein oligomers, however, are difficult to

study by NMR due to the low tumbling rates and con-

sequently, high transverse relaxation rates and thus, broad

lines. On the other hand, flexible regions in such oligomers

are frequently present and can be used to obtain structural

information. The measurements of relaxation times can be

used to study the dynamics of flexible regions and correlate

them with relevant biological events (Lipari and Szabo,

1982; Clore et al., 1990a,b; Wagner et al., 1993; Akke and

Palmer, 1996; Mandel et al., 1996; Almeida et al., 1997a,b).

Protein dynamics information can be obtained from the

interpretation of the 15N longitudinal (T1) and transverse (T2)
relaxation times and 15N-1H heteronuclear nuclear Over-

hauser effect (NOE) (Clore et al., 1990a; Berglund et al.,

1992; Stone et al., 1992; Wagner, 1993). These parameters

depend on the hydrodynamic properties of the molecules in

solution. From the construction of a hydrodynamic model

that describes both the global and internal protein motions

(Lipari and Szabo, 1982; Clore et al., 1990a,b), we can get

physical insights of how proteins behave in solution.

MS2 is an icosahedral RNA bacteriophage with tri-

angulation number of T ¼ 3 whose capsid is formed by 180

copies of the coat protein. The crystallographic structure is

known at 2.8-Å resolution (Valegard et al., 1990; Golmo-

hammadi et al., 1993). The coat protein (129 residues, 13

kDa) is folded as seven antiparallelb-strands and two helices.

Each face of the icosahedron is formed by trimers of coat

protein. The virus shell has one copy of an additional protein,

A, associated with it (Valegard et al., 1990; Golmohammadi

et al., 1993).

Knowledge of the properties and function of the bac-

teriophage capsid shell is necessary to describe events asso-

ciated with cell entry, release of the genetic material for virus

replication, and assembly of the new particles. In small RNA

bacteriophages the loop between the b-strands denoted F and

G, known as FG-loop, makes important contacts for virus

assembly (Ni et al., 1995; Stonehouse et al., 1996; Axblom

et al., 1998). The only conformational difference between

the subunits occurs in the FG-loop. In capsids the FG-loop

is found in two different conformations differing in the con-

tacts between subunits (Stonehouse et al., 1996). It is also

known that mutations in this loop decrease the capsid’s sta-

bility when compared with wild-type (Stonehouse et al.,

1996; Axblom et al., 1998; Peabody and Ely, 1992). Several

random mutagenesis studies as well as site-directed muta-

tions corroborate the fact that FG-loop is fairly dynamic but

partially structured as a b-hairpin (Valegard et al., 1990;

Golmohammadi et al., 1993).

Mechanisms of virus assembly vary greatly depending on

capsid complexity and nucleic acid type. For some viruses

(e.g., P22) assembly starts with the formation of smaller units

of the capsid (Johnson and Chiu, 2000; Phelps et al., 2000).

The association of coat protein in assembly intermediates

helps in the formation of asymmetric contacts that are

important for capsid structure. For MS2, no intermediates

have been found, although it seems clear that the dimer is the

basic unit of coat protein folding and the basic building block
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of the capsid. Structural studies of assembly intermediates

are complicated because of their metastable nature (Liljas,

1999; Johnson and Chiu, 2000).

In the present work, we developed a strategy to probe the

properties of MS2 bacteriophage particle in solution using

NMR spectroscopy. The measurements of the 15N relaxation

parameters enabled us to get insights into the dynamics of the

intermediates formed during the disassembly process of the

phage capsid induced by a shift to low pH. We could then

estimate the internal correlation time and the order parameter

for motion of the most flexible regions and get information

about the association/dissociation equilibrium. Our results

allowed us to identify an intermediate in virus disassembly

elicited by decrease in pH.

MATERIAL AND METHODS

Phage propagation

Escherichia coli strain A/l was propagated to midlog phase (optical density

;1.0 at 600 nm) in minimum M9 media supplemented with thiamine (1 mg

per liter). The media contained 15NH4Cl as the only nitrogen source and

glucose as the only carbon source. Five hours after inoculation with the

virus, the cells were submitted to five bursts of sonication on ice (1 min

sonicating and 1 min resting). The cell debris was centrifuged at 7000 g and

discarded. The supernatant was precipitated overnight with ammonium

sulfate at 50% saturation. The pellet was solubilized in the minimum amount

of water possible and dialyzed against 5 mM phosphate buffer at pH 7.0.

Afterwards the virus was subject to a 20–50% sucrose gradient for 14 h at

32,000 g. SDS-PAGE (Laemmli, 1970) of the purified phage yielded a single

band on an overloaded gel.

Virus-like particle (VLP) preparation

The E. coli BL21(DE3) cell strain containing the plasmid pETCT

(containing the gene encoding the wild-type coat protein) was propagated

until midlog phase at 378C. Protein expression was induced with 1 mM

IPTG and after 2 h, the cells were lysed by sonication. The virus-like particle

(VLP) was then precipitated with ammonium sulfate followed by

a purification step in a sucrose gradient (as described for the purification

of MS2 phage).

Sample preparation

The obtained phage or VLP was extensively dialyzed against water,

lyophilized, and dissolved in 5 mM sodium phosphate buffer at pH 7.0 or pH

4.5 (for NMR measurements, the sample buffer contained 90% H2O e 10%

D2O). The final concentration of phage or VLP in the sample was;500 mg/

mL. The protein concentration was measured using Lowry’s method (Lowry

et al., 1951).

Fluorescence spectroscopy measurements

Fluorescence spectra were performed on an ISS K2 spectrofluorometer (ISS,

Champaign, IL). The tryptophan residues were excited at 280 nm and

emission was observed from 305 to 370 nm. Experiments were performed at

room temperature in 5 mM phosphate buffer at pH 7.0 or pH 4.5.

Far-UV circular dichroism

The circular dichroism measurements were performed in a spectropolarim-

eter Jasco-715 1505 model (Jasco, Tokyo, Japan), using a 0.1-cm pathlength

quartz cuvette. Spectra were the average of two scans from 200 to 270 nm,

and the buffer baseline was subtracted.

NMR spectroscopy

NMR spectra were obtained with Bruker DRX 600 MHz and Bruker DRX

400MHz (Bruker, Ettlingen, Germany). A triple resonance inverse detection

probe (15N, 13C, and 1H) was used at 600 MHz and a multinuclear

broadband inverse detection probe was used at 400 MHz.

Relaxation measurements

T1av relaxation was obtained using one-dimensional pulse sequence

described by Nirmala and Wagner (1988). In this pulse sequence,

a distortionless enhancement by polarization transfer (DEPT) magnetization

transfer is used instead of insensitive nuclei enhanced by polarization

transfer (INEPT). By using this pulse sequence the signal-to-noise ratio was

improved. The pulse sequence presents a T1 relaxation time period. A series

of experiment accumulation of 1024–3096 transients was performed. Each

of them refer to a T1 relaxation time period of 20 ms–4 s. The obtained one-

dimensional spectra were then integrated using XWINNMR software. The

normalized integral of the amide spectral region was plotted against T1 time

period. T1av is the result of curve-fitting this plot as a monoexponential

decay.

Simulations of the relaxation parameters

The equations used for simulations of T1 and T2 are the following. Dipolar

and chemical shift anisotropy relaxation mechanisms were taken into

account for the simulations. (For a detailed description of these equations,

see Lipari and Szabo, 1982.)

1=T1 ¼ d
2½Jðva � vxÞ1 3JðvaÞ1 6Jðva 1vxÞ�1 c

2
JðvaÞ

(1)

1=T2 ¼ d
2½4Jð0Þ1 4Jðva � vxÞ1 3JðvxÞ1 6JðvaÞ

1 6Jðva 1vxÞ�1 c
2½4Jð0Þ1 3JðvxÞ�;

d
2 ¼ 0:1½gagxh=ð2pð1=r

3

axÞÞ�
2
;

c
2 ¼ ð2=15ÞgaBoðDsÞ�

2
; (2)

where d2 accounts for the dipolar contribution for the relaxation, J(v) are

the spectral density functions as described below, ga and gx are the

magnetogyric ratios of the nuclei a and x, h is the Planck constant, rax is the
distance between the two nuclei (1.02 Å for the N-H bonds), c2 accounts

for the chemical shift anisotropy contribution, Bo is the main magnetic

field, and Ds is the difference between the parallel and perpendicular

chemical shift anisotropy tensors (�160 ppm for protein backbone amide
15N).

We have used spectral density functions described by Lipari and Szabo

(1982) and by Clore and co-workers (Clore et al., 1990a,b).

Rigid sphere:

JðvÞ ¼ tm=ð11 ðvtmÞ2Þ: (3)

One internal motion (Lipari and Szabo, 1982):

JðvÞ ¼ S
2
tm=ð11 ðvtmÞ2Þ1 ð1� S

2Þt=ð11 ðvtÞ2Þ;
1=t ¼ 1=tm 1 1=te: (4)

Two internal motions (Clore et al., 1990a,b):
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JðvÞ ¼ S
2
tm=ð11 ðvtmÞ2Þ1 ð1� S

2

f Þtf=ð11 ðvtfÞ2Þ
1 S

2

f ð1� S
2

s Þts=ð11 ðvtsÞ2Þ;
S
2 ¼ S

2

f 3 S
2

s : (5)

J(v) are the spectral density functions, tm is the overall rotational correlation

time for a spherical particle, and tf and ts are the fast and slow correla-

tion times that describe the internal N-H motion in Eq. 4; te is the corre-

lation time that describes the internal N-H motion in Eq. 3. S is the N-H

vector order parameter. Sf and Ss stand for the fast and slow internal motions.

RESULTS

NMR of the intact virus particle

MS2 bacteriophage is known to be stable at pH 7.0 and to

become less stable as the pH is decreased (Sugiyama et al.,

1967; DaPoian et al., 1993; Lago et al., 2001). At low

concentration MS2 dissociates to dimers (Lago et al., 2001),

whereas other viruses shows intermediates in the dissocia-

tion process (Phelps et al., 2000). Similar pH sensitivity has

been observed for other icosahedral viruses (van Vlijmen et

al., 1998) and has been implicated in cell entry, endocytosis,

and release of RNA (Phelps et al., 2000). The conformational

changes important for virus assembly/disassembly and the

nature of intermediates formed during these processes are

still unknown (Liljas, 1999; Phelps et al., 2000; Lago et al.,

2001).

The MS2 bacteriophage has a hydrodynamic radius of 130

Å (DaPoian et al., 1993). When tumbling as a rigid sphere,

no NMR signal will be detected from MS2. This is the result

when the experiment is done at pH 7.0. In contrast, when the

pH is lowered to 4.5, the same sample shows a spectrum with

several peaks (Figs. 1 and 2).

The NMR samples of MS2 at pH 4.5 that we have

prepared are fairly stable. Identical NMR spectra could be

obtained over a period of several weeks. However, the

signal-to-noise ratio decreases very slowly when the sample

is stored at room temperature. This can be attributed to coat

protein dissociation followed by protein aggregation. Coat

protein aggregation was confirmed by measuring light scat-

tering of MS2 at pH 4.5 and 7.0 (data not shown). At pH

4.5 the scattered light increases very slowly, and at pH 7.0

the light scattering is constant with time. When MS2 phage

is subjected to conditions where dissociation is fast (20 mM

acetic acid, pH \ 4) the coat protein promptly aggregates

at the concentration with which we are working. The aggre-

gation explains the slow vanishing of the NMR signal with

time. Once the coat protein is aggregated, the NMR signal

is not observable.

A two-dimensional 15N-1H heteronuclear multiple quan-

tum coherence (HMQC) spectrum of the virus particle at pH

7.0 (Fig. 2 a) shows mainly crosspeaks from side-chain

amides of glutamine and/or asparagine, with 15N chemical

shifts ;112 ppm. Even using a large relaxation delay (8 s),

only a few backbone amide peaks can be observed. In

contrast, the HMQC spectrum at pH 4.5 (Fig. 2 b) shows
several crosspeaks. These spectra were acquired with

a relaxation delay of 3 s. This parameter was optimized

based on the signal-to-noise observed. This suggests that the
15N spin-lattice relaxation times (T1) of most of these

backbone amide peaks are in the range of few seconds.

Among the observed crosspeaks at pH 4.5, ;42 are

backbone amide peaks and the others are side-chain. The
15N chemical shifts for seven of the crosspeaks are typical for

glycine residues (15N chemical shift between 108 and 114

ppm). Chemical shift dispersion is not very large, but it is

larger than the chemical shift dispersion expected for

a completely unstructured polypeptide chain.

A parallel approach we also pursued was the analysis by

NMR of the virus-like particle (VLP) of MS2. VLP

was obtained from the heterologous expression of the coat

protein in E. coli. Fig. 2 c shows the HMQC spectrum of

the VLP at pH 4.5. The VLP HMQC spectrum displays

chemical shift dispersion, linewidth similar to the phage

spectrum at pH 4.5, and about the same number of

crosspeaks (Fig. 2 b). The lower signal-to-noise ratio is

due to lower concentration.

FIGURE 1 15N-edited proton spectra (HMQC) of MS2 coat protein at pH

4.5 (A) and 7.0 (B) at 408C. The spectra were obtained with 1024 scans and

a recycle delay of 3 s at pH 4.5, and 8 s for pH 7.0.
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Circular dichroism and
fluorescence measurements

To get additional information about the conformational state

of the coat protein at pH 4.5 and pH 7.0, we performed

fluorescence and circular dichroism experiments. Fig. 3

shows the tryptophan steady-state fluorescence and circular

dichroism spectra at both pH values. The conformational

change, as sensed by the tryptophan, is not pronounced

with the decrease in pH, since the spectra at both pH values

are almost identical. Most of the fluorescence observed is

from the two tryptophans located at different regions of

the protein (DaPoian et al., 1993). Rather small changes in

secondary structure were observed by circular dichroism.

The spectrum is predominantly of a b-sheet structure as

indicated by the negative band at 215 nm. The positive

ellipticity at 200 nm decreases with the pH shift to 4.5, and

represents a small decrease in secondary structure content

(Johnson, 1988).

FIGURE 2 15N-1H HMQC spectra of MS2 (A, B) and VLP (C) at pH 7.0 (A) and 4.5 (B, C). All spectra were acquired with 10243 128 points. Spectrum A

was obtained with 400 scans and a recycle delay of 8 s. Spectrum Bwas recorded with 160 scans and a recycle delay of 3 s. The processing was performed with

zero filling and a square sine multiplication shifted by 908, in the indirect dimension and exponential multiplication with 10 Hz of line broadening in the direct

dimension. States-time proportional phase incrementation method was used for quadrature detection in the indirect dimension. All spectra were done at 408C.
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Linewidths and transverse relaxation times (T2)

Transverse relaxation times (T2) are related to the rotational

correlation time and thus to molecular size. The linewidths of

the peaks observed in the HMQC spectrum of MS2 shown

in Fig. 2 b are between 30 and 40 Hz. Fig. 4 shows the

correlation between linewidth and the overall rotational

correlation time as a function of the order parameter. The

order parameter normally obtained from N-H in proteins

ranges from 0.6 in flexible regions to 0.9 in structured

regions. The linewidth of 30–40 Hz, in this range of order

parameter, is compatible with tm of 1 3 10�7 s. This tm is

103 smaller than what one would expect for the intact virus

particle, and 103 larger than expected for the coat protein

dimer. We then believe that the signal observed by NMR is

from oligomers of coat protein. The linewidth is the same

range (30–40 Hz) when we vary the temperature from 5 to

508C (data not shown).

Measurement of T1

15N T1 measurement of the individual peaks in the HMQC

was not feasible because it would demand too much NMR

time (see Materials and Methods). We decided to measure T1
in the one-dimensional spectra. We acquired a set of one-

dimensional spectra varying the period where the signal

relaxes by T1 (Nirmala and Wagner, 1998). The integral of

the whole amide region of each one-dimensional spectrum

was plotted against T1 period. The result is the average
15N

T1 of the residues in the most flexible regions of the coat

protein.

It must be clear that what we are calling ‘‘average T1’’
(T1av) is not the arithmetic average of T1 of each resonance,

but it is an average of T1 weighed by T2 of each amide

resonance. Signals with longer T2 will be more intense and

therefore best represented. T1av will not reflect the average

motion of the molecule but mostly the flexible residues. For

large particles, T1av will reflect the average internal motion.

As the 15N linewidths are approximately the same for the

signals (;30–40 Hz), all crosspeaks in the HMQC will be

very nearly represented in T1av. This is true for the MS2

particle (Fig. 2 b) and for its VLP (Fig. 2 c).
Because temperature changes lead to variation in internal

motion, T1av was measured at different temperatures at two

fields (14.1 T/600 MHz and 9.4 T/400 MHz). The values are

listed in Table 1. The dependence of T1av with temperature

enabled us to detect the temperature where T1av is at

a minimum (308C). We could better interpret the results by

comparison of T1av values with simulations of T1. To ac-

complish that, we performed several simulations of T1 as

a function of the internal dynamics using the Lipari-Szabo

model free formalism (Lipari and Szabo, 1982).

Fig. 5 shows the theoretical value of T1 as a function of te
(internal correlation time) for several values of tm (overall

correlation time). The simulation shows the behavior of T1
for a relatively disordered N-H vector (order parameter, S2 ¼
0.7) for several sizes of molecules, i.e., from small molecules

FIGURE 4 Theoretical value of linewidth of the 15N line as a function of

tm (overall correlation time) in several values of S2 (order parameter), as
indicated. The simulations were done using the Lipari-Szabo model free

formalism with a fixed value of te (internal correlation time) of 100 ps.

FIGURE 3 Tryptophan steady-state

fluorescence and circular dichroism

spectra at pH 7.0 (gray) and 4.5 (black)

at room temperature. The fluorescence

spectra were obtained with excitation

wavelength of 280 nm at room temper-

ature.
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to large protein oligomers (tm from 2 to 500 ns). T1 shows
a U-shaped curve for molecules of all sizes; however, it is

noticeable that the curves become stiffer as the molecular

size increases. This is important to emphasize, because T1
becomes an excellent probe for the internal dynamics in large

particles.

Comparison of theoretical values of T1 with the experi-

mental T1av (Table 1) gave insights on the internal dynamics

of the virus particle. The U-shaped curve of T1av as a func-
tion of the temperature shows a behavior not compatible

with the dimer in solution, as expected from the linewidth

measurements (Fig. 4). For comparison, we are considering

that the change in temperature leads to changes in the

internal and overall dynamics of the particle. Varying tm
over the range expected for a change in temperature 5–508C

did not significantly change the simulated curves shown in

Fig. 5. The temperature affects mainly the internal dynamics.

An estimated overall rotational correlation time tm of 100 ns

is compatible with the measured 15N linewidth (30–35 Hz)

and T1av in Table 1.

Fig. 6 shows the plot of T1 as a function of the internal

correlation time for several values of the order parameter (S2)
assuming tm is 100 ns. The minimum value of T1 at each

curve in Fig. 6 corresponds the same for value of te, in-

dependently of the order parameter. In this way, the mini-

mum experimental value of T1av, at 308C, corresponds to

the theoretical value of T1 at te 2.5 ns and S2 between 0.6

and 0.7. T1av values at temperatures \308C correspond to

smaller values of te, and temperatures[308C correspond to

larger values of te. Table 1 is in agreement with Figs. 5 and

6, as much as the increase in temperature will always

increase internal dynamics (te).

The magnitude of the particle internal motion is on

the nanosecond (ns) timescale (Figs. 5 and 6). It includes

segmental motions that usually occur in the ns timescale.

Motion of the diffusion of the N-H bond occurs in the

picosecond (ps) timescale (Clore et al., 1990a,b). When the

segmental contribution to internal motion is separated from

the fast component, the overall profile of the curve T1 versus
internal motion is the same (simulation not shown).

FIGURE 6 Theoretical value of T1 as a function of te (internal

correlation time) in several values of order parameters (S2): (a) S2, 0; (b)
S2, 0.6; (c) S2, 0.7; (d ) S2, 0.8; and (e) S2, 0.9. The simulations were done

using the Lipari-Szabo model free formalism with a fixed value of overall

correlation time (tm ¼ 100 ns). Theoretical values of T2 are between 7.4 and

7.7 ms for a, 7.8 and 12.2 ms for b, 7.7 and 10.4 ms for c, 7.5 and 9.11 ms for

d, and 7.4 to 8.1 ms for e. Theoretical values of T2 in all order parameters are

in agreement with the experimental 15N linewidth of;30 Hz (obtained from

Fig. 3) when tm ¼ 100 ns.

FIGURE 5 Theoretical value of T1 as a function of te (internal
correlation time) in several values of tm (overall correlation time): (a)

tm, 2 ns; (b) tm, 8 ns; (c) tm, 50 ns; (d ) tm, 100 ns; and (e) tm, 500 ns. The

simulations were done using the Lipari-Szabo model free formalism with

a fixed value of order parameter (S2 ¼ 0.7). Theoretical values of T2 are

between 240 and 350 ms for a, 90 and 130 ms for b, 15 and 20 ms for c, 7.7

and 10.4 ms for d, and 2.7 and 3.5 ms for e. The experimental 15N linewidth

of ;30 Hz (obtained from Fig. 2) corresponds to tm ¼ 100 ns.

TABLE 1 T1av in several temperatures

Temperature 8C T1, s 600 MHz T1, s 400 MHz

5 2.4 6 0.18 –

15 2.1 6 0.16 –

30 1.2 6 0.090 2.0 6 0.15

40 3.2 6 0.24 2.8 6 0.21

50 4.1 6 0.31 4.0 6 0.30

Experimental values of T1 obtained at 400 and 600 MHz. T1 was measured

as described in Material and Methods.
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The approach we used so far enabled us to estimate, with

good confidence, the order and the timescale of the internal

dynamics of the oligomer at 308C. Moreover, the values of

T1av at several temperatures can also be used to measure the

effect of temperature on the internal dynamics.

Strategy for estimating the dynamics
as a function of temperature

To further investigate the effect of temperature on te, we

elected to analyze the simulated plot in Fig. 6 with the

inclusions of the uncertainties in the T1av measurement and

of the uncertainties in the order parameter. In doing so, we

employed the following criteria:

1. The experimental error for T1av measurements (15%)

was used to calculate the lower and upper limit for each

temperature.

2. The value for te was assumed to be 2.5 ns at 308C, and

the lower and upper limit of T1av, 308C.
3. Two assumptions were made: (i), the increase in

temperature will always lead to an increase in the

internal correlation time, and (ii), the increase in

temperature will always lead to a decrease in order

parameter.

The criteria above enable us to draw regions in the plot of

Fig. 5 where the values of T1av at each temperature will be

found with 100% confidence. These regions are shown in

Fig. 7. Note that the timescale of the internal motion at each

temperature could be determined reasonably well. The

minimum and maximum te at each temperature is shown

in Table 2.

DISCUSSION

General considerations

In the present article we showed a remarkable increase in

NMR signal of a 15N-labeled MS2 bacteriophage aqueous

solution when we lowered the pH. About 40 crosspeaks

appeared in the two-dimensional HMQC spectrum of both

the phage and VLP. Fluorescence and circular dichroism

spectra showed that the tertiary and secondary structure of

the MS2 coat protein did not vary significantly with the pH

change.

To have more insights on the events we are probing, we

performed relaxation measurements. Comparison of experi-

mental data with simulations can expand our ways to inter-

pret physical phenomenon. By using a well-established

theory of 15N relaxation in proteins we simulated the experi-

mental conditions of the protein.

From the simulations of T1 using the Lipari-Szabo model

free formalism (Lipari and Szabo, 1982) we could conclude

that for large particles, 15N T1 is very dependent on the

internal motion (Fig. 5). This is a special feature of large

particles. Note that for large particles (tm[50 ns; see Fig. 5,

c–e) the calculated T1 varies significantly with variation in

internal motions. On the other hand, for small particles the

variation is rather small (Fig. 5, a and b).
Our measurements of T1av as a function of temperature

showed a behavior that matches well with large particles. We

could then conclude that we are probing NMR signal coming

from a large particle. We expect the MS2 phage to start to

dissociate at low pH. However, based on the relaxation

parameters we can affirm that the signal is not coming from

the dimer, the last step of dissociation.

TABLE 2 Averaged T1 and the internal correlation time

obtained from Fig. 7

Temperature 8C T1, s 600 MHz te, s

5 2.4 2.5 3 10�9, 1.3 3 10�8

15 2.1 2.5 3 10�9, 1.2 3 10�8

30 1.2 2.5 3 10�9

40 3.2 5.0 3 10�11, 2.8 3 10�10

50 4.1 3.1 3 10�11, 1.4 3 10�10

Each te corresponds to the region shown.

FIGURE 7 The same as Fig. 6 plus regions representing all the possible

values of T1av at each temperature. (a) S2, 0; (b) S2, 0.6; (c) S2, 0.7; (d ) S2,
0.8; and (e) S2, 0.9. The criteria used to find the regions are the following.

At 308C, te is 2.5 ns, and the maximum and minimum S2 are the T1
corresponding to T1av within an experimental error of 15%. For temper-

atures[308C, the maximum order parameter is the one obtained at 308C.

The minimum order parameter is �0�, maximum disorder. The internal

correlation is necessarily lower than the one at 308C, and the minimum and

maximum T1 will be T1avwithin the range of the experimental error of 15%.

For temperatures \308C, the minimum order parameter is the minimum

obtained at 308C. The maximum order parameter will be �1�, maximum order.

The internal correlation is necessarily higher then the one at 308C, and

the minimum and maximum T1 will be T1av within the range of the

experimental error of 15%.
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Origin of the measured NMR signal

The rationalization of the origin of the observed NMR signal

is fundamental for the comprehension of the events occur-

ring when the pH is decreased to 4.5. 15N linewidth measured

in the HMQC spectra at Fig. 2, b and c, are between 30

and 40 Hz. This is consistent with the T2 of a particle of

apparent rotational correlation time of ;100 ns (spherical

particle with an apparent hydrodynamic radius of ;48 Å),

103 smaller than the one expected for MS2 virus particle.

To calculate the apparent overall correlation time (100 ns)

used in the T1 simulations, exchange contribution to T2 was
not taken into consideration because: (i), the linewidth is not

very dependent on temperature; and (ii), the observed T1 is
also typical of large particles, and the exchange contribution

to the NMR signal of the dimeric protein (completely

dissociated) does not explain this behavior.

When several species are in equilibrium, the resulting

apparent overall rotational correlation time is

1=tapp ¼ x1ð1=t1Þ1x2ð1=t2Þ1x3ð1=t3Þ1 . . .1xnð1=tnÞ;
(6)

where t1, t2, t3, and tn are the overall rotational correlation

times of the virus particle and the possible intermediates of

dissociation of MS2, and x1, x2, x3, and xn are the molar

fraction of the virus and the intermediates. tvirus is estimated

from Debye equation (Atkins, 1997) using the hydrody-

namic radius of the virus as 130 Å (DaPoian et al., 1993).

Therefore, the observed overall correlation time has con-

tributions from all the intermediates.

The NMR signal coming from the integral MS2 particle

would not be measurable, because of a very short T2 (;0.4

ms). Conformational exchange can also contribute to the

shortening of T2. We concluded that the NMR signal is not

from the integral virus particle, and not from the dimer,

either. The NMR signal is probably coming from a high

equilibrium concentration of an intermediate. Fig. 8 shows

two possible mechanisms for MS2 disassembly. Mechanism

A shows possible dissociation intermediates and mechanism

B shows two-state equilibrium.

If MS2 disassembly follows a two-state mode (mechanism

B in Fig. 8) there is a unique explanation for the observed

NMR signal: the occurrence of a very rapid exchange be-

tween the two states. The equilibrium must be fast because

the line broadening is not pronounced. With fast equilibrium,

the relaxation parameters reflect the properties of intact virus.

However, it is difficult to explain the slow vanishing of the

NMR signal with mechanism B. Because it is known that the
aggregation step is fast (from the studies of aggregation at

low pH), the equilibrium concentration of the dimer species

in mechanism Bwould have to be extremely small to account

for the slow overall rate of aggregation.

The most suitable explanation for the origin of the NMR

signal is mechanism A (Fig. 8), with the presence of

intermediates in equilibrium. In Fig. 8 we postulate the

presence of hexamer or pentamers of trimers, trimers (the

asymmetric unit), and the final dimeric conformation. Tuma

and co-workers have proposed a similar mechanism for the

assembly/disassembly of the icosahedral bacteriophage,

PRD1 (Tuma et al., 1996). For this mechanism to occur,

fast equilibrium is not demanded. By assuming this

mechanism, one simple explanation arises: one intermediate

is the molecule being probed by NMR. The hexamer or

pentamers of trimers has about the same size expected (;10

nm of diameter). The assumption of the presence of in-

termediates helps us to understand the slow vanishing of the

NMR signal. The limiting step is the formation of the inter-

mediate and not the aggregation. In mechanism A the aggre-

gation step can be as fast as observed at pHs\4.0.

FIGURE 8 Schematic diagram show-

ing two mechanisms for MS2 disassem-

bly. (A) Here, there are intermediates in

the disassembly: a hexamer of trimers,

the trimer that corresponds to the

asymmetric unit, and the dimeric form

that is the conformation where the

capsid protein works as a repressor.

(B) The two-states dissociation is

shown, where the final conformation is

the dimeric form.

Relaxation Measurements in an Intact Virus Particle 3901

Biophysical Journal 84(6) 3894–3903



Small proteins generally follow a two-state-mode unfold-

ing, whereas large proteins tend to form folding intermedi-

ates (Privalov, 1996). The difference is that the lifetime of

the intermediates tends to be rather short for small proteins

(ns to ms) and large for large proteins (ms to s). The same

could be expected for intermediates of virus dissociation.

Stable intermediates have been described for the dissociation

of many viruses (Phelps et al., 2000). Since MS2 is quite

a small coat protein, the lifetime of the dissociation

intermediate should be short. Relaxation measurements

enable the detection of short lifetime intermediates. In the

present article, we proposed, for the first time, the presence

of intermediates in the process of dissociation of MS2

bacteriophage. However, we could not unambiguously

define if there are one or more intermediates.

Other considerations

Based on the rationale showed in Fig. 7, we could estimate

the timescale of the segmental motions of the intermediate.

However, the interpretation made is valid only if there is one

principal intermediate or if there is rapid exchange between

various intermediates. This strategy can be of general use to

obtain the timescale of segmental motions in large particles.

The dynamic properties of this intermediate was probed

by T1 measurements. The observed timescales at different

temperatures are summarized in Table 2. Note that the time-

scale of the internal motion varied two orders of magnitude

with temperature change. If we consider the inverse of te as

the rate constant of the events we are probing, there is

a considerable change in rate constant over a small temper-

ature range, meaning high activation energy. This suggests

segmental motions or more complexes motions that could

involve equilibrium between intermediates.

The x-ray structure of the MS2 bacteriophage shows the

presence of regions in the protein with high B-factors in the

amide nitrogen: FG-, AB-loop, and C- and N-terminal. FG-

loop is critical for the virus assembly. Deletion and mutation

in this loop yields assembly of defective coat protein

(Stonehouse et al., 1996; Axblom et al., 1998).

The total number of glycine residues in the coat protein is

nine, with six having high B-factors in the x-ray structures.

Two are in the FG-loop, three in the AB-loop and one in

the C-terminal. It matches the number of possible glycines

residues in the HMQC spectrum (Fig. 2 b). There are seven
crosspeaks between 106 and 112 ppm (15N chemical shift)

and 8–9 ppm (1H chemical shift). It reinforces the hypothesis

that the residues we probed are the residues in the AB- and

FG-loops, plus a few residues in the N- and C-termini.

Approximately the same number of putative glycines could

be found in the VLP spectrum at pH 4.5. Although the

spectrum of VLP is not identical to the phage spectrum, it

indicates to similar phenomenon in the VLP. It is noteworthy

that the VLP spectrum shows approximately the same

number of peaks and the same linewidth.
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