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ABSTRACT The present article considers the influence of heterogeneity in a mobile analyte or in an immobilized ligand
population on the surface binding kinetics and equilibrium isotherms. We describe strategies for solving the inverse problem of
calculating two-dimensional distributions of rate and affinity constants from experimental data on surface binding kinetics, such
as obtained from optical biosensors. Although the characterization of a heterogeneous population of analytes binding to uniform
surface sites may be possible under suitable experimental conditions, computational difficulties currently limit this approach. In
contrast, the case of uniform analytes binding to heterogeneous populations of surface sites is computationally feasible, and
can be combined with Tikhonov-Phillips and maximum entropy regularization techniques that provide the simplest distribution
that is consistent with the data. The properties of this ligand distribution analysis are explored with several experimental and
simulated data sets. The resulting two-dimensional rate and affinity constant distributions can describe well experimental kinetic
traces measured with optical biosensors. The use of kinetic surface binding data can give significantly higher resolution than
affinity distributions from the binding isotherms alone. The shape and the level of detail of the calculated distributions depend on
the experimental conditions, such as contact times and the concentration range of the analyte. Despite the flexibility introduced
by considering surface site distributions, the impostor application of this model to surface binding data from transport limited
binding processes or from analyte distributions can be identified by large residuals, if a sufficient range of analyte con-
centrations and contact times are used. The distribution analysis can provide a rational interpretation of complex experimental
surface binding kinetics, and provides an analytical tool for probing the homogeneity of the populations of immobilized protein.

INTRODUCTION

During the last decade, the measurement of surface bind-

ing equilibrium and kinetics has become a very popular

approach for the study of protein interactions (Fägerstam

et al., 1990; Schuck, 1997b; Rich and Myszka, 2001;

Cooper, 2002). Optical biosensors have made a significant

impact in many fields, for example, in the study of receptor

interactions in immunology, cell adhesion, signal trans-

duction, and virology (Khilko et al., 1995; van der Merwe

and Barclay, 1996; Natarajan et al., 1999; McDermott et al.,

2000; Myszka et al., 2000; Xing et al., 2000; Garcia et al.,

2001; Andersen et al., 2002; Rebois et al., 2002; Rudolph

et al., 2002), antibody-antigen interactions and antibody

engineering (Kelley and O’Connell, 1993; Malmborg and

Borrebaeck, 1995; Nieba et al., 1996; Ober et al., 2001;

Gonzales et al., 2002); they are used for ligand fishing in

combination with mass spectroscopy (Natsume et al., 2000;

Nedelkov and Nelson, 2000; Williams and Addona, 2000;

Gilligan et al., 2002), and as screening tools in drug dis-

covery (Cooper, 2002). Despite this success, and possibly

because of the exquisite sensitivity of optical biosensors, the

reliable quantitative analysis of the affinity and rate constants

has, in many cases, been problematic (see, for example,

Glaser and Hausdorf, 1996; O’Shannessy and Winzor, 1996;

Schuck and Minton, 1996b; Lakey and Raggett, 1998; Hall,

2001; Rudolph et al., 2002). Surprisingly, there are still only

a few examples where the experimental data can be well-

modeled as a single pseudo-first-order reaction, although

most frequently this is the reaction model that the binding

partners are assumed to follow. Several possible reasons for

deviations from the expected binding kinetics have been

identified in different cases, including mass transport

limitations in the surface binding kinetics (Glaser, 1993;

van der Merwe et al., 1994; Schuck, 1996; Yarmush et al.,

1996; Myszka et al., 1998), and heterogeneity of the

immobilized sites, or of the analytes (O’Shannessy, 1994;

Davis et al., 1998; Schuck et al., 1999). The present article

addresses the latter point, and examines in a general way how

distributions of surface sites or mobile binding partners with

different binding properties may be deduced from the

observed binding data.

The homogeneity of surface sites is of considerable

interest beyond the analysis of binding equilibria and

kinetics of protein interactions by optical affinity biosensors.

It is important, for example, for the sensitivity and repro-

ducibility of biosensors (Anderson et al., 1997; Vijayendran

and Leckband, 2001) in the development of protein chip

technology (Hodneland et al., 2002), and, more generally, in

the context of characterization of chemical adsorption to

surfaces (Jagiello, 1994; Rusch et al., 1997; Puziy, 1999;

Gun’ko et al., 2001).

The mathematical modeling of kinetic surface binding

data from optical biosensors involving independent non-

Submitted December 6, 2002, and accepted for publication February 21,
2003.

Address reprint requests to Dr. Peter Schuck, National Institutes of Health,

Bldg. 13, Rm. 3N17, 13 South Dr., Bethesda, MD 20892. Tel.: 301-435-

1950; Fax: 301-480-1242; E-mail: pschuck@helix.nih.gov.

� 2003 by the Biophysical Society

0006-3495/03/06/4062/16 $2.00



uniform sites has frequently been restricted to models with

two discrete classes of sites. However, dependent on the

nature of the protein and the immobilization conditions,

potentially a continuum of surface sites with different kinetic

and thermodynamic properties may be formed. The Sips

isotherm addresses this problem by describing binding to

sites with a continuous distribution of affinities (Sips, 1948).

It is an immunological standard method to assess, for

example, heterogeneity of polyclonal antibody-antigen re-

actions in solution (Nisonoff and Pressman, 1958; Selinger

and Rabbany, 1997) and has also been used, for studies of

the heterogeneity of sites from immobilization with different

immobilization chemistries in direct surface binding and

displacement assays (Rabbany et al., 1997; Selinger and

Rabbany, 1997; Vijayendran and Leckband, 2001). How-

ever, it is a thermodynamic model and constrained to

a predefined, approximately Gaussian shape of the affinity

distribution. In other fields of surface binding, such as

chemical adsorption processes in the gas and liquid phase,

more general approaches are well-known. These are based

on continuous ‘‘model-free’’ affinity distributions, calculated

by inversion of a Fredholm integral equation using Tik-

honov-Phillips regularization techniques, such as CONTIN

(Haber-Pohlmeier and Pohlmeier, 1997; Puziy, 1999;

Gun’ko et al., 2001).

In the present study, we have examined how these latter

techniques can be utilized for the characterization of protein

interactions. Moreover, since, in addition to the binding

isotherm, optical biosensors usually provide kinetic data on

surface binding and dissociation—a rich source of infor-

mation—we explored whether it is possible to retrieve

information on the combined distribution of affinity and

kinetic parameters of heterogeneous populations of analytes

or immobilized sites. We have taken the approach of

regularization with the Tikhonov-Phillips and maximum

entropy method (Hansen, 1998), which does not require

assumptions on the number of species or the shape of the

distribution. By application to simulated and experimental

data, we have identified conditions under which continuous

distributions of affinity and kinetic constants may be

obtained.

THEORY

In the following, we assume binding sites at the surface (ligands) which can

be exposed to free analytes in solution according to the following scheme:

During a well-defined contact time, analyte binding to the surface sites takes

place. The binding progress is reported by a signal that is proportional to the

total surface-bound material. At the end of this association phase, free

analyte is removed from the vicinity of the surface, and the dissociation of

the surface-bound analyte can be observed. We assume that kinetic data are

available for several such cycles of surface binding and dissociation, each at

different analyte concentrations. Optical biosensors can generate such data,

for example, by incubating the surface with analyte in a cuvette-based

system, or through a microfluidic flow injection system.

We will also assume that the surface binding of a single class of analyte to

a single class of ligand follows the time-course of an ideal pseudo-first-order

reaction. These surface sites have an affinity described by the binding

constant KA (or KD ¼ 1/KA), and a total binding capacity smax. The kinetics

of surface binding is described by the on-rate constant kon and an off-rate

constant koff with KA ¼ kon/koff. If the analyte concentration c is held

constant, e.g., due to replenishing with a flow or because of a negligible

number of surface-bound analyte molecules, the binding progress s(t)

follows the rate equation

ds

dt
¼ koncðsmax � sÞ � koffs: (1)

The equilibrium binding describes a Langmuir isotherm

seqðKA; cÞ ¼
smax

11 ðKAcÞ�1 ; (2)

(Langmuir, 1918). If we apply the analyte at time t0 for a contact time tc, we

can integrate the rate equation and arrive at the binding progress in the

association phase

saðkon;KA; c; tÞ ¼ seqðKA; cÞe�konðc11=KAÞðt�t0Þ: (3)

After the analyte is removed, we see dissociation of the bound analyte from

the surface with

sdðkon;KA; c; tÞ ¼ saðkon;KA; c; tcÞe�ðkon=KAÞðt�tcÞ: (4)

Both association and dissociation are proportional to smax. In summary, the

binding course can be described as

sðkon;KA; c; tÞ ¼
b0 t\t0

saðkon;KA; c; tÞ1 bc t0#t\t0 1 tc
sdðkon;KA; c; tÞ1 b0 t$t0 1 tc

:

8<
:

(5)

The parameters b0 and bc allow for baseline offsets which frequently occur in

measurements with optical biosensors due to refractive index offsets when

applying the sample.

Considering the immobilized proteins as a mixture of sites with different

KA and kon, one can formulate a differential distribution of immobilized sites

P(kon, KA) such that the integral P(kon* , KA*)dkondKA is the surface binding

capacity of sites with an on-rate constant between kon* and kon* 1 dkon and

with an affinity between KA* and KA* 1 dKA. The maximum binding capacity

of the entire surface Smax would then be

Smax ¼
ðKA;max

KA;min

ðkon;max

kon;min

Pdkon dKA (6)

(with the integration limits describing the range of observable affinity and

kinetic constants). The total measured time-course of analyte binding in the

association and dissociation phase is

stotðc; tÞ ¼
ðKA;max

KA;min

ðkon;max

kon;min

sðkon;KA; c; tÞPðkon;KAÞdkon dKA

(7)

(with the kernel given by Eq. 5 evaluated unit binding capacity smax ¼ 1). An

analogous distribution of binding constants for the case of uniform surface

sites and heterogeneous analyte population is described in the Appendix.

Eq. 7 is a Fredholm integral equation as it occurs in many other

biophysical disciplines when an experiment only provides an indirect

measurement of the desired quantities (Provencher 1982a). Given noisy data

points stot(cj, ti) obtained at a small set of concentrations cj and given

a generally large number of timepoints ti, we would like to obtain the

distribution P of affinity and rate constants. In general, a direct inversion of

Eq. 7 is instable and may not lead to useful information (Provencher, 1982a).
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However, we can use regularization techniques and impose additional

parsimony constraints on the distribution P. This will result in the simplest

distribution Ps that is consistent with the data on a given predefined

confidence level s. We have implemented Tikhonov-Phillips (TP) and

maximum entropy (ME) regularization (in the applications TP will be used

unless noted otherwise). The details of this calculation are described in the

Appendix.

For the practical application it is important to note that these

regularization techniques introduce a bias to favor the most parsimonious

distribution, and that different procedures can lead to different results.

Experience with this approach in other biophysical disciplines shows that it

can provide very good results, but that the introduction of prior knowledge

of parsimony (and possibly other available prior knowledge) into the data

analysis has to be carefully balanced and is to be considered in the

interpretation of the results. Therefore, the properties of this binding constant

distribution analysis are explored below.

RESULTS

To explore the affinity distribution methods, we first stud-

ied equilibrium isotherms. Fig. 1 shows a simulated bind-

ing isotherm with two classes of surface sites. Normally

distributed noise of 1 unit was added. (In the following, for

simplicity, we adopt the units of the BIAcore surface

plasmon resonance instrument, which are termed ‘‘RU,’’ and

which correspond to ;1 pg protein/mm2 or 10�6 refractive

index units.) As shown in Fig. 1 A (dotted line), the data

cannot be described well as a single species isotherm. If the

analysis, in terms of an affinity distribution, is attempted by

simply calculating the best fit with a combination of species

with different affinity constants, a good fit is achieved (data

not shown) but the resulting distribution is ill-conditioned

and governed by noise in the data (Fig. 1 B, short dashed
line). In the present case, it results in a combination of three

species, with the two major peaks corresponding approxi-

mately to the species underlying the simulation, and the third

species being a result of the noise in the simulated data. This

demonstrates that a direct inversion will result in an artificial

level of detail. Therefore, we calculated the ‘‘simplest’’

distribution of affinities that can fit the data with a root-mean-

square (rms) deviation within the predefined confidence level

of p ¼ 0.9, as judged by F-statistics. The result is

a statistically acceptable fit of the data (Fig. 1 A, solid line),

and a corresponding distribution that only represents the

range of affinities underlying the data (Fig. 1 B, solid line).

This avoids misleading or statistically unwarranted level of

detail, and represents the information that can safely be

extracted from the given data. Only when the signal-to-noise

ratio is increased in the simulations, can we usually obtain

two well-separated peaks that resolve both species un-

derlying this simulation (Fig. 1 B, dashed line). Very similar

results were obtained with the ME method (data not shown).

This example illustrates the difficulties of distribution

analysis from equilibrium-binding data, and the basic

principle of regularization.

Next, we investigated if ligand distributions are better

defined on the basis of kinetic binding progress curves.

Again, the interaction of analytes binding to two sites was

simulated. As shown in Fig. 2, the kinetic data allow a clear

separation and correct identification of the two sites. Under

the conditions of Fig. 2, when changing the affinity of the

two sites (leaving the on-rate constants unchanged), they

could be resolved when the affinity was at least 2.5-fold

different. However, the resolution was also found to depend

strongly on the contact times of the analyte with the surface.

For example, when we examined cases of lower kinetic rate

constants simulated for shorter contact times, the resulting

affinity and rate constant distribution only poorly resolved

the binding constant of the higher affinity site (Fig. 3). Under

these conditions, the higher affinity sites are far from their

FIGURE 1 Distribution analysis of an equilibrium isotherm from

a homogeneous analyte binding to heterogeneous surface sites. Data

(circles) were simulated for two classes of surface sites with KD ¼ 10 nM

and 100 nM and a binding capacity of 100 RU each. 1 RU noise was added.

A continuous affinity distribution was approximated with 50 KD values

logarithmically spaced between 1 and 1000 nM. (A) Shows the equilibrium

isotherms: simulated data (circles), best fit with a single site model (dotted

line), and continuous distribution calculated with regularization on

a confidence limit of 0.9 (solid line). (B) Shows the calculated affinity

distributions: single site model (full circle), distribution without regulariza-

tion (short dashed line) rescaled, and distribution with TP regularization

(solid line). For comparison, the distribution with regularization is shown

from the application to a sample of simulated data set with 3.3-fold lower

noise (dashed line).

4064 Svitel et al.

Biophysical Journal 84(6) 4062–4077



equilibrium level; in particular, at the lower concentrations.

Interestingly, both on-rate constants are still well-defined.

Again, similar results are obtained when using ME reg-

ularization (ME produces slightly sharper peaks except for

the underdetermined high affinity in Fig. 3, which is slightly

broader; data not shown). In summary, these results

demonstrate that the simultaneous determination of the

affinity and on-rate constant distribution can be possible

under suitable experimental conditions. This will be further

illustrated with the analysis of experimentally measured

binding curves below.

The inverse situation of distributions of analyte binding to

a single class of surface sites, as outlined in the Appendix,

was also studied with simulated data. Theory predicts that

when each species is at steady state, the resulting total

equilibrium isotherm does not contain any information about

the analyte distribution, because it is identical to the isotherm

FIGURE 2 Two-dimensional on-rate constant and affinity distribution

analysis for heterogeneous surface sites. Surface binding data were

simulated as a superposition of two classes of surface sites with KD ¼ 10

and 100 nM, and kon ¼ 2 3 105 and 1 3 105/Ms, respectively, both with

a maximum binding capacity of 100 RU. Analyte concentrations were 1, 2,

5, 10, 20, 50, 100, 200, 500, and 1000 nM. Binding curves were calculated

for 1000 s of association and 1000 s of dissociation, and normally distributed

noise of 1RU was added. The data were modeled as a two-dimensional

distribution of affinity and on-rate constants, using a grid of 15 on-rate

constants between 5 3 104 and 1 3 106/Ms, and a grid of 15 KD values

between 1 nM and 1 mM, and with TP regularization on a confidence level of

0.9. Included in the model were independent baseline offsets for the

association and dissociation phases at all concentrations. (Top) Simulated

data. (Middle) Residuals of the fit. (Bottom) Contour lines of the distribution

(solid lines), interpolated by MATLAB with 10 equally spaced contour

levels between 2.1 and 22 RU. The kon–KD grid underlying the distribution

is indicated (dotted lines). The parameters of the two sites underlying the

simulated data are indicated (crosses).

FIGURE 3 On-rate constant and affinity distribution analysis of simulated

data with low rate constants and short association times. Surface binding

data were simulated as in Fig. 2, but with lower kinetic constants for the high

affinity site (KD ¼ 10, kon ¼ 3 3 104Ms) and with only 500 s contact time,

under otherwise identical conditions as in Fig. 2. The data were modeled as

a two-dimensional distribution of affinity and on-rate constants, using a grid

of 15 on-rate constants between 104 and 106/Ms, and a grid of 15 KD values

between 1 nM and 1 mM. Included in the model were independent baseline

offsets for the association and dissociation phases at all concentrations.

(Top) Simulated data. (Middle) Residuals of the fit. (Bottom) Contour lines

of the distribution (solid lines), interpolated by MATLAB with 10 equally

spaced contour levels between 1.83 and 18.3. The kon-KD grid underlying

the distribution is indicated (dotted lines). The parameters of the two sites

used for generating the simulated data are indicated (crosses).
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of a single class of sites with an average binding constant. In

contrast, kinetic surface binding of heterogeneous analyte

mixtures cannot be described as a single interaction. The

information carried in surface binding progress curves was

tested with simulated data from two analyte species with the

same rate constants, total analyte concentrations, and

maximum signal-to-noise ratio as used in Fig. 2 above.

The surface binding kinetics of a distribution of analytes was

calculated on the basis of a 5 3 9 grid of on-rate constants

(5 3 103–5 3 105/Ms) and affinity constants (106/M–109/

M), using Eqs. A7 and A8. We initialized the distribution

uniformly and employed a Levenberg-Marquardt algorithm

to optimize the fit to the simulated data. Surprisingly, under

these conditions, an excellent fit was found with an almost

uniform distribution of analytes, indicating that a single set

of surface binding progress curves does not provide

sufficient information for the identification of the two

species underlying the simulation (data not shown).

However, a characteristic feature of distributions of

analytes binding to a single class of surface sites is the

competitive displacement of fast-binding, low affinity

analytes by slower-binding, higher affinity analytes. There-

fore, the dissociation kinetics can strongly depend on the

contact time, and data sets at different contact times can serve

as an additional source of information (Fig. 4). Additionally,

we increased the signal-to-noise ratio to 1000 (maximum

capacity 500 RU with a noise of 0.5 RU). Under these

conditions, a global regression of the data in Fig. 4 on a coarse

5 3 5 grid of on-rate and affinity constants (3 3 104–1 3

105/Ms and 3.3 3 106/M–3.3 3 108/M), again initialized

with a uniform distribution, converged to the correct bimodal

analyte distribution (data not shown). Unfortunately, with

increasing grid size, solving the differential equations for the

distributions becomes more time-consuming, and higher

parameter correlation was observed when modeling the

distributions to the binding progress curves. However, our

results indicate that, at least in principle, information on

distributions of ligands may be obtained from a set of surface

binding progress curves recorded at different concentrations

and contact times. We have not further optimized the analysis

of analyte distributions beyond this demonstration of

principle, and instead examined the practical application of

the computationally simpler analysis of ligand distributions.

For the analyses of experimental data from a commercial

BIAcore X surface plasmon resonance biosensor with the

ligand distribution model, we have used off-rate and

dissociation equilibrium constant distributions, covering

a range wide enough, and with a grid fine enough, so that

the rms deviation of the fit was independent on the grid. We

found it important to avoid very high and very low off-rate

constants that correlate with the unknown baseline offsets.

As a first test, we modeled experimental binding curves of

myoglobin binding to a monoclonal antibody immobilized in

the carboxymethyl dextran matrix of a CM5 sensor chip

(Figs. 5–7) (Roden and Myszka, 1996; Schuck et al., 1998).

An experiment similar to Fig. 5 has been suggested

previously as an example for consistency with the model

of a single class of sites (Roden and Myszka, 1996), although

a larger data basis with longer contact times (Figs. 6 and 7)

reveal the existence of lower affinity sites (Schuck et al.,

1998) (see below). A single site model for the data of Fig. 5

has a global minimum at a KD of 3.2 nM and koff ¼ 4.4 3

10�4/s, with an rms error of 0.68 RU, and a local minimum at

a KD of 550 nM and koff ¼ 3.3 3 10�4/s (rms error 1.05 RU).

The ligand distribution model calculated with TP regulariza-

tion led to an rms error of 0.68 RU (Fig. 5), with a very broad

distribution. The short contact times lead to small curvature

of the binding kinetics, and accordingly, to very limited

information content of the experimental data.

This example displays an important property of the

regularization: because the regularization selects the smooth-

est distribution consistent with the data, data with limited

information content result in very broad distributions. In-

terestingly, when ME regularization is used, an alternative fit

of the same quality was identified with a single, broad peak at

the corner of the koff–KD plane with the highest KD and

lowest koff value. However, the total binding capacity was

unrealistically high, significantly exceeding the possible

signal as judged by the amount of immobilized antibody.

Clearly, the molecular binding properties are ill-defined from

such limited data sets, and different results from the two

regularization methods reflect the different prior assumptions

about the shape of the distribution (smoothness versus high

information entropy).

When the contact time and the concentration range are

extended, more details of the rate and affinity constant

FIGURE 4 Simulated surface binding data for two classes of analyte (KD

¼ 10 and 100 nM, and kon ¼ 2 3 105 and 1 3 105/Ms) binding com-

petitively to a single class of surface sites. Data were calculated for

a maximum binding capacity of 500 RU, at concentrations of 3, 10, 30, 100,

300, and 1000 nM. For all concentrations, three contact times were used: 30 s

(dotted lines), 150 s (dashed lines), and 500 s (solid lines). (The association

progress of the experiment at the different contact times is identical, except

for the simulated noise.)
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distribution emerge. As shown in Fig. 6, the distribu-

tion gives an excellent fit and exhibits a peak in the range of

KD ; 0.5 nM, koff ; 7.2 3 10�5/s and kon ; 1.3 3 105/Ms

(because of the skewed peak, the average KD is 2 nM), but it

also shows the presence of lower affinity sites with a peak at

KD ; 40–60 nM (kon ; 104/Ms), as well as a peak at KD ;

500 nM. Because the highest analyte concentration used in

this experiment was only 990 nM, these latter very low

affinity sites are likely ill-defined. For comparison, when we

applied the ME regularization, we found a distribution that is

again dominated by low KD-low koff sites with unreasonably

large binding capacities (data not shown). However, when

the low KD-low koff sites were excluded from the model,

a distribution very similar to Fig. 6 was obtained with a high

affinity peak with KD ¼ 1.7 nM and kon ¼ 1.2 3 105/Ms and

medium affinity sites with 56 nM and kon ¼ 1.2 3 104/Ms,

consistent to the results from TP regularization.

We believe that this range of affinities reflects a true

heterogeneity of the ligand population at the biosensor

FIGURE 5 (Top) Experimental kinetic data (x) of myoglobin at concen-

trations of 4, 12.2, 37, 110, and 330 nM binding to monoclonal antibody

immobilized in the carboxymethyl dextran matrix of a CM5 sensor chip at

a flow rate of 30 ml/min. (For details on the experimental methods, see

Schuck et al., 1998.) Best fit binding kinetics (dashed bold line) from

modeling with a koff–KD distribution in the range from koff ¼ 0.1–10�5/s and

KD between 0.3 and 500 nM, are calculated with TP regularization, and

include the start times of the association and the baselines of the association

and dissociation phases as unknowns. Regularization on a confidence level

of 0.9 was used. (Middle) Residuals of the best fit, which has an rms

deviation of 0.68 RU. (Bottom) Interpolated contour lines of the koff–KD

distribution. The 15 3 15 grid of koff and KD values, underlying this model,

is indicated (dotted lines). The calculated maximum binding capacity is 132

RU. Integration of the broad high affinity peak gives a binding capacity of

the high affinity site of 116 RU, and an average koff ¼ 3.0 3 10�4/s and an

average KD ¼ 63.7 nM.

FIGURE 6 Distribution analysis of myoglobin binding kinetics to surface

immobilized sites under similar conditions as in Fig. 5, but with longer

contact times and a larger concentration range. (Top) Experimental kinetic

data (x) of myoglobin at concentrations of 4, 12.2, 37, 110, 330, and 990 nM

binding to monoclonal antibody immobilized in the carboxymethyl dextran

matrix of a CM5 sensor chip at a flow rate of 30 ml/min. The data were

modeled with the same distribution model as in Fig. 5. Best fit binding

curves are shown (dashed bold line). (Middle) Residuals of the best fit,

which has an rms deviation of 0.53 RU. (Bottom) Interpolated contour lines

of the koff–KD distribution. The calculated maximum binding capacity is 197

RU. Integration of the distribution inside a polygon drawn around the high

affinity peak gives a binding capacity of the high affinity site of 96 RU, an

average koff ¼ 1.9 3 10�4/s, and an average KD ¼ 2.0 nM.
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surface in this experiment. Likely, they are generated by

artifacts from the immobilization, which was amine coupling

into a carboxymethyl dextran matrix. Another factor that

could contribute to heterogeneity is the different physical

environment at different depths of the dextran matrix, which

can be expected to be of increasing density closer to the gold

surface.

To explore the reproducibility of the calculated distribu-

tion and the dependence on experimental conditions, we

analyzed another data set from the same surface, but with still

longer association times (Fig. 7) and compared the results to

those shown in Fig. 6. Several points are noteworthy: the

high affinity site appears well reproduced with a slightly

narrower peak, and the medium affinity sites appear to have

more structure and details. However, the low affinity sites in

the range of 300–500 nM are not well-reproduced in Fig. 7,

which is most likely due to the threefold lower maximal

concentration (330 nM) of the data in Fig. 7. It appears that

the information on the site with low affinity and low rate

constant is contained in the small sloping of the association-

binding curves at high concentration and long contact times.

The kinetic contribution from the low-affinity species with

high rate constant, on the other hand, has essentially decayed

for most of the experimental data, and is therefore relevant

only for the modeling the data shortly after start and end of

the contact period and otherwise highly correlated with the

parameters for the baseline offsets. The peak position of both

of these species with low affinity is not well-defined, since

a distribution model where the KD values are constrained to

a maximum of 100 nM leads to an rms deviation that is only

0.03 RU higher (although it does reproduce two peaks at KD

values of 100 nM, data not shown).

This comparison illustrates that distribution analysis

greatly benefits from long contact times. Also, it highlights

that sites with KD values significantly higher than the highest

applied analyte concentration may not be reliably character-

ized. Importantly, however, the high affinity sites appear

well-defined and reproducible. That the differences in Figs. 6

and 7 are not due to the significantly lower flow rate that was

used in the experiment of Fig. 7 is ruled out by a global

analysis of both data sets of Figs. 6 and 7 jointly. Global

analysis gives an excellent fit, and the distributions are

consistent with the previous results, indicating a high affinity

site with KD ; 0.5–1 nM and koff ; 0.8–1310�5/s, in

addition to a range of medium affinity and low affinity sites

(Fig. 8).

As a second experimental system, Fig. 9 shows the

application to a Fab fragment of a variant of the mAb CC49

(Muraro et al., 1988) binding to immobilized bovine mucin.

The CC49 antibody recognizes TAG-72, a tumor-associated

glycoprotein. The primary CC49 epitope on TAG-72 is the

trisaccharide Galb(1–3)[NeuAca(2–6)]GalNAc, but it also

recognizes, although with lower affinity, clusters of the

disaccharide structure [NeuNAca(2–6)]GalNAc, linked to

serine or threonine side chains (Hanisch et al., 1989). Both

the disaccharide and the trisaccharide structures are also

present in bovine and ovine submaxillary mucins (Reddish

et al., 1997). Therefore, the interaction of the Fab with

immobilized mucin is an example where intrinsically mul-

tiple classes of ligand are present. Accordingly, a fit with a

pseudo-first-order model of a single site leads to a poor fit

(rms deviation ¼ 4.7 RU, not shown). The distribution

model leads to an acceptable fit of the data (rms deviation

0.98 RU), and displays two peaks, one corresponding to

higher affinity sites with KD ; 500 nM and one with

approximately four-to-fivefold lower affinity and approxi-

FIGURE 7 Distribution analysis of myoglobin binding kinetics to the

same surface as in Fig. 6, but with lower concentration range and longer

contact times. (Top) Experimental kinetic data (x) of myoglobin at

concentrations of 4, 12.2, 37, 110, and 330 nM binding, at a flow rate of

1 ml/min. The data were modeled with the same distribution model as in

Figs. 5 and 6. Best fit binding curves are shown (dashed bold line). (Middle)
Residuals of the best fit, which has an rms deviation of 0.8 RU. (Bottom)

Interpolated contour lines of the koff–KD distribution. The calculated

maximum binding capacity is 288 RU. Integration around the high affinity

peak gives a binding capacity of the high affinity site of 59 RU, a weight

average koff ¼ 8.1 3 10�5/s, and a weight average KD ¼ 0.72 nM. When

using ME regularization, the high affinity site has a binding capacity of 41

RU, an average koff ¼ 5.7 3 10�5/s, and an average KD ¼ 0.50 nM.

4068 Svitel et al.

Biophysical Journal 84(6) 4062–4077



mately tenfold faster off-rate constant. We attribute these

sites to the trisaccharide and disaccharide structures, re-

spectively. Interestingly, a fit with two discrete classes of

ligand sites converges to similar parameters, but at the

significantly higher rms deviation of 1.43 RU, suggesting

that the tri- and disaccharides may not all be homogeneous in

their binding properties or accessibility, and that the con-

tinuous distribution may be a better description.

So far, we have examined ligand distributions known to be

heterogeneous. Next, we studied how the model can fit

surface binding kinetic data that are governed by other

processes. This is of concern because of the large numbers of

parameters introduced in the distribution model, and because

the source of apparent complexity in the binding kinetics

may not be known a priori.

First, we simulated binding curves of two analytes

competitively binding to a single class of surface sites, with

binding parameters and under conditions as shown in Fig. 2.

The modeling with a koff–KD distribution of ligands resulted

in a single peak at an average KD, but with a poor fit and

systematic residuals with rms deviation of 2.42 RU (data not

shown). This shows that despite the large numbers of

parameters in the ligand distribution model, the set of surface

binding data that can be modeled well is limited, and that

the quality of fit may serve as an indicator if the ligand

distribution is an appropriate model.

Second, we examined the behavior of the ligand

distribution when applied to transport limited data. Fig. 10

shows the observed kinetics of hen egg lysozyme binding to

D1.3 antibody. This interaction is well-understood (Ward

et al., 1989; Sundberg and Mariuzza, 2002) and one would

FIGURE 8 Joint global analysis of the myoglobin surface binding

kinetics shown in Figs. 6 and 7. The same grid for the koff–KD distribution

was used as in the separate analyses, but using baseline parameters in the

association and dissociation phase as local parameters. (Top) Results from

TP regularization, which gave an rms deviation of 0.87 and 0.94 RU for the

data shown in Figs. 6 and 7, respectively. The calculated total binding

capacity is 253 RU. Integration around the high affinity peak gives a binding

capacity of the high affinity site of 62 RU, an average koff ¼ 7.8 3 10�5/s,

and an average KD ¼ 0.72 nM. (Bottom) Results from ME regularization

excluding sites with kon \ 100/Ms; the calculated total binding capacity is

263 RU, with a high affinity site of 43 RU, koff ¼ 6.0 3 10�5/s, and an

average KD ¼ 0.50 nM.

FIGURE 9 Surface binding data and distribution analysis of a Fab

fragment of a variant of mAb CC49 binding to immobilized bovine mucin.

The mucin was immobilized using standard amine coupling to CM5

carboxymethyl dextran chips in the BIAcore X surface plasmon resonance

biosensor (Schuck et al., 1999). (Top) Experimental kinetic data (x) of Fab

fragment at concentrations of 25, 50, 100, 200, 400, and 800 nM. The best fit

distribution model is shown as dashed line. (Middle) Residuals of the fit,

with an rms deviation of 0.98 RU. (Bottom) Interpolated contour lines of the

koff –KD distribution. The 15 3 15 grid of koff and KD values underlying this

model is indicated as dotted lines. The calculated maximum binding capacity

is 397 RU.

Affinity and Rate Constant Distributions 4069

Biophysical Journal 84(6) 4062–4077



expect a simple 1:1 pseudo-first-order reaction kinetics.

However, the experimental surface binding data are strongly

transport limited. The best fit koff–KD distribution model has

an rms deviation of[20 RU, clearly unacceptable (Fig. 10).

As a consequence, the calculated distribution is not

meaningful (data not shown). More difficult is the detection

of moderately transport influenced binding, in particular

when the available data cover only a small concentration

range: Fig. 11 shows data from a study of G-protein subunit

interactions (Gbg binding to immobilized biotinylated Gia)

(Rebois et al., 2002). As described previously, the kinetic

traces do not conform to a single site model, but in solution

competition experiments a KD of ; 15 nM was measured

(Rebois et al., 2002). The binding kinetics can be described

by a single site compartment model for binding and transport

with a KD of 50.6 nM. This is in reasonable agreement with

the binding constant in solution, and the rms deviation of the

fit is 0.91 RU (Fig. 11 B). If a distribution model is applied

without accounting for the transport limitation, a significantly

worse fit is observed, with an rms deviation of 1.48 RU and

clearly systematic residuals (Fig. 11 C). However, the rms

deviation is not as high as with the other impostor

applications of the distribution. It should also be noted that

the calculated distribution (Fig. 11 D) is not consistent with

the binding parameters as judged from the solution

competition data and from the fit with the transport limited

single site model. To analyze this situation further, we

simulated data on the basis of the best fit, transport limited

single site compartment model, but using a threefold higher

concentration range and double the contact and dissociation

times. Now, the impostor application of the distribution

model resulted in an rms deviation of 1.9 RU, and the

resulting distribution displayed a single peak at the correct

KD, although at 60% too low off-rate constant (data not

shown). This highlights again that the distribution analysis

benefits from a large concentration range and long contact

times. It also shows the importance of independent,

experimental identification of transport limited binding.

FIGURE 10 Binding kinetics of hen egg lysozyme binding to D1.3

antibody immobilized by amine coupling in a carboxymethyl dextran matrix

of a CM5 chip. Standard immobilization procedures were used (Schuck

et al., 1999). Lysozyme (Worthington) was diluted into the standard

HEPES-buffered saline running buffer at concentrations of 2.5, 5, 10, and 25

nM, and applied at a flow rate of 5 ml/min. The experimental data (x) were

modeled with a koff–KD distribution with a 15 3 15 grid covering a KD range

from 0.1 nM to 10 mM, and a koff range from 10�5/s to 1/s. Best fit model is

shown (dashed line). The rms deviation of the fit is 23.3 RU.

FIGURE 11 Binding kinetics of Gbg binding to immobilized biotinylated

Gia (data taken from Rebois et al., 2002). (A) Experimental data (x) of Gbg

at concentrations of 10, 20, 40, 60, 80, and 100 nM, applied at flow rates of

1 ml/min. (For experimental details, see Rebois et al., 2002.) A single site

model of transport influenced binding based on a compartment model

(dashed lines) converges to Kd ¼ 50.6 nM, koff ¼ 3.5 3 10�3/s, log10(kt) ¼
7.7, and a maximal binding capacity of 282 RU. (B) Residuals of the single

transport limited site model, with an rms deviation of 0.91 RU. (C) Residuals

of a ligand distribution model, with an rms deviation of 1.49 RU. (D)

Contour lines of the calculated best fit ligand distribution (solid lines). The

koff–KD grid is indicated (dotted lines). The calculated total binding capacity

is 570 RU. For comparison, the koff and KD values from the single transport

limited site model are shown (triangle).
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DISCUSSION

The quantitative interpretation of surface binding kinetics for

the study of protein interactions can be a very difficult task.

The homogeneity of the analyte and the immobilized ligand

is a critical factor, since, in both cases, molecules with

different binding properties can easily generate relative

signal contributions that are amplified and become signif-

icantly larger than their relative population, or even

dominate the observed kinetics. Heterogeneity of the surface

sites may be introduced by nonspecific immobilization

chemistry, nonuniform orientations of the macromolecules,

conformational changes due to the immobilization, the use

of an immobilization matrix that makes the sites differen-

tially accessible to the analyte, or it may be intrinsic to the

system under study. Additional difficulties can be the

transport of the analyte to the surface sites, which may in

extreme cases completely govern the surface binding

kinetics, or possibly the existence of multiple conforma-

tional states and transitions that cause complex chemical

binding kinetics. In the majority of applications using optical

biosensors to quantitatively characterize protein interactions

found in the published literature, the data are not well-

described by an ideal pseudo-first-order reaction (Karlsson

et al., 1994), showing the importance of considering

complicating factors, but also indicating the opportunity to

gain more information from these experiments. Unfortu-

nately, however, one of the main mathematical difficulties

of modeling surface binding is that the data are noisy

exponentials or similarly smoothly decaying functions, and

many different models for more complex reaction kinetics

may fit the data similarly well (Glaser and Hausdorf, 1996).

The present work addresses this problem and explores

methods that account in a very general way for effects of

analyte or ligand heterogeneity, provided other complicating

factors are absent (see below).

Situations where the surface binding is characterized by

a distribution of analytes with different binding properties

are abundant and of great importance. We have explored if it

is possible to formulate a model useful for analysis of such

situations. For the study of proteins, beyond the description

of analyte macromolecules that are intrinsically heteroge-

neous due to variability in primary sequence, conformation,

or glycosylation, such a model would be required for the

binding of a polyclonal population of antibodies to an

antigen located on a cell membrane, viral envelope, or

manmade surface. It may also be interesting, for example, to

use an optical biosensor assay for the study of the evolution

of the affinity and kinetic properties of whole ensembles of

macromolecules, such as polyclonal mixtures of immuno-

globulins. However, analyte distributions are very difficult to

unravel. In a different context, Rusch and co-workers have

approached the problem for equilibrium binding of two

analyte species that interact with a distribution of surface

sites (Rusch et al., 1997). Unfortunately, their results are not

applicable to the problems considered here, because they

require independent variation and detection of both analyte

species, which is not possible with optical biosensors and

when working with preexisting unknown mixtures of poly-

disperse analytes. In this situation, the equilibrium isotherms

are indistinguishable from that of a single site with average

affinity. However, optical biosensors can measure the bind-

ing kinetics, which our results suggest can carry sufficient

information to characterize an analyte distribution binding

to a single class of surface sites, provided that a sequence

of surface binding and dissociation data at different total

analyte concentrations and different contact times are avail-

able. Improvement in the instrumental signal-to-noise ratio

and refinement of the computational approaches could make

the characterization of analyte distributions practical.

Much simpler in theory and practical implementation are

analyses of distributions of surface sites interacting with

a single class of analyte. The situation of distribution of

surface sites may not be uncommon (Rabbany et al., 1997;

Vijayendran and Leckband, 2001), in particular when

considering that nonspecific amine coupling of proteins into

a surface-attached hydrogel is the immobilization strategy

most widely used in conjunction with surface plasmon

resonance biosensing. Many studies have revealed different

degrees of heterogeneity of the immobilized sites with other

immobilization chemistries and surfaces (Anderson et al.,

1997; Narang et al., 1997; Vijayendran and Leckband,

2001), and optimization of protein immobilization for stable

and uniform activity is a very active and important area of

research (Hodneland et al., 2002). But even with ideal im-

mobilization conditions, there are many examples where the

immobilized molecules intrinsically would represent an

ensemble with different binding properties (Fig. 9).

The surface binding kinetics to such heterogeneous

surfaces is a simple linear superposition of the independent

binding processes of different subpopulations, and com-

monly multiple-site models are applied for their analysis. A

key difference of the approach studied in the present article is

that it does not require an ad hoc assumption about a specific

number of discrete sites (usually two), and instead is based

only on the much weaker assumption that there could be

heterogeneity of sites with rate and affinity constants in a

certain range. Further, it does not employ nonlinear regres-

sion, where typically multiple-site models converge with

strong dependence on good initial parameters, which in

practice are difficult to obtain. The present method uses reg-

ularization to calculate the simplest distribution that can

fit the data within a predefined confidence interval. This

procedure adjusts the resolution of the distribution automat-

ically to the noise level and information content of the data,

and thereby reduces the risk of overinterpreting the data. As

illustrated in several examples, where the underlying model

of ligand heterogeneity is applicable, excellent fits of the data

can be obtained with residuals in the order of the noise of the

data acquisition.
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For the computation of the distribution of rate and affinity

constants, we have adapted an approach for the inversion

of integral equations by regularization that was initially

introduced for the analysis of autocorrelation functions in

dynamic light scattering (Provencher, 1979), and is imple-

mented in the program CONTIN (Provencher, 1982a,b). It

is designed to address the problem of instability that is

encountered in the inversion integral equations by use of

Tikhonov-Phillips (TP) regularization (Phillips, 1962; Han-

sen, 1998), and its potential and limitation are well-

understood (Provencher, 1992). In this context, it should be

noted that the optical biosensor data usually have relatively

high signal-to-noise ratios, which slightly improves some of

the problems usually encountered with unraveling exponen-

tials. TP regularization is widely used for the calculation of

affinity distributions from binding isotherms, for example, in

chemical surface adsorption processes in the gas or liquid

phase and the study of surface heterogeneity (Koopal and

Vos, 1993; Jagiello, 1994; Mamleev and Bekturov, 1996;

Puziy, 1999; Gun’ko et al., 2001), ion exchange at surfaces

(Haber-Pohlmeier and Pohlmeier, 1997), and has also found

application in the biosensor field, for example, in the

estimation of blood glucose with glucose biosensors (Free-

land and Bonnecaze, 1999).

We have also implemented maximum entropy (ME)

regularization, which is widely used, for example, in the

analysis of decay times in autocorrelation functions (Livesey

et al., 1986), time-resolved fluorescence (Brochon, 1994;

van der Heide et al., 2000; Steinbach et al., 2002), enthalpy

distributions (Poland, 2001a), thermodynamic distributions

in ligand binding (Steinbach, 1996; Poland, 2001b), dis-

tribution of dissociation rate constants (Stanley et al., 1994),

diffusion corrected sedimentation coefficient distributions in

analytical ultracentrifugation (Schuck, 2000), and other

biophysical disciplines. ME was found to result in sharper

peaks if a few discrete species are present, but to exhibit

some instability for broad distributions (Amato and Hughes,

1991; Provencher, 1992; Schuck et al., 2002). The compar-

ison between the distributions from TP and ME regulariza-

tion appears very useful to determine how much of the result

is governed by the different prior assumptions. Although in

the practical applications studied here, the ME method

favored fits with very large binding capacities of very low

affinity sites, in practice, these could be excluded from the fit

by a more stringent choice of the distribution range (or can

be avoided in experiments with a larger concentration range).

It should be straightforward to extend the ME method to

incorporate prior expectation values for the distribution (Press

et al., 1992), which may reflect known or suspected properties

of the binding sites. If it is safe to make the additional

assumption that the surface sites are few and discrete, one

could also use the calculated distribution to initialize a discrete

multiple site model with a rational choice of the number of

species and the initial values of the parameters for nonlinear

regression. In principle, techniques to integrate multiple

discrete site models with ME regularization (Steinbach et al.,

2002) should also be directly applicable.

One of the key questions will be how much detail can be

obtained from the experimental data, and which experimental

conditions result in a well-defined distribution. We found that

long contact times are crucial. In practice, when using

a microfluidics with an injection loop of fixed volume, of

such as incorporated in the BIAcore systems, constraints may

exist in the length of the possible analyte contact times, in

particular at flow rates sufficiently high to avoid mass

transport limitation. However, this problem can be addressed

effectively with the oscillating flow technique, in which a very

small and recoverable sample volume is subjected to a back-

and-forth movement at high flow rates (Abrantes et al., 2001).

A second important factor for generating data sets suitable

for the proposed analysis is a wide concentration range. In all

the examples we studied, we found it difficult to character-

ize binding sites with equilibrium dissociation constants far

above the highest analyte concentration used. For the data

analysis, this poses the problem of defining a good range

for the distribution, which is large enough to encompass all

binding constants necessary to describe the data, but not too

large to produce artificial peaks with large binding capacities

at affinities that are outside the dynamic range and remain

essentially unpopulated at the experimental concentrations.

In our experience, the rms deviation of the fit for a given

distribution range and the total binding capacity can be

helpful as a guide. However, even if low affinity sites are

essential for a good fit, yet cannot be well-characterized in

the distribution, our results show that the high affinity sites

can remain unaffected by this.

It could be argued that by incorporating into the model the

flexibility to describe the possibly present low affinity sites,

an unbiased analysis of the characteristic features of the high

affinity sites is made possible. Accordingly, one possible

strategy to utilize the distribution analysis is to model the

data in the s(c,t) domain well and with a large distribution

model, to transform them into a c(koff, KD) surface, and then

to interpret the resulting peaks in terms of interactions of

interest, likely immobilization artifacts, or ill-defined dis-

tribution regions. This differs fundamentally from the use of

a one- or two-sites’ model to fit directly the s(c,t) data, which

frequently results in a significantly worse fit, and in binding

constants that may represent only some averages over the

distribution or subpopulations. The ad hoc definition of re-

gions of interest directly in the s(c,t) data domain to improve

the fit to a single site model can, in theory, result in binding

constants far outside the range of any of the subpopulations.

We have used the interaction of myoglobin to a surface

immobilized monoclonal antibody to illustrate the distribu-

tion analysis. A high-affinity site with sub-nM affinity was

reproducibly identified, in the presence of a range of lower

affinity sites, which were possibly generated by the random

immobilization chemistry, and/or by differences in the

physicochemical microenvironment of different sites within
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the immobilization matrix. Interestingly, data with an ex-

perimental design with short contact times very similar to

Fig. 5 were used to demonstrate that surface binding kinetics

can be modeled with an ideal pseudo-first-order kinetics of

a single site, arguing that surface-related effects on the

interaction are absent (Roden and Myszka, 1996). We have

shown previously that in our experiments, longer contact

times reveal the existence of lower affinity sites (Schuck et al.,

1998). In comparison, as noted above, the regularization used

in the distribution analysis automatically produces a very

broad peak for the data with short contact times (Fig. 5), and

provides more detail only at longer contact times (Figs. 6 and

7). Not surprisingly, the rms deviations of the fits in the

distribution models were smaller throughout than those of the

single site or two site models, respectively. The equilibrium

dissociation constants that we obtained earlier from the two-

site fits were similar for the data shown in Fig. 6, and slightly

higher for the data of Fig. 7. In Schuck et al. (1998), we have

taken the difference in the binding constants from the two-site

models as an indication of mass transport limitation. How-

ever, a global and consistent analysis of both data sets is

possible with the distribution analysis (Fig. 8). This suggests

that the differences in the parameters calculated with the two-

site models may not be due to mass transport limitation, but

rather due to limitations of the two-site model, which does not

adequately represent the broader distribution of sites.

As mentioned above, the measured surface binding

kinetics can be governed by factors other than ligand he-

terogeneity. In most situations that we studied, the ligand

distribution model could not fit such data, provided sufficient

contact times and concentration range. Therefore, the rms

deviation of the distribution will be an important parameter

to judge the trustworthiness of the distribution, and the

magnitude and randomness of the residuals should be judged

stringently. It is unclear how experimental limitations such

as a decaying activity of the surface (Ober and Ward, 2002),

incorrect analyte concentrations, or imperfect compensation

for bulk effects (Ober and Ward, 1999) would influence the

calculated distributions.

The influence of mass transport on the surface binding is

of special importance (Glaser, 1993; Schuck, 1996; Schuck

and Minton, 1996a; Yarmush et al., 1996; Myszka et al.,

1998; Vijayendran et al., 1999; Wofsy and Goldstein, 2002).

When applying the distribution analysis to data from

strongly mass transport limited binding, very large residuals

were obtained. This can be understood on the basis that no

combination of exponential surface binding curves of the

type Eq. 3 (at sufficient contact times) can produce a linear

binding progress or even positive curvatures like those

observed in Fig. 10. Nevertheless, when using experimental

concentrations lower than KD, as was shown previously,

excellent fits may be achieved even with discrete single-site

or two-site models when applied to transport limited binding

processes (Schuck, 1997a). Clearly, unrecognized mass

transport limitation would, in such situations, also be mis-

interpreted with the distribution model.

It is possible to include a first-order approximation of mass

transport influence in the distribution analysis, based on

compartment models (Schuck and Minton, 1996a; Myszka,

et al. 1998; Wofsy and Goldstein, 2002). Unfortunately, the

large computational cost currently still limits this approach.

However, although this could extend the range of distribu-

tion analysis into the regime of slightly transport influenced

binding, it would not be applicable to the description of

strongly transport controlled surface binding (Schuck and

Minton, 1996a). The binding of lysozyme to the surface-

immobilized D1.3 antibody (Fig. 10) is an example of such

a case. The binding mode of this antibody is very well-

understood and does not involve cooperative reactions

(Ward et al., 1989; Sundberg and Mariuzza, 2002).

Therefore, we attribute the positive curvature in the

association phase to spatial gradients of saturation that

transiently occur either within the immobilization matrix

(Schuck, 1996) or parallel to the sensor surface (Yarmush

et al., 1996), in combination with spatially inhomogeneous

detection from the evanescent field of the surface plasmons

and/or the lateral illumination profile of the surface. Clearly,

such processes violate the assumptions of a compartment

model under steady-state conditions. Interestingly, in the

case of myoglobin, which is significantly less charged, the

binding does not appear to be transport limited. This is

consistent with previous studies showing the absence of

effects of the immobilization matrix in this case (Karlsson

and Fält, 1997). Besides differences in the on-rate constants

of the antibodies, nonspecific binding properties and the net

charge of the analyte may be important factors in de-

termining the extent of interaction and transport limitation in

the immobilization matrix (Schuck, 1996, 1997a; Piehler

et al., 1999; Zacher and Wischerhoff, 2002). Thus, the

importance of transport limitation will be strongly dependent

on the system under study, and despite the potential to

identify and, to a certain approximation, model transport

influenced binding computationally, experimental controls

seem to remain essential.

In summary, we propose that ligand heterogeneity can be

taken into account using a model for continuous two-

dimensional distributions of rate and affinity constants.

Although more experience with other systems is needed to

fully understand the potential and the limitations of the

approach, the initial application to several model systems is

promising, yielding excellent fits of the data and well-defined

distributions if a suitable data basis can be used. By

exploiting the full kinetic data set available, the obtained

two-dimensional kinetic and affinity distributions have

a higher resolution than corresponding affinity distributions

based on the isotherm analysis alone. We believe this will

provide a useful tool for probing the uniformity of protein

immobilization, and for the study of protein interactions by

optical affinity biosensors.
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APPENDIX

Calculating the affinity and rate constant
distributions of populations of surface sites

This section describes how Eq. 7 is solved. Since there is no analytical

solution to the problem, we calculate an approximate P on a discrete lattice of

kon and KA values, with (Nkon 3 NKA) grid points (kon,k, KA,l) with kon values

between kon,min and kon,max, and KA values between KA,min and KA,max. (The

parameterization can be easily transformed to other sets of variables, such as

koff and KD.) The distribution values pkl ¼ P(kon,k, KA,l)Dkon,kDKA,l can be

expressed as a vectorpwithNmod¼ (Nkon3NKA) elements. Likewise, we can

express the experimental data points sxp(cj,ti) at the Nt times ti and the Nc

concentration values cj as a vector s with Ndat ¼ (Nt 3 Nc) elements. The

kernel in Eq. 7 can be evaluated on our kon–KA lattice for each time and

concentration, and can be arranged in aNdat byNmod matrix and abbreviated as

A. This leads to a least-squares problem. Adding a regularization term to

stabilize the solution, we arrive at

Min
p$0

js� Apj2 1 lsBðpÞ
� �

: (A1)

Obviously, positivity of the parameters is required to eliminate solutions

with physically impossible negative surface concentrations. The constraint

B(p) can be chosen to provide the most parsimonious distribution that gives

a satisfactory fit to the data. Among the most widely applied regularization

methods are maximum entropy (ME), which maximizes the information

entropy of the solution (Smith and Grandy, 1985), or Tikhonov-Phillips (TP)

regularization, which maximizes the smoothness of the solution (Phillips,

1962). Since they have slightly different properties, we have implemented

both ME

BðpÞ ¼ +
kl

pkl log pkl; (A2)

and TP regularization derived from the sum of the second derivative of the

distribution as

BðPÞ ¼
ð ð

d
2
P

d logðkonÞ2 1
d

2
P

d logðKAÞ2

� �2

dkon dKA; (A3)

which can be expressed in discretized form as

BðpÞ ¼ pDDTp; (A4)

(Press et al., 1992) with D denoting the sum of the second difference

matrices with respect to the directions kon and KA, respectively. The

minimization Eq. A1 with ME regularization is a nonlinear problem, which

in our implementation was solved with the Newton-based, large-scale

optimization algorithm of MATLAB. In contrast, regularization Eq. A3 can

be written as an equation system

ðAAT
1 lDDTÞp1 sAT ¼ 0; p[0; (A5)

where positivity can be conveniently imposed using an adaptation for

normal equations of the NNLS algorithm by Lawson and Hanson (1974).

The remaining problem is the adjustment of the regularization parameter

l. In our implementation, we chose the method described by Provencher

(1982a,b). It is based on the fact that all values l[0 increase the x2 value of

the fit because the additional constraint forces the distribution from the

(generally instable) least-squares optimum p(l ¼ 0). This allows use of

a statistical criterion comparing the goodness of fit. The Fisher distribution

predicts the ratio of x2(l)/x2(0), and as a consequence, it is possible to adjust

l such that the probability of x2(l)/x2(0) equals a predefined confidence

level (in the present article, 0.9). One can take into account the effect of

regularization on the degrees of freedom, derived from the singular values of

A and D, as outlined by Provencher (1982a). With ME regularization, this

effect was neglected. Other methods for estimating the regularization are

possible (Hansen, 1998).

It is also possible to combine several experimental data sets into a joint

global analysis. For example, multiple data sets with several analyte

concentrations each may be available, with different contact times for

different sets. Extending the summation of the least-squares expression to

several experiments, it can be shown that global matrices (AAT)glob and

(sAT)glob can be formed as a sum of local matrices (AAT)xp and (sAT)xp

which can be separately calculated for each experiment. In our im-

plementation in MATLAB (The Mathworks, Inc.), the baseline parameters

were treated as parameters local to each experiment. An additional un-

known local parameter was t0 in Eq. 3 for each concentration (this start

time of the binding experiment is experimentally not well-defined). These

parameters were optimized with a Levenberg-Marquardt algorithm in

a series of distribution analyses.

In some cases, for example for severely mass transport limited surface

binding, little useful information on the chemical kinetics can be derived.

However, if the association phase is carried out for a sufficient length of

time, one can still study the thermodynamics of surface binding and

characterize the distribution of affinity constants. Again, regularization

techniques can be used to obtain the simplest affinity distribution that is

consistent with the experimentally measured binding isotherm, analogous to

the approach outlined above (Haber-Pohlmeier and Pohlmeier, 1997).

Affinity and rate constant distributions of different
subpopulations of analyte binding competitively
to a single class of surface sites

In some cases, the existence of a single class of surface sites may be a good

assumption, but the analyte may consist of subpopulations that differ in their

surface binding properties. This is the reverse situation from that considered

so far. In this case, we know the total concentration of analyte ctot applied (or

usually a series of total concentrations) and would like to represent the

analyte distribution as fractions P with

1 ¼
ðKA;max

KA;min

ðkon;max

kon;min

Pdkon dKA; (A6)

such that Pdkon dKA is the partial concentration c(kon* , KA*) of an analyte with

on-rate constants between kon* and kon* 1 dkon and with an affinity between

KA* and KA* 1 dKA. The surface binding experiment can be modeled as the

combined binding of all analyte populations

stotðc; tÞ ¼
ðKA;max

KA;min

ðkon;max

kon;min

sðkon;KA;ctot;P; tÞPðkon;KAÞdkon dKA:

(A7)

If the surface sites have a maximum capacity Smax the rate equation for

binding of the analyte subpopulation i with rate constants kon,i and koff,i can

be written as

dsi

dt
¼ kon;ipictotðSmax �+

j

sjÞ� koff;isi: (A8)

This significantly differs from the pseudo-first-order rate equations in that all

different analyte populations j compete for the same surface sites, and thus

are not independent of each other. For example, analyte populations that

bind to the surface more rapidly, and which may represent initially the most

abundant population of surface-bound species, will, at longer contact times,

be displaced from the surface sites by molecules that bind more slowly but

with higher affinity. For the inverse problem of modeling data sðtÞ ¼ +siðtÞ;
solutions of Eq. A8 can be combined with a nonlinear regression algorithm

to find the distribution of pi values that model the data best. In our

implementation with MATLAB, we have included the total surface binding

capacity Smax as an unknown parameter.
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It is interesting to note the solutions of Eq. A8, when each species is at

steady state, which leads to the familiar expression for the total signal stot as

a function of ctot:

stotðctotÞ ¼
Smax

111=ðctot+
i

KA;ipiÞ
: (A9)

Thus, for distributions of analytes binding to a single class of surface sites,

the binding isotherm is indistinguishable from that of a single analyte with

a weighted-average affinity of �KKA ¼ +KA;ipi: Therefore, analyte distribu-

tions can only be characterized through analysis of their binding kinetics.

We thank R. Ober for many helpful discussions.
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