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ABSTRACT Slab geometric boundary conditions are applied in the molecular dynamics simulation of a simple membrane-
channel system. The results of the simulation were compared to those of an analogous system using normal three-dimensional
periodic boundary conditions. Analysis of the dynamics and electrostatics of the system show that slab geometric periodicity
eliminates the artificial bulk water orientational polarization that is present while using normal three-dimensional periodicity.
Furthermore, even though the water occupancy and volume of our simple channel is the same when using either method, the
electrostatic properties are considerably different when using slab geometry. In particular, the orientational polarization of water
is seen to be different in the interior of the channel. This gives rise to a markedly different electric field within the channel. We
discuss the implications of slab geometry for the future simulation of this type of system and for the study of channel transport
properties.

INTRODUCTION

Current developments in the molecular dynamics (MD)

simulation of biomolecular systems have made it possible to

perform moderately large-scale calculations on atomistic

systems of biological relevance such as proteins and DNA

molecules in solutions (Tuckerman and Martyna, 2000;

Hansson et al., 2002). Simulation studies also have been

shown to be very effective in their application to a variety of

problems pertaining to biomembranes (Forrest and Sansom,

2000), including membrane channels (Sansom, 1998; Roux,

2002). They have been able to reliably reproduce and

provide microscopic structural and dynamical insight to

various experimentally determined bulk properties in the

liquid crystal phase of neat lipid bilayers (Essmann and

Berkowitz, 1999; Nagle and Tristram-Nagle, 2000).

The use of periodic boundary conditions in three

dimensions for avoiding so-called ‘‘edge effects’’ has

allowed for the simulation of bulk materials for years. In

the case of membrane simulations, they have been very

successful in describing exactly the sort of multilamellar

bilayer system geometry employed in experimental stud-

ies of membranes. Such geometry is easily mimicked in

simulation by the construction of a central simulation cell

(usually a rectangular box) with a bilayer slab in the center

and a water slab above and below this bilayer. The cell is

duplicated in all three dimensions, forming an effectively

infinite multilamellar bilayer system (Tobias, 2001). Al-

though in both cases of experiment and simulation,

neighboring bilayers may interact with one another, this

sort of geometry is considered to be a firm ground for the

simulation of bilayers and subsequent comparison of results

with experiments. Also, since there is a twofold rotational

symmetry around axes perpendicular to the bilayer normal,

any sort of interaction effects between images in the di-

mension normal to the bilayer are considered to be effec-

tively cancelled.

The application of three-dimensional periodic boundary

conditions in simulation lends itself to the usage of Ewald

sums for the treatment of long-range electrostatic interac-

tions between partial charges in the model system at hand.

Such a treatment of the electrostatic interaction is necessary

because the Coulombic energy decays very slowly (;1/r)
with the interparticle distance, r. The development of particle

mesh Ewald (PME) methods in the treatment of electrostatic

interactions (Essmann et al., 1995; Deserno and Holm, 1998)

has been quite successful in calculating long-range electro-

statics by providing a feasible algorithmic complexity of N
log N, where N is the number of particles in the system

(Deserno and Holm, 1998). However, it has been found that

despite the facility of such implementations of the Ewald

sum, their usage may introduce an artificial crystalline

ordering thereby creating stability in the system that

otherwise would not be present (Elcock, 2002). Such an

artifact has been shown to be present when simulating

peptides in implicit water solvent (Hunenberger and

McCammon, 1999; Weber et al., 2000) while employing

Ewald sums with three-dimensional periodic boundary

conditions. Similar studies have shown that such artifacts

are not as blatant when simulating small peptides in

commonly used explicit water models because of the large

dielectric constant they provide for the solute (Smith and

Pettitt, 1996; Smith et al., 1997). However, the apparent

absence of artifacts when using explicit water models might

be seen only when simulating solutes having a small solvent-

excluded volume compared to the size of the simulation cell

(Luty and van Gunsteren, 1996; Hunenberger and McCam-

mon, 1999). More recent simulation studies employing
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Ewald summation for a helical peptide in explicit water have

shown a tendency of the peptide to unfold to larger extents

when a larger simulation cell is used (Weber et al., 2000).

This is indicative of the artificial stability imposed by the

usage of such an electrostatic treatment even if explicit water

solvent is used.

Based upon the above arguments for the simulation of

multilamellar bilayers and of proteins in bulk solvent, we

may conclude that the appropriate treatment of electrostatic

interactions is an important matter to address when perform-

ing such simulations. If a simulation can be justifiably

performed using the Ewald summation technique when the

system is periodic in three dimensions, what then of

simulations of membranes with embedded proteins such as

ion channels? Clearly the system geometry of a membrane

slab with an embedded protein with long, pore-forming,

membrane-spanning helices or b-barrels is not comparable

to that of plain bilayer systems or globular proteins in bulk

solvent. In some cases, due to their structures, membrane-

embedded proteins can be expected to provide extremely

large, persistent dipoles in one direction (the dimension

perpendicular to the bilayer normal) in a way that globular

proteins do not. As a result, the use of periodic boundary

conditions in three dimensions may produce severe artifacts

due to interactions between dipoles. The use of a simple

cutoff in this case is also not recommended, since it is known

that the application of cutoffs distorts the electrostatic

properties in bilayer systems unless the cutoff range is very

large. Nonetheless, many studies have been done using

a simple cutoff approach for electrostatic interactions if not

the ordinary implementation of PME for long-range electro-

statics (Sansom, 1998; Forrest and Sansom, 2000; Sansom

et al., 2000).

The physiological importance of integral membrane

channels hinges on their capability of selectively allowing

the passage of ions or other small molecules such as water.

Therefore, it is essential that simulations of these proteins

that are to lead to our understanding of their structure and

dynamics and that of their permeant species provide a correct

electrostatic picture. It has been shown via MD simulations

of explicit proteins that the permeation of water is highly

dependent upon the polar lining of the pore in membrane

channels (Sansom et al., 2002). Similar conclusions have

been drawn using simple models of pores (Allen et al.,

2002). It has also been shown that the interaction of water

with protein and the consequent orientational polarization of

water are extremely important in its passage through

channels (de Groot and Grubmuller, 2001; Sansom et al.,

2002; Tajkhorshid et al., 2002). Studies of water and ions in

confined cylindrical pores have shown that transport

properties in such pores are dependent upon the electric

fields and orientational properties of the solvent within

(Kohlmeyer et al., 1998). Analogous MD studies have

shown that water permeation through carbon nanotubes has

a critical dependence on the orientation of interior water and

its interaction with the nanotube walls, affecting its ability to

form hydrogen-bonded networks and permeate efficiently

(Hummer et al., 2001). It has also been shown that the

orientation of dipolar fluids in confined spaces is extremely

sensitive to the electrostatic environment (Klapp and

Schoen, 2002).

With these considerations in mind, one can begin to probe

treatments of electrostatic interactions in simulations of

membrane channels to find what is most suitable. A first pass

at such an undertaking has been taken by Tieleman and co-

workers (Tieleman et al., 2002), where some differences

were seen in the orientation of water inside alamethicin

channels embedded in palmitoyloleoylphosphatidylcholine

(POPC) bilayers and membrane-mimetic octane slabs upon

the comparison of treatments using reaction field, PME,

and simple cutoff. By simple observation of the required de-

sign of membrane-channel systems, however, it seems logi-

cal that for more realistic simulations, slab geometry with

its two-dimensional periodicity is the most desirable one

(Tobias, 2001). Therefore one needs to use a method that

provides an efficient implementation of the Ewald summa-

tion technique in slab geometry. Most implementations of

two-dimensional Ewald sums for systems in three dimen-

sions with two-dimensional periodicity are quite cumber-

some, having a complexity of anywhere from N2 to N5/3 (de

Joannis et al., 2002). New modifications to such methods

have been faster (Kawata and Mikami, 2002) but not

comparable to their three-dimensional counterparts.

Given the current state of affairs in the computation of

two-dimensional Ewald sums, perhaps a more desirable

method for performing three-dimensional simulations hav-

ing two-dimensional periodicity is that proposed by Yeh and

Berkowitz (Yeh and Berkowitz, 1999). The use of this

method for membrane-embedded proteins would involve the

extension of the dimension of the simulation cell parallel to

the bilayer normal (usually the z-dimension) so that the

dipole of the central membrane protein interacts artificially in

a negligible way with its neighboring image dipoles from

above and below. In this case a three-dimensional Ewald

sum may be used for the electrostatic energy, but with the

inclusion of a shape term for such slab conditions. The

importance of such a shape term has been demonstrated in its

effect on simulations of water near charged surfaces (Yeh

and Berkowitz, 2000) and in obtaining the correct behavior

of simulated confined dipolar fluids (Klapp and Schoen,

2002). It has also been shown, analytically, that this method

is a good approximation to the exact two-dimensional Ewald

summation method (Arnold et al., 2002; Bródka and

Grzybowski, 2002). This method is termed the Ewald sum

in three dimensions with a correction term (EW3DC). Such

a method will generally have the same computational

efficiency as whatever means used to calculate the three-

dimensional Ewald sum (i.e., PME should prove most

efficient). The only trade-off is that the large extension of the

z-dimension of the simulation cell forces the use of a larger
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reciprocal space cutoff. Hence, though the calculation will

scale in the same manner as used to calculate the three-

dimensional sum, a slight increase in computational cost

can be expected. If used with care, the EW3DC method

converges to the result of actual two-dimensional methods,

but with a much smaller computational overhead. Additional

improvements to this method recently have been developed

which reduce error, thereby reducing the requirement for

the extension of the z-dimension of the simulation cell

and increasing computational speed (Arnold et al., 2002). It

should be sufficient, however, to use only the single cor-

rection term in this work to show the implications of using

slab geometry in membrane-channel-type systems.

In this work we investigate some structural, dynamical,

and electrostatic properties of water in a simple model

channel embedded in a hydrated membrane bilayer by MD

simulation. The effects of employing slab geometry with the

EW3DC method for long-range electrostatics are compared

to those obtained using regular three-dimensional periodicity

and Ewald summation with ‘‘tinfoil’’ boundary conditions

for long-range electrostatics.

METHODS

To understand how the implementation of slab boundary conditions affects

the electrostatic properties in a membrane-channel system as compared to

treatment with three-dimensional periodic boundaries, we considered a six-

helix alamethicin bundle in a POPC bilayer. This particular type of system

has been thoroughly studied using MD simulation (Tieleman et al., 1998,

1999, 2002) and in experiment (Sansom, 1993; Cafiso, 1994; Woolley et al.,

1997). It is a very attractive type of channel for simulation study because of

its simplicity.

Starting structure

A starting configuration for our system was taken from the starting structure

of Tieleman (the structure can be downloaded at http://moose.bio.ucalgary.

ca/download.html) (Tieleman et al., 1998). This configuration consists of six

alamethicin helices arranged in a nearly symmetrical bundle inside a POPC

bilayer with water (Fig. 1). We then added 2532 SPC water molecules to

the bulk water of this system on the exterior of the bilayer. The final starting

structure after making this modification contained 6059 SPC water mole-

cules, one sodium ion, 102 POPC molecules, and six alamethicin peptides

in the Rf30 form making a total of 24489 atoms. Five of the alamethicin

peptides were modeled with protonated Glu-18 side chains, whereas the sixth

was not. Reasoning for these protonation states is discussed elsewhere

(Tieleman et al., 1998).

Simulation details

Molecular dynamics simulations were run at the North Carolina Super-

computing Center using the GROMACS package (Berendsen et al., 1995;

Lindahl et al., 2001). All simulations used a time step of 4 fs. The forcefield

parameters for lipids were based on the work of Berger (Berger et al., 1997),

and those of the protein are described by Tieleman (Tieleman et al., 1999).

The LINCS algorithm was used to constrain all bonds in the system (Hess

et al., 1997). Periodic boundary conditions were applied in all three

dimensions. Long-range electrostatics in the cases of both slab (Yeh and

Berkowitz, 1999) and tinfoil Ewald lattice sums were handled using PME

(Essmann et al., 1995). The temperature in all simulations was maintained at

300 K using the Nose-Hoover scheme with a thermostat relaxation time

of 0.5 ps. The analysis of subsequent results was performed using a

combination of GROMACS analysis utilities and our own code. Channel

pore radius profiles were calculated with the HOLE algorithm (Smart et al.,

1996). Molecular graphics were rendered using visual molecular dynamics

(VMD) (Humphrey et al., 1996) and Raster3D (Merrit and Bacon, 1997).

The system was equilibrated in an NPT ensemble using the Parrinello-

Rahman pressure coupling scheme (Parrinello and Rahman, 1981; Nose and

Klein, 1983) with a barostat relaxation time of 2.0 ps at a pressure of 0 atm

for 10 ns. It has been shown that over a timescale such as this, the entire

structural space for this protein cannot be sampled (Tieleman et al., 2002).

Therefore, since we are interested in analyzing the effects of boundary

conditions on the behavior of interior water, the coordinates of the protein

were restrained isotropically to their initial positions with a force constant of

103 kJ/mol/nm2 to ensure that the water occupancy inside the channel

remained relatively constant. Such restraints are reasonable if we are only

interested in the behavior of water inside a channel with a protein-like

structure and charge distribution. We do not claim to obtain any biologically

significant information about this channel through our simulation. The size

of the simulation cell over the last 2 ns of the equilibration was stable. The

average length of the box in the z-direction was 9.21 nm, and the area of the

membrane-channel system converged to 36.35 nm2 in the xy-plane.

The final structure of this equilibration was used as the starting structure

for two additional runs. The first of the runs (to be referred to as the ‘‘3dc’’

run) was done in a canonical ensemble (NVT) with the z-dimension of the

box extended to 30 nm and with the EW3DC method for slab geometry. The

second (to be referred to as the ‘‘tinfoil’’ run) was done in a constant area and

constant normal pressure ensemble (NPNAT ) with PN ¼ 0 atm and with

regular tinfoil Ewald. Again, the protein atoms were restrained to their initial

positions. Each of these systems was evolved for 5 ns and analyzed over the

last 3 ns of their respective trajectories.

RESULTS AND DISCUSSION

System structure

Fig. 2, a and b, shows typical snapshots from the 3dc and

tinfoil trajectories. The difference in the system geometry

FIGURE 1 A top-down view of the membrane-channel system. The six

alamethicin helices are arranged very symmetrically in the center of the

membrane. The x and y simulation boundaries are delimited by the rec-

tangular blue line.
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also can be visualized in the systems’ density profiles (Fig.

3, a and b). The vapor phase in the 3dc system can be clearly

seen at z[;5 nm and z\;�5 nm. Otherwise the systems’

structures are generally the same. The water occupancy of

a channel was defined to be the number of water oxygen

atoms found between the centers of mass of the N-term and

C-term Ca of the alamethicin helices in the z dimension and

within a 1.5-nm radius of the line connecting these centers of

mass. The water density profiles in Fig. 4 and water

occupancy in Fig. 5 is seen to be very similar in both

channels over their trajectories. The average occupancy

of the 3dc channel was 67 6 4 molecules whereas the

occupancy of the tinfoil channel was 66 6 3 molecules. The

similar occupancy may be expected since the restrained

proteins sterically provide the same channel pore shape. The

radius of the channel pore as a function of the pore-axis (z) in

both systems can be seen in Fig. 6. The most sterically

constraining regions of the pore can be seen in the plots at

;�0.5 nm and at;1.2 nm. These regions are due to the Gln-7

and Glu-18 side chains, respectively, which protrude into the

pore. They can be visualized in Fig. 7 a where they provide

confined regions for the passage of water. One might describe

the shape of the pore as a sort of ‘‘double’’ hourglass.

Water diffusion

Not only is the occupancy of each channel the same, but the

diffusive motion of water in the pores is quite similar. Fig. 8

shows the diffusion coefficient of water in the z-dimension as

a function of the channel (z) axis for both systems. It can be

seen that in both systems, the diffusion coefficient falls to

a value as low as ;1/12 of its bulk value (;5 3 10�9 m2/s)

in the narrowest region of the pore. This result is in agree-

ment with that observed by Tieleman (Tieleman et al., 1999).

The diffusion coefficient in the regions of the water liquid-

vapor interface (z ; 64 nm) in the 3dc system is seen to be

slightly lower (4.2 3 10�9 m2/s) than the value of the

diffusion coefficient of water in the bulk.

Water orientation

The most striking difference in the structure of water in the

two systems is their respective orientational polarization.

This can be gleaned from analyzing the orientation of water

with respect to the z-axis. Fig. 9 shows the average cosine

of the angle between the water dipole and the z-axis as

a function of z. The water dipole vector is defined such that it

points from the water oxygen to the center of mass of its

hydrogen atoms. The very strong orientation at ; 62 nm

corresponds to the water dipoles pointing toward the bilayer

center due to the headgroup dipoles of the POPC bilayer

(Tieleman et al., 1997). The two dotted vertical lines in this

graph are drawn at the beginning and end of the channel

as defined by the center of mass of the N- ( �1.34 nm) and

C- (;1.62 nm) terminal Ca of all of the helical peptides.

It can be seen that there is a net effect on the orientation of

water in the bulk (regions z\�3 nm and z[;3 nm in the

figure) of the tinfoil system (i.e., the curve is nonzero in these

regions). This effect was also noted in previous simulations

using tinfoil Ewald on the same type of system (Tieleman

et al., 2002). The bulk water orientation was, however, made

less noticeable in those simulations by the presence of a

0.5 M salt solution because of the ions’ redistribution to

compensate for the effect of the large protein dipoles.

However, this seemingly corrective effect on the orienta-

tional polarization of water might prove suspect if one were

interested in the behavior and distribution of ions in such

a system. It was also found that the effect could not be

removed by the addition of a 4-nm layer of water to the bulk

phase. This effect in the bulk water disappears upon the

effective removal of periodicity in the z-dimension in the 3dc

system. Fig. 9 demonstrates that water is randomly oriented

in the bulk for the 3dc system by showing that the average

cosine of the angle between the z-axis and a water dipole is

zero. The value of zero for the average cosine can have two

meanings: that the water dipole is orthogonal to the z-axis

on average or that the water dipole is randomly oriented.

To validate that, indeed, our value of zero in the bulk water

region of Fig. 9 indicates random orientation, we calculated

the average second order Legendre polynomial, \ 1/2

(3 cos(u) � 1) [, as a function of z. This also produces a

value of zero in the region of bulk water. Hence, the ordering

of water in the bulk region of the 3dc system is random.

FIGURE 2 Comparison of the 3dc (a) and tinfoil (b) system setup. The

blue rectangular boxes indicate the simulation cell boundaries.
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The average dipole moment of the protein and sodium ion

(net neutral charge) in both systems is nearly the same since

the protein was restrained to its initial configuration

throughout both trajectories. The z-component of the dipole

moment of these species was calculated to be ;345 D,

whereas the average net dipole moment was calculated to be

;361 D. It is clear that the z-component is the major

contributor to the net dipole moment of the protein and

sodium ion in both cases. The average z-component of the

dipole moment of the entire system in the 3dc and tinfoil

systems was calculated to be ;362 D and ;1102 D, re-

spectively, whereas the average net dipole moment was cal-

culated to be 603 D and 1157 D, respectively. It is striking

that the system dipole moments, both net and their z-com-

ponents, are so different in the case of the 3dc and tinfoil

systems. The magnitude of the z-component of the protein

dipole moment (345 D) is close to the value of the z-com-

ponent of the 3dc system dipole moment (362 D), but it is

nearly three times less than that of the tinfoil system

(1102 D). A qualitative explanation for this can be for-

mulated due to the orientation of water in the system. In the

case of the tinfoil system, the protein image dipoles above

and below the central cell strongly couple water’s orientation

to the electric field lines of the central and image protein

dipoles. This would explain the nonrandom ordering of

water in the bulk of the tinfoil system demonstrated in Fig. 9.

The array of repeated protein dipoles in the z-dimension

works together to create an overall effect on the orientation

of water. On the other hand, the z-component of the 3dc

system’s dipole moment is much less because the water

orientation is allowed to compensate for only the protein

dipole in the central cell. Hence, the water ordering is more

nearly random in the bulk.

There are also very distinct differences in the water

orientation in the interior of the channel. Overall, the protein

seems to have a greater interior orienting effect in the 3dc

system than in the tinfoil system. This behavior may be

linked with the observed behavior in the bulk and most likely

occurs for the same reason. The most distinctive difference

between the two profiles lies in the interval of z between

0 and 1 nm. This region of the channel has been assigned to

Glu-18 (Tieleman et al., 2002). One of the Glu-18 residues

carries a negative charge; thus it is likely that the orientation

of water in this region is due to the charge. Here the average

orientation of water in the 3dc system is opposite to that seen

in the tinfoil system. It is also greater in magnitude.

FIGURE 4 Mass density profile of water in the channel region of the 3dc

and tinfoil systems. The water occupies the interior of the channel in the

same way in both systems.

FIGURE 3 Mass density profiles of the components of

the 3dc (a) and the tinfoil (b) systems. The vertical dotted

lines in (b) indicate the z-boundary of the box of the tinfoil

system.
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Electrostatic differences due to water

Differences in the polarization of water in the bulk and in the

channel for the two systems would be expected to produce

substantial changes in the electric field inside the channel.

We originally chose to loosely restrain the protein atoms to

their initial positions because it would allow for a more

‘‘natural’’ behavior of the system than we would observe

if the protein atoms were entirely frozen to their initial

positions. However, it may be argued that the subtle dif-

ferences in the loosely restrained channel pore may cause

differences in the way water orients, thus drastically affecting

the local electric field in the channel. To put these doubts to

rest, we decided to perform two additional 5-ns simulations

analogous to the ‘‘3dc’’ and ‘‘tinfoil’’ simulations described

in the Methods section, but with the POPC, protein, and

sodium atoms frozen in identical configurations throughout

the trajectories. With such constraints imposed, we allow

only water to move. Hence there is absolutely no question as

to whether our results depend on the subtle differences in the

time evolution of the protein and POPC structures because

their configurations are guaranteed to be exactly the same in

both systems. For brevity, we will abide by our convention

and refer to these additional simulation systems as the

frozen-3dc and frozen-tinfoil systems.

Upon performing analysis on the final 3 ns of these

trajectories, we find that the water orientation profiles along

the z-axis (Fig. 9) are nearly identical in their shape and

features to those displayed for the systems where the protein

was merely restrained. The artificial ordering of water in the

bulk is again seen in the frozen-tinfoil system. The difference

in the polarization of water inside the channel is also visibly

the same as in the previously described unfrozen case.

To characterize the electrostatic differences in the systems

employing different boundary conditions, the z-component

of the electric field experienced by the sodium ion was

explicitly calculated at various positions along the chan-

nel axis. We did so by performing five additional 1-ns

simulations starting from the final structures of the 5-ns

frozen runs. In each run, the POPC and protein were again

held frozen to identical configurations. The sodium ion was

also held frozen to an identical location in each system, but

for each of the five systems, we placed the ion in a different

location along the channel (z) axis. Two of these locations

were in the bulk water and the other three were in the interior

of the channel. The ion was also placed at several additional

FIGURE 6 Average pore radius profiles as determined by the program

HOLE. The vertical lines on each profile indicate the standard error in the

pore radius and were determined by averaging the results of HOLE on

protein structures saved over the last 3 ns of the 3dc and tinfoil trajectories at

500-ps intervals. The profiles are almost exactly the same.

FIGURE 5 The time evolution of the channel occupancy

for the 3dc (a) and tinfoil (b) simulations. The statistical

character of both occupancies is the same and produces

equivalent average occupancies within uncertainty.
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locations along the interior channel axis for short, 100-ps

simulations to provide a more fine-grained picture of the

electric field in this region. Fig. 7 b shows the locations of the

sodium ion with respect to the protein for these calculations.

The electric field experienced by the sodium ion at these

locations is shown in Fig. 10. Both profiles have very similar

character. As expected, the electric field in both systems is

zero in the bulk water. The largest magnitude of the electric

field in the frozen-3dc system is ;19.2 V/nm and occurs at z
; �0.9 nm. The largest value of the electric field in the

frozen-tinfoil system occurs in the same position along z and

is ;10.1 V/nm (;53% of that in the 3dc system). The water

orientation profiles in Fig. 9 reflect this extremum in the

electric field for both systems. The region along the channel

axis corresponding to the positive and negative extrema of

the electric field in both systems corresponds to the narrow

region of the pore due to Gln-7. Thus, the different extents to

which the water is locally ordered due to Gln-7 in each

system gives rise to very different local electric fields.

Generally, the electric field tends to be higher in the case

of slab geometry in the widest region of the pore near the

center of the channel. The difference in the orientation of the

water seen in the region of Glu-18 (0 nm \ z\ 1 nm; see

Fig. 9) is again reflected in the electric field. The effect of the

single negatively charged Glu residue in this region is more

pronounced in the frozen-3dc system than in the frozen-

tinfoil system. The point at which the ion experiences

a minimum in the electrostatic potential due to the negative

charge is near z¼ 0.8 nm in the frozen-3dc system and in the

range 0.3 nm \ z\ 1.2 nm in the frozen-tinfoil system.

These differences would definitely have ramifications if

one were to study ion transport within a channel such as this.

FIGURE 7 (a) Snapshot of the water in the alamethicin

pore in the 3dc system. The smooth molecular surface of

four of the alamethicin helices is shown to provide a view

of the channel cross section. Headgroup phosphorous

atoms are shown as yellow spheres and headgroup nitrogen

atoms are shown as blue spheres. The ‘‘double hourglass’’

structure provides constrained regions for the passage of

water. (b) Smooth molecular surface of four of the

alamethicin helices. The blue spheres are the positions at

which the sodium ion was placed to monitor the electric

field it experienced in the bulk water and inside the pore.

FIGURE 8 Diffusion coefficient along the z-axis as a function of z for the

3dc and tinfoil systems.

FIGURE 9 Average cosine of the angle between the water dipole and the

z-axis as a function of z for the 3dc and tinfoil systems in the cases of

‘‘restrained’’ system (solid lines) and ‘‘frozen’’ system (dashed lines). The

vertical dotted lines delimit the channel boundaries.
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It is clear that the electrostatic differences in the two systems

are due only to the orientation of water since the coordinates

of the protein atoms are the same in both cases. Also, since

the water occupancy of the channels is the same, the dif-

ferences in the electric field cannot be due to differences in

the occupancy. The contribution to the electric field from the

POPC bilayer was the same in both systems (data not

shown). This result reinforces the subtle importance of water

as a very sensitive polarizable medium.

CONCLUSIONS

Ewald methods have been used for many years by simulators

when dealing with systems employing three-dimensional

periodic boundary conditions. It was shown recently that the

Ewald method devised for systems with three-dimensional

boundary conditions can also be applied to systems with slab

geometry if the correct surface term is considered (Yeh and

Berkowitz, 1999). It has also been suggested that this

geometry may be of interest for the simulation of ‘‘in-

homogeneous’’ lipid membrane systems such as membrane-

channel systems (Tobias, 2001; Tieleman et al., 2002). In

this work, we applied this method for the feasible and

efficient MD simulation of a membrane-channel type

system. We have shown that the effective removal of

z-periodicity intrinsic to the method provides a different

orientational polarization of water in the channel interior.

Furthermore, the artificial ordering of bulk water due to

image protein dipoles that is seen when employing normal

three-dimensional periodicity vanishes when slab geometry

is used. These changes to the structure of water in the system

using slab geometry lead to a different electric field inside the

channel even though many other qualitative properties are

the same in both systems such as the occupancy of the

channel, the channel structure and pore size, and the dif-

fusion of water inside the channel.

Yang and co-workers have found in their simulation

studies on model ion channels using three-dimensional

periodicity and a spherical Ewald sum that properties such as

the electrostatic potential, local water density, ion current,

and occupancy of the channel are invariant upon the

implementation of different simulation cell sizes (Yang

et al., 2002). It has also been found in simulations of the

same channel presented in this work that the orientation of

water seen in the bulk is insensitive to the addition of a 4-nm

layer of water to the bath outside the membrane (Tieleman

et al., 2002) when using a spherical Ewald sum. This means

that even if convergence is achieved in simulations where

full three-dimensional periodicity is applied, the converged

result can be different from the result that could be obtained

using slab geometry. Note that when three-dimensional

periodicity is used in our system the ordering of water in the

bulk is observed. This ordering is relieved when employing

slab geometry.

If one were to study the behavior of a charged species such

as an ion in a channel, one might observe very different forces

on the ion upon implementing slab geometry rather than

three-dimensional periodic boundary conditions. Hence, if

the timescale were large enough, different conductance and

dynamic behavior of the ion might be observed inside the

channel when using these different boundary conditions.

This result would be most crucial for channels that have

a good amount of water in their interior for the passage of

their permeant species, their average structure, and the

behavior of solutions near their surface. The effect would be

most pronounced in channels with a large dipole moment

along their conduction axis.

In demonstrating the difference in the orientational

polarization of water and the electric field inside channels

upon employing slab geometry as opposed to three di-

mensional boundry conditions, we have chosen a six-helix

alamethicin bundle. This is a system in which the protein

dipole may be particularly pronounced since the protein

consists of parallel rather than antiparallel helices. The

calculated dipole moment of our alamethicin bundle and its

counterion was ;361 D in magnitude and had a channel-axis

(z) component of 345 D. Such a dipole provides a sizable

asymmetry in the z-dimension of our system. Other mem-

brane channels consisting of antiparallel helices or b-barrels

may or may not provide such an asymmetry as to cause

unavoidable artifacts.

As an example, we calculated the net dipole moment of

halorhodopsin (PDB identifier 1e12) by placing GROMACS

(van der Spoel et al., 2001) charges on the protonated

structure determined by Kolbe and co-workers (Kolbe et al.,

2000). Halorhodopsin is a structural neighbor of the family

of G-protein coupled receptors and a member of the archaeal

rhodopsins. It is a chloride pump consisting of seven anti-

FIGURE 10 Electric field (z-component) calculations for the frozen-3dc

and frozen-tinfoil systems. Error bars for the points in the bulk water (6 3.5

nm) and a few points in the channel interior were calculated by dividing the

latter 800-ps portion of each of the 1-ns trajectories into eight 100-ps

trajectories. The other points are a result of averaging over the last 50 ps of

a series of 100-ps trajectories. The vertical dotted lines delimit the channel

boundaries.
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parallel transmembrane helices. Water is well known to line

the extracellular vestibule of the pump leading to the chloride

binding site. Thus, in studying such a membrane protein

using MD, one might give thought to the behavior of water

and how it affects the interior chloride ion. The termini of the

available structure were capped appropriately for biological

pH, and missing residues were completed. The dipole mo-

ment of this protein along with a chloride ion in its interior

binding site (neutral net charge) along the channel axis was

determined to be ;395 D. This dipole magnitude is quite

large and would provide a sizable asymmetry along the

channel axis of a membrane-channel system.

We have provided a simulation study that shows the

structural and electrostatic differences in a membrane-chan-

nel system where the differences are easily demonstrable.

However, our account of the differences upon employing

slab geometry is by no means exhaustive. Different channels

may provide different asymmetries in the membrane. In

some cases, the implementation of three-dimensional

periodicity may give results consistent with slab geometry.

Thus, we cannot conclude that previous MD studies’ obser-

vations pertaining to the electostatic and structural properties

of water in membrane channels are riddled with artifacts.

However, the apparent benefit one might gain from the use of

slab geometry is that the two-dimensional character of the

natural biological membrane is mimicked in slab geometry

by representing the system with crystalline ordering in two

dimensions rather than three (Tobias, 2001). In other words,

a natural membrane bound channel will have a variety of

other membrane-anchored proteins in its vicinity along the

membrane plane, but never directly above or below it. Given

the apparent benefits and given that the implementation of

slab geometry is nearly as computationally inexpensive as

regular three-dimensional geometry in MD simulation, we

can recommend its usage in future simulations of this type.

Though in some cases one can speculate that the results may

be the same, the only real way to know whether the results of

three-dimensional and slab geometry converge in a particular

membrane-channel system is to test the results of both

methods for that particular system. That is exactly what we

have done in this work.

If a channel macro-dipole is found to contribute a sizable

enough asymmetry along its conduction axis to warrant

attention to the polarization of water within the interior, it is

very likely that special attention should be paid to narrow

channels that have continuous water occupancy. In these

cases, water is confined and its rotational degrees of freedom

are particularly influenced by interaction with the channel

wall (de Groot and Grubmuller, 2001; Hummer et al., 2001;

Sansom et al., 2002; Tajkhorshid et al., 2002). Channels with

a larger pore diameter allow their permeant species to pass

with fewer boundary forces due to the channel wall because

of the effective ‘‘screening’’ that occurs due to the large

amount of water occupying the pore (Corry et al., 1999).

There are also ramifications of the implementation of slab

geometry for the simulation of membrane and membrane-

channel systems where the aqueous solution on either side of

the membrane is electrolytic or contains some uncharged

solute. The concentration of a solute on either side of

the membrane in slab geometry need not be the same in

the aqueous baths on each side of the membrane. If three-

dimensional periodicity is taken, such a system must neces-

sarily have an equivalent concentration of species on either

side of the membrane since the central simulation cell has

access to its images above and below via the image con-

vention. There has been much interest in the study of trans-

port through channels due to natural biological gradients (for

an example, see the work of Zhu, Tajkhorshid, and Schulten

(Zhu et al., 2002)). Simulation in slab geometry provides

a means for the study of the permeation of species through

channels under the influence of real concentration gradients,

osmotic pressures, and electrochemical potentials due to

differences in the concentration of electrolyte.

Our results not only lend insight to the usage of ap-

propriate boundary conditions for certain membrane-channel

simulations, but also to the usage of continuum solvent

models for the simulation of such systems. Since the orien-

tational polarization of water in the interior of a channel plays

such an important role in the electrostatic field experienced

by its permeant species, it is not hard to imagine that if

a simple choice in boundary conditions can so drastically

affect the polarization of explicit water, then the difficulties

in modeling such a system using implicit continuum solvent

models are compound. A recent study of the gramicidin chan-

nel by Edwards and co-workers (Edwards et al., 2002) has

illustrated these difficulties very clearly. If interior water is

present in a membrane channel, the subtleties of the electric

field experienced by the permeant species hinges on its

orientational behavior.

Many MD studies of membrane channels appeal to the

subject of transport. Indeed, the ideal goal in simulating

such systems is to relate channel structural features to their

transport capabilities. For example, studies of simple chan-

nels such as gramicidin-A are often aimed at quantifying the

free-energy profile for ion permeation across these channels

(Pullman, 1987; Roux and Karplus, 1991; Partenskii and

Jordan, 1992). It has been found that although these free-

energy descriptions are qualitatively sensible, they do not

lead to accurate predictions of conductance (McGill and

Schumaker, 1996; Edwards et al., 2002). Often the blame for

these inaccuracies falls on the forcefields used to derive

them. In the case of ion channels, the interactions between an

ion and the rest of the system can be described as dispersive

and electrostatic. Since it is generally accepted that the dis-

persive interactions between atomic sites in MD simulations

are reasonably described, the blame must fall on the partial

charges assigned to atomic sites on the protein and lipid

models. Therefore, in the case of ion channels, ‘‘blaming’’

the forcefield amounts to ‘‘blaming’’ partial charges on

atomic sites in forcefield models. If this is the case, then it is
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essential that the forces arising from the interaction of these

partial charges are treated appropriately given the situation at

hand before we begin condemning forcefield models. This is

not to say that partial charges on MD models are usually

correct, but that their correctness may best be questioned

after their appropriate implementation is ensured. Since a

two-dimensional periodicity better mimics a true membrane-

channel system, treating such systems with slab geometry

may be a step toward a more appropriate treatment.
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