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The Convex Basis of the Left Null Space of the Stoichiometric Matrix
Leads to the Definition of Metabolically Meaningful Pools
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ABSTRACT The stoichiometric matrix, S, represents a mapping of reaction rate vectors into a space of concentration time
derivatives. The left null space of the stoichiometric matrix contains the dynamic invariants: a combination of concentration
variables, referred to as metabolic pools, whose total concentration does not change over time. By analogy to the traditional
reaction map formed by S, a compound map can be derived from �ST. The analogy to flux analysis of the (right) null space of S
enables us to classify the metabolic pools into three categories: Type A that contains chemical elements and their combinations
in the form of certain moieties, Type B that contains such moieties in addition to cofactors carrying such moieties that are
internal to the network, and Type C that contains only the cofactors. A convex formulation of the basis for the left null space
allows us to directly classify the metabolic pools into these three categories. Type B metabolic pools include conservation pools
that form conjugates of moiety-occupied and moiety-vacant concentration states of metabolites and cofactors. Type B metabolic
pools thus describe the various states of moiety exchange between the primary substrates and the cofactors that capture
properties like energy and redox potential. The convex basis gives clear insight into this exchange for glycolytic pathway in
human red blood cell, including the identification of high and low energy pools that form conjugates. Examples suggest that pool
maps may be more appropriate for signaling pathways than flux maps. The analysis of the left null space of the stoichiometric
matrix allows us to define the achievable states of the cell and their physiological relevance.

INTRODUCTION

A metabolic network can be characterized by its topologi-

cal or stoichiometric features. There exists a number of

analytical methods, including elementary flux modes and

extreme pathway analysis, by which metabolic flux distri-

butions are analyzed solely based on network stoichiometry

(Schilling et al., 2000; Schuster and Hilgetag, 1994).

Mathematically, the outcome of these analytical methods is

a set of convex basis vectors that describe all the steady-state

flux distributions or flux pathways in the network. The basis

vectors that lie at the edge of a high-dimensional cone have

been called ‘‘extreme pathways’’ since they represent

extreme states of the network. Extreme pathways form

a unique basis set for describing the flux pathways and

provide a systemic definition for the topological features of

the metabolic networks (Schilling et al., 2000).

Although much focus in metabolic network analysis has

been directed at characterizing flux distributions, relatively

few studies have dealt with the analysis of metabolite

concentrations and the identification of ‘‘metabolic pools’’.

Metabolic pools are linear combinations of individual me-

tabolite concentrations that do not change over time and

are contained in the left null space of the stoichiometric

matrix. Network characteristics and application of the left

null space of connectivity matrices have been studied in

other fields, including chemical networks, petri nets, and

electric circuit analysis (Alberty, 1991; Clarke, 1988; Colom

and Silva, 1990; Schuster and Höfer, 1991; Strang, 1988). In

comparison to typical network structures studied in such

fields, biochemical reaction networks are particularly dif-

ferent due to the extensive cofactor coupling of their re-

actions. These cofactors carry and transfer various chemical

properties (e.g., redox, energy, chemical groups) in the net-

work. Such couplings lead to joint edges that typically con-

nect four nodes or metabolites and result in topologically

nonlinear networks that may be challenging to study and

interpret. Metabolic pools have been used as an optimization

criterion for minimizing the total internal concentration of

metabolites in a biochemical system (Schuster and Heinrich,

1991), to identify distinct time hierarchies in the metabolic

network of human red blood cell (Schuster and Höfer, 1991).

Analysis of glycolysis in the African sleeping sickness

parasite, Trypanosoma brucei, has also been used for iden-

tifying of conservation relationships that may help deter-

mine suitable drug targets in the future (Cornish-Bowden

and Hofmeyr, 2002). Here we study a convex representation

of the left null space using the extreme pathway algorithm

(Schilling et al., 1999), to introduce metabolic pools that

have relevant physiological interpretations. By analogy to

flux maps that represent particular flux distributions, we

define ‘‘pool maps’’ that can be used to represent particular

conserved metabolic pools. Somewhat analogous to the

extreme pathways that have proved useful for flux analysis,

a convex basis for the left null space ensures that the

weighting of every compound in a metabolic pool is positive

and thus leads to chemically interpretable combinations of

concentrations. The convex representation of conservation

pools allows for metabolically relevant interpretation of

glycolysis and Rapoport-Leubering shunt in human red

blood cell and may be more appropriate for signaling

network analysis.
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DEVELOPMENT OF THE CONCEPTUAL
FRAMEWORK

The stoichiometric matrix as a mapping operation

The stoichiometric matrix, S, is a linear transformation

between the reaction rates and the time derivative of the

concentrations (Fig. 1). This transformation is expressed by

the dynamic mass balance or rate equation, ẋ ¼ Sv, in which
x is a vector of m metabolites, the dot (�) stands for time

derivative, v represents a vector of n reaction rates, and S is

anm3 nmatrix of stoichiometric coefficients (Clarke, 1980;

Horn and Jackson, 1972; Reich and Sel’kov, 1981). The

metabolites are therefore represented in S by the rows and

the reactions by the columns. The linear transformation be-

tween v and ẋ maps the reaction rates to metabolite con-

centrations without the use of any kinetic parameters or

information. The structural analysis of S thus does not ex-

amine the dynamic concentration states of the system ex-

plicitly but instead provides topological information about

the systemic relationships among metabolites and reactions.

The four fundamental subspaces of S

The row space, right null space, column space, and left null

space of S include all the fundamental features of the dy-

namic mass balance equation, ẋ ¼ Sv (Fig. 1). They contain

information about the network’s dynamic properties, steady

states, and time-invariant characteristics. The row space and

column space of S contain the dynamics of the reaction rates

and the time derivative of the concentrations, respectively,

and thus comprise all the time-varying components. In com-

parison, the right null space of S (normally referred to as the

null space) contains the steady-state (Sv ¼ 0) flux solutions,

and the left null space contains conserved concentration

relationships.

Open and closed system boundary

The boundary of a metabolic network can be defined in

different ways. Definition of a system’s boundary partitions

the reaction vector, v, into reactions that are internal to the

system, vi, and those that exchange mass with its sur-

roundings, bi. The vector of metabolite concentrations, x, are
similarly partitioned into internal, xi, and external, xoi, meta-

bolites. Thus different partitions of the stoichiometric matrix

can be formed (Fig. 2). The internal stoichiometric matrix

(Sint) contains only the internal reactions and metabolites,

and the system is closed to the outside environment (Fig. 2

A). If the system is opened by introducing exchange

reactions, the exchange stoichiometric matrix (Sexch) in-

cludes vi and bi, and the system becomes ‘‘open’’ (Fig. 2 B).
The entire system becomes ‘‘closed’’ again if the external

metabolites are explicitly accounted for in S (Fig. 2 C), and
the total stoichiometric matrix (Stot) contains all the elements

external and internal to the system.

The null space of S and pathway definitions

At steady state, ẋ ¼ 0, the dynamic mass balance equation

becomes,

Sintvint � b ¼ 0 or Sexchv ¼ 0: (1)

If there are linear dependencies amongst the columns of S
(i.e., the reactions), a set of reactions can be identified for

which the flux distribution is balanced and,

SR ¼ 0; (2)

where the columns in R span the (right) null space of S. A
desirable basis for the null space is one that leads to a ready

physiological interpretation in a metabolic network. A uni-

que nonnegative convex basis is useful when representing

biochemical elements such as reaction rates and metabolite

concentrations, since negative quantities of such elements

may biologically be meaningless (Heinrich and Schuster,

1996). A unique set for the convex basis is obtained using

extreme pathway analysis, in which the generating vectors

are the ‘‘extreme pathways’’ (Schilling et al., 2000).

FIGURE 1 The stoichiometric matrix, S, as a linear transformation

between the reaction rate vectors, v, and time derivative of metabolite

concentrations, dx/dt or ẋ. Each two subspaces in the domain (i.e., the null

space and row space) and codomain (i.e., the left null space and column

space) form orthogonal pairs with one another. The components that reside

on each subspace are therefore independent from the others. (dyn, dynamic;

ss, steady state; consv, conserved).

FIGURE 2 Stoichiometric matrix and the system’s boundary. (A) A

system with internal reactions, vi, and metabolites, xi, is closed to the

environment and represented by Sint. (B) When the internal metabolites are

allowed to be exchanged with the environment, the stoichiometric matrix

includes exchange reactions, bi, and the system becomes ‘‘open’’. (C) Once

the external metabolites (xoi) are included, the system becomes ‘‘closed’’

and the stoichiometric matrix contains all the reactions and metabolites, Stot.
(int, internal; exch, exchang; tot, total).
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The left null space of S and definition of
metabolic pools

If there are linear dependencies among the rows of S (i.e., the

metabolites), then a matrix L exists such that,

LS ¼ 0; (3)

where the rows of L form a basis set for the left null space of

S. This relation implies that the total metabolite concen-

trations in certain combinations remain unchanged, Lẋ ¼ 0,
and when integrated over time results in Lx ¼ a, where a is

a vector of integration constants. The individual metabolite

concentrations in each conserved relationship may change

over time, but their total sum will remain constant at all

times, i.e., ai ¼ const. Each conservation quantity may be

represented by ‘ix ¼ ai, in which ‘i is a conservation vector,

i.e., a row in L. The basis vectors for the left null space define
a concentration space in which the time-invariant metabolic

pools reside. The size of the space in which conserved

metabolites reside is constrained by the magnitude of the

elements in a.

Flux and pool maps

In a connectivity matrix such as S, a row is typically taken to

represent a ‘‘node’’ and the columns the ‘‘links’’ between the

nodes. The stoichiometric matrix is thus shown as a reaction
map in which metabolites are the nodes and reactions are the

directed edges. The reaction map is the traditional way of

depicting biochemical reaction networks. One can then show

a particular flux map by indicating the magnitude of the

steady-state reaction rates on each corresponding edge. In

this manner, each vector in the null space of S can be shown

as a steady-state flux map.

If the stoichiometric matrix is transposed, the rows will

represent the reactions and the columns the metabolites. A

metabolic network can therefore be depicted by a compound
map whose nodes are the reactions and edges are the com-

pounds (Fig. 3). The vectors of the left null space or metab-

olite pools can be shown as pool maps whose edges are the
combinations of metabolite concentrations. The compound

map is drawn using �ST. The transpose operation allows for
the conversion between the edges and nodes and the negative

sign defines the substrates and products as the edges entering

and leaving the reaction nodes, respectively. A closed re-

action map leads to the formation of a compound map with

the maximum possible conserved moieties or groupings of

chemical elements that move together (e.g., amino group, Pi,

etc.). Adding exchange reactions opens the system to

external metabolites and leads to the disappearance of some

conservation relationships (Fig. 3, right).

Classification of extreme pools and pathways

Extreme pathway analysis has led to a useful classification

schema of three categories of convex basis vectors for the

right null space (see Fig. 4 A). These three categories

correspond to through flux pathways (Type I), futile cycles
coupled to cofactor use (Type II), and internal cycles (Type
III). In an analogous fashion, the conservation quantities can

be grouped into three basic types: Type A, B, and C (Fig. 4

B). The classification is based on grouping the metabolites

into primary and secondary (Fig. 5). The primary metabolites

contain the primary molecule structures that are undergoing

FIGURE 3 Reaction maps versus compound maps. Reaction maps (left)

show metabolites as nodes and reactions as directed edges. The reaction map

includes both the internal and exchange fluxes, if present. In contrast,

compound maps of the same systems (right) show the reactions as nodes and

metabolites as directed edges. A system boundary that allows for the

exchange of the internal nodes is open on a map. The compound map of an

open reaction map is closed and vice versa, as it is shown by changing the

network from A to B and to C.

FIGURE 4 Conserved pools and extreme pathway classifications. (A)

Type I, II, and III extreme pathways correspond to through pathways, futile

cycles coupled to cofactor utilization, and internal loops that are

thermodynamically infeasible (Beard et al., 2002; Price et al., 2002),

respectively. (B) Type A, B, and C metabolic pools correspond to the

conservation of biochemical elements, metabolic moieties common to the

primary and secondary metabolites, and cofactor conservation, respectively.

Systems shown are presented as schematic examples of pools and flux

pathways.
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serial transformations (e.g., the carbon backbone of glucose

in glycolysis). The secondary metabolites function as

cofactors and generally remain internal to the cell (e.g.,

ATP). Based on this classification, the three types of con-

servation pools correspond to: Type A pools that are com-

posed only of the primary metabolites; Type B pools that

contain both primary and secondary metabolites internal to

the system; and Type C pools that are comprised only of

secondary metabolites. Type B pools generally represent the

conserved moieties that are exchanged from one compound

to another, such as a hydroxyl or a phosphate group.

RESULTS

Study and interpretation of metabolic pools allow for the

identification of metabolically meaningful conserved moie-

ties. Systemic examination of conservation relationships

using a convex representation identifies metabolic pools and

delineates reaction participation in the formation of such

relationships. We use nine successively more complex and

biologically relevant examples to illustrate the formation

and properties of conserved pools. First we examine the

prototypical chemical transformations, second their com-

bination, and third the real and skeleton representation of

known pathways. This analysis should readily scale to full

metabolic networks. Graphical representation of conserved

pools on the compound maps is given.

Elementary chemical transformations

I. Irreversible conversion

Transformation between two compounds (comprised of two

moieties, C and P) contains one conserved concentration

pool (Fig. 6 I ). Although such conversions are often used,

they only represent simple chemical rearrangement of the

molecule without any change in its elemental composition.

II. Bimolecular association

The left null space of a reaction that involves the combina-

tion of two moieties, C and P, is two-dimensional spanned

by two conservation quantities, a conservation of C (‘1: C 1

CP), and a conservation of P (‘2: CP 1 P) (Fig. 6 II).

III. A cofactor-coupled reaction

A prototypical reaction of metabolism is a reaction in which

compound AP donates a moiety P to a compound C. The left

null space for this transformation is three-dimensional and is

spanned by three basis vectors: conservation of C (‘1: C 1

CP), conservation of the exchanged moiety P (‘2: CP1 AP),

and conservation of A (‘4: A 1 AP). The convex basis is

comprised of four vectors with an additional convex basis

vector, ‘3. The fourth convex basis vector corresponds to

a ‘‘vacancy’’ for the exchange moiety (‘3: A 1 C) (Fig. 6

III). One can thus view ‘2 and ‘3 as a conjugate pair of

occupied and nonoccupied sites for P, and in the case where

P represents a high energy phosphate bond, this is a conjugate

pair of high and low energy states. The convex basis thus

identifies all the nonnegative conservation relationships

including the energy and elemental conservations. The four

convex basis vectors can be graphically depicted in two

dimensions (Fig. 7). The relative values among the four

metabolites are determined by the magnitude of the elements

of a (Fig. 7).

We note that the convex pool structure is related to the

concept of the ‘‘charge’’ of a cofactor pool (Reich and

Sel’kov, 1981). ‘2 can be partitioned into the occupied sec-

ondary cofactor (AP) and the occupied primary compound

(CP). This partitioning relative to the size of the cofactor

pool, given by ‘4 (‘4: A 1 AP) gives the charge of the co-

factor pool,

charge ¼ occupancy

capacity
¼ AP

A1AP
2 ½0; 1�: (4)

Combinations of transformations

IV. Incorporation of a moiety

Biochemical reactions often incorporate metabolic moieties

or chemical elements such as H2O and Pi. For a cofactor-

coupled reaction preceding a moiety incorporating reaction,

the four convex conservation vectors correspond to: con-

servation of primary metabolite C (‘1: C 1 CP 1 CP2),

high-energy moiety conservation (‘2: CP1 CP21AP), con-

servation of the stand-alone P moiety (‘3: CP21 P), and total

cofactor conservation (‘4: A1AP) (Fig. 6 IV ). Note also that

pool maps illustrate both the conservation relationships

and reaction participation in the formation of these meta-

bolic pools. As shown in Fig. 6 IV, the conservation of

P as represented in ‘3 occurs only through the activity of

v2. Similarly, v1 is the only reaction participating in the

FIGURE 5 Metabolic pool classification schema and structure of L.
Partitioning the metabolites into primary and secondary allows for

classification of metabolic pools. In the absence of the secondary and

primary metabolite participation in conservation pools, the vectors are

classified as Type A and C, respectively. The remaining vectors are grouped

as Type B pools with both metabolite types present.
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FIGURE 6 Convex conservation pool representation for schematic biochemical systems. Seven example systems (I–VII ) are graphically shown as reaction

maps, compound maps, convex left null basis, and pool maps. Dash lines shown on the L matrix delineate metabolite and pool types.
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conservation of the cofactor moiety A, as shown in ‘4
(Fig. 6 IV ).

V. Multi-component cofactor coupled reactions

Cofactor coupling in biochemical networks may proceed

with components of more than two elements. For example,

oxidation of metabolites in dehydrogenase reactions occurs

via NAD1 conversion to NADH and H1. This transforma-

tion forms more than two energy conjugates. For a two-part

chemical conversion using redox potential (Fig. 6 V), the
convex conservation vectors correspond to:

Conservation of primarymetabolite R (‘1: RH21R1R91

R9H2),

Reducing power (‘2: RH2 1 R9H2 1 NADH, and ‘3 :
RH2 1 RH92 1 H1),

Oxidizing power (‘4: R1R91NAD), total redox potential

(‘5: NAD
11NADH), and

Positive charge or total hydrogen atom (‘4: NAD11

H1).

The convex basis shows that there exist two high-energy

conjugates (‘2 and ‘3) for the low-energy oxidizing conjugate
of ‘4. Furthermore, the basis of the left null space identifies

not only the conservation of chemical elements but also the

atomic charge.

Skeleton metabolic pathways

These concepts can now be used to get a glimpse of how

pools form in real metabolic and signaling pathways. The

symbols used in the reactions schemas below are not meant

to directly indicate chemical elements.

VI. Simplified glycolysis

A few additions to schema III and IV will give the skeleton

structure of glycolysis (Fig. 6 VI). The convex basis for the

stoichiometric matrix for this network contains six metabolic

pools, including the conservation of primary, ‘1, and co-

factor, ‘6, moieties and four Type B pools that correspond to:

High-energy conservation pool (‘2: 2 C6 1 3 C6P 1 4

C6P212 C3P112 C3P21C3P1AP3),

Conservation of elemental P (‘3: C6P1 2 C6P2 1 C3P1
12 C3P21C3P1AP31P),

Low-energy conservation pool (‘4: 2 C61C6P1C3P1

2 C31AP2), and

Potential to incorporate the stand-alone moiety P (‘5:
C3P21C3P1C31P) (Fig. 6).

‘2 and ‘4 form energy conjugates to each other represent-

ing the high and low energy occupancy in the system. ‘5
corresponds to ‘3 in schema IV. The incorporation and

exchange of phosphate thus results in four different convex

basis vectors, each representing different aspects of the

complex role of phosphate in energy metabolism (i.e., the

high-energy phosphate and stand-alone inorganic phosphate,

as shown here). The phosphate in AP2 does not appear in the

conservation of the elemental P, ‘3, since AP2 interacts as

a whole moiety and is never reduced to other chemical

moieties in this reaction network. In addition, the pool maps

readily illustrate the reaction contributions to the conserva-

tion of biochemical moieties, such as shown by the pool map

of ‘5, which involves only v4, v5, and v6.

VII. Simplified TCA cycle

The tricarboxylic acid (TCA) cycle is a circular pathway that

converts a two-carbon unit into carbon dioxide and redox

potential in terms of NADH. The convex basis for the left

null space of the stoichiometric matrix for the simplified

TCA network has five conservation moieties (Fig. 6 VII ).
They represent the conservation of:

Exchanging carbon group (‘1: 2 H2C21 2 H2C61HC5

1C),

Recycled four-carbon group that ‘‘carries’’ the two-car-

bon moiety that is degraded (‘2: C41H2C61HC5),

Hydrogen group that contains the redox inventory in the

system (‘3: 2 H2C2 1 2 H2C6 1 HC5 1 NH), redox

vacancy (‘4: C1N), and

Total cofactor pool (‘5: N1NH).

FIGURE 7 Graphical depiction of the null space for the cofactor-coupled

reaction. The cofactor-coupled reaction contains four convex conservation

relationships as shown in Fig. 6 III. The relative distance between the carbon

and cofactor metabolites remains constant and is determined by the

magnitude of the conservation quantities so C 1 CP ¼ a1, C 1 A ¼ a2, CP

1 AP ¼ a3, and A 1 AP ¼ a4. The points with the same shading (black,
gray, white) correspond to an identical state depicted in two distinct two-

dimensional spaces. For example, the concentration state in which C¼ 2, CP

¼ 1, A¼ 2, and AP¼ 3 is depicted by the gray point and satisfies a1 ¼ 3, a2
¼ 4, a3¼ 4, and a4¼ 5. The states represented by the white and black points

also satisfy these pool sizes. The concentration solution space is the solid

line shown in the two spaces. The symbol � indicates that the origin is not

common between the two two-dimensional spaces.
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The nonnegative convex representation of the left null

space leads to a metabolically meaningful set of conservation

relationships. The carbon in this system is represented by

two pools. One is the four-carbon group that cycles through

the TCA, whereas the other represents the two-carbon unit

delivered by acetyl-CoA and is taken away to be oxidized

into CO2. As with the energy state of the glycolytic inter-

mediates in the above example, the convex basis gives a

conjugate pair of basis vectors that forms the redox-filled

sites or the redox inventory in the system at any given time,

as well as the vacant sites. Note that ‘3 can be partitioned into
redox bound to carbon (i.e., 2 H2C21 2 H2C61HC5) and to

the cofactor (NH). This partitioning then leads to a redox

charge definition analogous to Eq. 4, by rationing NH to

(N1NH).

Application to real biochemical pathways

VIII. Red blood cell glycolysis and the
Rapoport-Leubering shunt

Glycolysis and the Rapoport-Leubering shunt in human red

blood cell consist of 20 metabolites and 13 internal, en-

zymatic reactions (Fig. 8 A). The conserved metabolic pools

for this network were calculated by assuming that no

metabolites can enter or leave the system (Fig. 8 B). The
convex basis corresponds to the following conservation

quantities (Fig. 8 C):

‘1, total carbon atoms: when multiplied by 3, this vector

accounts for the number of carbon atoms in each

compound in glycolysis. The carbon group, like the

other moieties, remains conserved if the system is

closed to carbon exchange with the environment.

‘2, total oxygen atom: this group corresponds to the gain

or loss of an oxygen atom. This oxygen atom is incor-

porated in the glyceraldehydes-3-phosphate dehydro-

genase (vGAPDH) reaction as the O-[PO3] group and is

subsequently released as a part of the H2O molecule by

enolase, whereas the [�PO3] stays on the metabolites.

‘3, total phosphate: this conservation quantity includes

phosphate both in the form of a free inorganic phos-

phate or a phosphate moiety bound to the glycolytic

intermediates, e.g., in glucose-6-phosphate. Note that

ADP does not appear in this conserved relationship

since its phosphate is never exchanged, whereas ATP

(essentially ADP-P) appears in this set with one

phosphate group that can be donated to the network.

‘4, high-energy potential release: this vector represents

the potential of each carbon-containing compound to

release the high-energy potential of ATP molecule. ‘3
forms an energy conjugate with ‘4 and together, they

represent the total energy potential to convert adeno-

sine group via glycolysis.

‘5, oxidized state of the metabolites pool: this pool

represents the oxidized form of the metabolites in the

system and thus represents the conjugate of the redox

occupancy of the system.

‘6, reducing power: the carbon-containing compounds in

this conserved concentration vector have the ability to

release the energy of the redox potential of NAD

molecule. Glucose can lead to two NADH, GA3P to

one NADH, and so forth. This pool is a high redox

state conjugate of ‘5 and is similar to ‘3 in schema V.

‘7, redox state of the metabolites: this pool counts the

number of redox equivalents in the network. ‘7 also

forms a redox conjugate with ‘5 and represents the

conversion of NAD/NADH through glycolysis. This

conservation pool is equivalent to ‘2 in schema V.

‘8, total hydrogen atom: this set represents the conserva-

tion of hydrogen atom coupled to the conversion of an

NAD1 molecule via the vGAPDH and vLDH reactions.

Note that the hydrogen moiety represents the positive

charge on the reduced NADH1
2 (NADH 1 H1) and

oxidized NAD1 molecules.

‘9, total adenylate moiety: the conserved adenosine

moiety and its total quantity remain constant (Atot ¼
ATP 1 ADP). The total adenosine pool shifts between

the charged form (ATP) and the uncharged form

(ADP).

‘10, total NAD moiety: the total redox potential is con-

served (Ntot ¼ NAD1 1 NADH). The NAD moiety is

thus in the oxidized form (NAD1) or the reduced form

(NADH).

The convex basis vectors of metabolic pools include the

conservation relationships and their complementary con-

jugates in the network. For the glycolytic network in the red

blood cell, the basis set represents the conservation of the

elemental groups like carbon and oxygen, cofactor groups

like ATP and NADH, and their energy conjugate groups, as

described.

IX. Simplified tyrosine kinase cell signaling

In the signaling pathway with a single ligand and receptor as

shown in Fig. 9, seven convex basis vectors form the con-

served concentration space. In this schema, all the com-

pounds are secondary with the exception of the active ligand,

Lact, the inactive ligand, Linact, and RNA, which enter and

FIGURE 8 Pool analysis of the human red blood cell glycolysis and Rapoport-Leubering shunt. (A) The reaction map of glycolysis and the Rapoport-

Leubering shunt in human red blood cell contains 13 reactions and 20 metabolites. (B) The compound map of the reaction set shown in part A shows glycolytic

reactions as the nodes and metabolites as the edges. (C) Pool maps of all 10 convex basis vectors in the human red blood cell glycolysis. ‘3 and ‘4 form high and

low energy conjugates and ‘5, ‘6, and ‘7 comprise the redox conjugate set in the network. The conservation values are shown on the pool maps.
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leave the system. Conservation of the ligand is of Type B

(‘1: Lact 1 Linact 1 RL 1 RL-P). Type C pools include

the phosphate group conservation (‘2: RL-P 1 SP 1 TP 1

DNA-TP 1 ATP 1 P), adenosine conservation (‘3: ATP 1

ADP), transcriptional factor pool (‘4: T1 TP1 DNA-TP1

DNA-T), total DNA (‘5: DNA 1 DNA-TP 1 DNA-T),

STAT or signal transducers and activators of transcription

pool (‘6: S1 SP), and the receptor conservation (‘7: R1 RL

1 RLP). Note that no Type A pool is formed in this

signaling schema since most metabolites are considered to be

secondary. Also, RNA does not participate in any of the

conservation moieties as a result of the topology of the

network (i.e., RNA is not contained in any conserved moiety

in this schema).

The concentrations of the compounds involved in

signaling pathways are of particular importance in trans-

lating and relating the signal to its target destination.

Transformation of the signal is achieved essentially by the

phosphorylation and dephosphorylation of the signaling

intermediates such as STAT and the transcription factor.

Thus the phosphorylation state of the signaling pathway is

indicative of the signaling process, and in this schema, it is

formed in two steps: 1), by the activation of the ligand-

receptor complex through the active ligand (‘1: Lact 1 Linact

1 LR 1 LR-P), and 2), by the phosphorylation state of the

intermediate compounds (‘2: LR-P1 SP1 TP1ATP1 P).

In addition, the partitioning of the DNA pool into DNA and

DNA-transcriptional factor complex (DNA-T) determines

FIGURE 9 Schematic representation

of signaling pathway (e.g., a tyrosine

kinase-type signaling pathway) and its

corresponding conservation pools. (A)
Reaction map of the sample tyrosine

kinase pathway. (B) Compound map of

the tyrosine kinase pathway. (C) Metab-

olite pool maps of conservation pools.

(L, ligand; R, receptor; LR, ligand-

receptor complex; LR-P, phosphorylated

ligand-receptor complex; S, signal trans-

ducers and activators of transcription

(STAT); SP, phosphorylated STAT; T,

transcriptional factor; TP, phosphory-

lated transcriptional factor; DNA-TP,

active DNA-transcriptional factor com-

plex; P, inorganic phosphate; act, active;

inact, inactive).
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how much message is produced. The active pool formation

in signaling pathways is directly related to the charge state of

the system and is the ratio of the phosphorylated state over

the total phosphorylation capacity,

phosphorylation state ðchargeÞ ¼ phosphate occupancy

total phosphate capacity
;

(5)

where the numerator is given by ‘2, and the denominator is

the numerator plus the summation of (LR1 S1 T1 ADP).

The conserved pools can thus be used to represent the phos-

phorylation state of the signaling process at a given time.

DISCUSSION

The left null space of the stoichiometric matrix contains

combinations of metabolite concentrations that are time

invariant. Here we have shown that: 1), a convex basis for

the left null space leads to the definition of metabolically

relevant pools; 2), by analogy to flux analysis of the right

null space, metabolic pools can be classified into three

categories; 3), by transposing the stoichiometric matrix, a

compound map can be defined on which the metabolic pools

may be graphically represented; 4), pool maps illustrate what

reactions participate in the formation of the conservation

relationships; 5), metabolic pools form high and low charge

conjugates that are exchangeable and may represent the

energy or redox state of cofactor pairs in the cell; and 6),

metabolic as well as signaling processes can be interpreted

using the conservation relationships.

The use of a convex basis for the left null space of the

stoichiometric matrix allows us to generate nonnegative

combinations of the concentrations and form metabolic

pools. These pools can be grouped into three categories.

These three pool types have analogies with the three types of

extreme pathways in the convex analysis of the steady-state

flux space or the null space of S (Schilling et al., 2000). The

metabolic pools have chemical elements or moieties, co-

factors, or the combination of the two at their core. The

combination pools, Type B, form conjugate pairs, some of

which are not only related to the chemical composition of the

compounds but also related to occupancy and vacancy of

certain properties, such as redox equivalent or a high-energy

phosphate group. The Type B pools describe the exchange of

elements and moieties between the primary and secondary

metabolites. These pools are the most interesting as they

introduce novel conservation moieties in the network.

The analysis of the concentration pools leads to con-

sideration of �ST that in turn leads to formulation of com-

pound maps. In these maps, the compounds are the links and

the reactions the nodes. They are complementary to the

frequently used flux map, but convey different information.

The conservation pools can be graphically represented on

the compound map and interpreted in an analogous fashion

to extreme pathways. The pool map is now a graphical

representation of reaction networks and will need to be

studied further. The pool and concentration quantifications

are subject to experimental determination through emerging

metabolomics (Fiehn, 2002) and proteomics (MacCoss and

Yates, 2001).

Signaling networks are typically thought of as being

different from metabolic networks. Metabolism involves the

dismemberment of substrate molecules for energy and redox

potential production, and for synthesis of various metabo-

lites. The demands on metabolism are normally thought of in

terms of fluxes; i.e., the cell must produce a certain amount

of an amino acid to satisfy protein synthesis needs. Thus,

flux maps are frequently used to describe states of me-

tabolism. Signaling, in contrast, conveys ‘‘information’’.

This information is basically the transcription state of the

genome. Although the result is the production of mRNA

molecules (i.e., flux), it is the binding state (i.e., concentra-

tion) of the regulator sites that give the transcription state.

Thus pool maps may be more appropriate than flux maps for

cell-signaling pathways. Pool maps can show the activation

state of a signaling molecule while its total amount is

conserved. Furthermore, the conservation quantities are time

invariant and thus exist in all ‘‘dynamic states’’ of the

network, which are of interest in cell signaling.

Biochemical networks are, in general, highly nonlinear

due to the cofactor coupling of the reactions. The non-

linearity of biochemical networks distinguishes their con-

nectivity from those often studied in graph theory and

requires a classification schema. In addition, a representative

basis set for biochemical networks may be chosen to be

nonnegative since reaction rates and concentration states

with negative values may be difficult to interpret. A number

of studies have been published on characterizing the left null

space of transformation matrices (Alberty, 1991; Clarke,

1988; Schuster and Höfer, 1991). In biochemical networks,

left null space characterization has been done with more

emphasis on the dynamic and thermodynamic analysis of

the network (e.g., Alberty, 1991; Clarke, 1988), and as an

optimization criterion in minimizing the total internal

concentrations (Schuster and Höfer, 1991). Formation of

pools as a result of time-scale separation has been studied

(Palsson et al., 1987), showing that effective conservation

pods can be formed in different time regimes. Here we have

studied pool formation in biochemical reaction networks

using what we have learned from extreme pathway analysis

to compute and interpret nonnegative unique convex basis

for the conserved biochemical moieties. We have also

presented for the first time a systemic classification schema

for grouping the metabolic pools, used metabolic pool maps

to graphically present the conservation vectors and identified

corresponding reactions that contribute to the pool forma-

tion, and applied the pool analysis and characterization to

study real metabolic and representative signaling pathways.

Complex biochemical reaction networks can now be
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reconstructed based on various high throughput data types.

The emergence of these networks call for analysis of their

topological properties. The null space of the stoichiometric

matrix that describes the topology of metabolic networks and

that contains the steady-state flux distributions has been

analyzed in detail (Schilling et al., 1999). Here we add to our

understanding of the properties of the stoichiometric matrix

by studying a convex representation of its left null space.

With these results in hand, we need to apply the lessons

learned to large-scale biological systems.
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