
Biophysical Journal Volume 85 July 2003 159–166 159

Protocol for MM/PBSA Molecular Dynamics Simulations of Proteins
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ABSTRACT Continuum solvent models have been employed in past years for understanding processes such as protein
folding or biomolecular association. In the last decade, several attempts have been made to merge atomic detail molecular
dynamics simulations with solvent continuum models. Among continuum models, the Poisson-Boltzmann solvent accessible
surface area model is one of the oldest and most fundamental. Notwithstanding its wide usage for simulation of biomolecular
electrostatic potential, the Poisson-Boltzmann equation has been very seldom used to obtain solvation forces for molecular
dynamics simulation. We propose here a fast and reliable methodology to implement continuum forces in standard molecular
mechanics and dynamics algorithms. Results for a totally unrestrained 1 ns molecular dynamics simulation of a small protein
are quantitatively similar to results obtained by explicit solvent molecular dynamics simulations.

INTRODUCTION

Our understanding of complex biomolecular processes like

protein folding or molecular recognition has greatly ben-

efited from concepts such as hydrophobicity or solvation of

electrostatic charges. Much of our capability to predict

biomolecular behavior depends on concepts where the sol-

vent is taken into account through its average effects, rather

than through an atomic detail representation (Tanford, 1978;

Eisenberg and McLachlan, 1986; Perutz, 1978).

One of the most popular solvent models is based on the

Poisson-Boltzmann (PB) equation, as far as electrostatic

effects are considered, and on the definition of a surface

tension energy proportional to the solvent accessible (SA)

surface area to take into account the tendency of nonpolar

parts of a molecule to collapse (Fogolari et al., 2002; Honig

and Nicholls, 1995; Davis and McCammon, 1990; Nicholls

et al., 1991; Sitkoff et al., 1994).

Although analyses of biomolecules based on the Poisson-

Boltzmann solvent accessible surface area (PBSA) model are

widespread in the literature, very seldom has the same model

been used for generating molecular dynamics trajectories in

conjunction with standard molecular dynamics protocols

(Sharp, 1991; Niedermeier and Schulten, 1992; Gilson et al.,

1995; Smart et al., 1997; Smart and McCammon, 1999;

David et al., 2000; Luo et al., 2002; Lu et al., 2002; Im et al.,

1998; Fogolari et al., 2001; Huber, 1998). Other models,

using a molecular mechanics (MM) force field and a solvent

model, often derived from the PBSA model by approxima-

tion, have been conceived and used, which are practical and

attain good accuracy (e.g., Roux and Simonson, 1999;

Simonson, 2001; Still et al., 1990; Qiu et al., 1997).

The advantage of performing molecular dynamics (MD)

simulations using implicit versus explicit solvent models are

manifold, including faster equilibration times, easily tunable

solvent properties, and, depending on the model, shorter

computation times. It is therefore of interest exploring im-

plicit solvent MD simulations and in particular the MM/

PBSA model, which constitutes a reference for many other

simpler models. The limited number of applications of the

MM/PBSAmethodology toMD simulations poses a question

on its reliability.

We wish to remark that the MM/PBSA model, like other

implicit models (see, e.g., Lazaridis and Karplus, 1999), is

based on the potential of mean force theory (Hill, 1956), and

on the assumption that electrostatic and nonpolar contribu-

tions to the free energy and the mean force can be treated

separately in a simple additive way. It is worth pointing out

that both the latter assumption and the possibility of finding

accurate functional forms for the potential of mean force are

highly questionable. In the MM/PBSA approach, rather than

looking for more physical (and complex) implicit solvent

representations, much attention has been devoted to adjust-

ing model parameters, such as atomic radii and solute di-

electric constant, to reproduce experimental observations.

When parameters are properly chosen, the PBSA approach

affords an accuracy comparable or superior to explicit sol-

vent simulation methods. With a limited number of param-

eters, Honig and coworkers were able to describe solvation

energies for a large number of small organic compounds

(Sitkoff et al., 1994). An even more impressive application

of the methodology has been developed by Kollman and

coworkers who analyzed explicit solvent MD trajectories

using the MM/PBSA approach and used the free energy thus

computed to discriminate between native- and nonnative-

like conformations for two small peptides (Kollman et al.,

2000; Lee et al., 2001). The approach, however, makes use

of PBSA free energy, rather than PBSA forces, and confor-

mations are generated with independent methods. Although

results are impressive, strictly speaking, as far as the PBSA

methodology is concerned, compensating errors may occur

in computing the global free energy, and there is no guarantee

that other conformations (not sampled because sampling is
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performed with different methods) could not have a lesser

free energy. In this respect, the study of Gilson and coworkers

(David et al., 2000), who simulated the dynamics of a loop of

a protein with several implicit solvent models, is more

sensitive to possible pitfalls of the methods. In that study,

however, the rest of the protein was kept fixed. We presented

recent MD simulations using the MM/PBSA approach for

a small protein and a DNA hairpin (Fogolari et al., 2001).

In our previous work, we were able to obtain trajectories

preserving native structure only by imposing a dielectric

constant[1.0. Similar conclusions have been reached more

recently by Lu et al. (2002), who determined an optimal

dielectric constant of 17.0. The choice of dielectric constants

higher than 1.0 poses theoretical and practical problems

that are discussed at length in the Materials and Methods

section.

Another problem particularly relevant for small systems is

that fluctuations in standard or even Langevin MD are too

small, due to overall energy conservation and to the paucity

of degrees of freedom. Therefore conformational sampling

must be enforced, e.g., by high temperature (see, e.g., Gilson

et al., 1995) or Monte Carlo steps (see, e.g., Smart et al.,

1997).

In this communication, i), we propose a simple way to

treat the dielectric constant problem; ii), we test an updating

scheme more consistent with the dielectric relaxation time of

water (;10 ps) (Harvey 1989), and iii), we apply the

methodology to a small protein.

Our results indicate that even with standard parameters,

the accuracy is comparable to that obtained by explicit

solvent MD simulations. In view of recent advances in both

MD simulation and Poisson-Boltzmann equation (PBE)

solution methodologies, our results show that MM/PBSA

methodology is likely to play a relevant role in long time MD

simulations.

MATERIALS AND METHODS

MM/PBSA methodology

In the MM/PBSA methodology (Fogolari et al., 2002; Honig and Nicholls,

1995; Davis and McCammon, 1990; Baginski et al., 1997; Kollman et al.,

2000), the potential of mean forceW for a macromolecular system is written

as the sum of an intermolecular energy termUð~rr1;~rr2; . . . ;~rrnÞ and a solvation
free energy term that can be further split in a polar (electrostatic) and

a nonpolar (hydrophobic) term:

W ¼ Uð~rr1;~rr2; . . . ;~rrnÞ1DG
polar

1DG
nonpolar

: (1)

Both DGpolar and DGnonpolar depend only on solute coordinates.

Uð~rr1;~rr2; . . . ;~rrnÞ is computed according to one of the available force fields,

DGpolar is computed according to the Poisson-Boltzmann theoretical

framework (Sharp and Honig, 1990; Marcus, 1955; Zhou, 1994; Fogolari

and Briggs, 1997) as the difference in free energy for the hypothetical

charging process of the solute in a homogeneous medium (ideally vacuum)

and in ionic solvent.

DGnonpolar is taken to be proportional to the solvent accessible surface

area A, i.e., DGnonpolar ¼ gA.

Derivatives ofW with respect to atomic coordinates give mean forces that

include an intramolecular term and two solvation terms. Expressions for the

derivative of DGpolar from the solution of the PB equation have been given

by Gilson et al. (1993), Im et al. (1998), and Friedrichs et al. (1999) for

different computational models. We have used the method of Gilson et al.

(1993), as implemented in the software package University of Houston

Brownian Dynamics (UHBD) (Madura et al., 1994, 1995). Solvation

electrostatic forces include a classical electrostatic field term and additional

dielectric and ionic boundary force terms. The ionic boundary force term, of

smaller magnitude with respect to other terms, has been neglected, similarly

to Gilson et al. (1993).

A fast algorithm for the computation of surface area derivatives with

respect to atomic coordinates due to Sridharan et al. (1995) has been used as

implemented in UHBD (version 6.x).

When a straightforward implementation was tested with the various

protocols described hereafter, employing dielectric constant e ¼ 1.0, as

adopted in most common force fields, the resulting molecular dynamics

trajectories, which use Poisson-Boltzmann forces (with or without a solvent

accessible surface area term), did not preserve native structures. This result is

consistent with the results obtained, using different protocols and programs

from the one employed here, by Fogolari et al. (2001) and Lu et al. (2002).

This is at odds with the many successful simulations that use other

implicit solvent methods, which are in different ways derived from the more

fundamental Poisson equation, like, e.g., the generalized Born/solvent

accessible method (GB/SA) (Still et al., 1990; Qiu et al., 1997) or the

methods developed in the group of Karplus (e.g., Lazaridis and Karplus,

1999). In these methods, however, solvation forces are computed ana-

lytically by means of smooth functions and parameters that are tailored to

provide reasonable results. For instance, in the GB/SA method, there are no

dielectric discontinuities and the five parameters used for calculating

effective Born radii have been optimized (Qiu et al., 1997) to reproduce

electrostatic energies computed by the finite difference Poisson-Boltzmann

equation.

Failure of molecular dynamics trajectories (employing PB forces) to

preserve native structures may be conceivably due to a number of reasons.

Numerical inaccuracies of the Poisson-Boltzmann solver were ruled out by

tests with a finer grid or a more stringent convergence criterion, which all led

to similar results. Another explanation could be that the macroscopic

treatment provided by the Poisson-Boltzmann equation is not suitable for

merging with atomic detail simulations, which is at variance with the many

successful applications of the Poisson-Boltzmann equation (see for reviews,

e.g., Madura et al., 1994; Honig and Nicholls, 1995; Fogolari et al., 2002). In

these applications, however, electrostatic forces acting on solute atoms are

very seldom considered, and rather electrostatic potentials and fields (at the

surface or outside the molecule) and free energies are used. Also in many

studies static models are considered and a rather large range of dielectric

constants (in the range 1.0–20.0) are used.

Another possible explanation is that the parameters employed for atomic

radii and charges are not proper, but the values employed here are rather

standard and work excellently for small molecules like the dialanine peptide

(see, e.g., Fogolari et al., 2001). On the other hand, extensive optimization

on such large systems as the one considered here was computationally not

feasible.

Finally, the most striking feature of the simulation are the very high

solvation electrostatic forces. Based on our previous work on the linearized

version of the Poisson-Boltzmann equation (Fogolari et al., 1999), we can

exclude that this is due to only to linearization (employed in the present

work) because the system is not so much charged as to give large artifacts,

like observed, e.g., for DNA.

To reduce solvation forces, we decided to raise the dielectric constant to

4.0, consistent with many studies in the literature. The proper dielectric

constant for use in various kind of atomic detail simulations is a controversial

issue in the literature (see, e.g., Schutz andWarshel, 2001). The choice of the

dielectric constant strictly depends on ‘‘what is included explicitly in the

given model’’ (Schutz and Warshel, 2001). In most popular force fields, like
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CHARMM, which is used in the present work, no polarizability (i.e., no

induced dipole) is considered. Under such a model, the best dielectric

constant should be 2.0, according to Schutz and Warshel (2001) (see also

Debye, 1929). Although this holds in principle, it is possible that force field

parameters may implicitly account for polarizability, like for instance for

some of the manywater models available. Force field parameters for proteins,

however, are fitted to structural experimental data, in vacuo quantum

mechanical calculations and vibrational frequencies rather than to dielectric

constants. In a recent study, Simonson (1999) found that the simulated

dielectric constant of a protein, applying the Frolich-Kirkwood theory on

molecular dynamics trajectories without considering charged groups

fluctuations (i.e., considering only dipoles), is very small (2–3) similar to

that of alkanes and smaller than expected. For the sake of clarity, as an

extreme case, we consider the dielectric constant of a solution of an alkane.

When the alkane is simulated with a united atom force field (i.e., with no

partial charges on apolar groups), the dielectric constant for the interaction of

two solute charges far apart will be the one used by the force field, i.e., 1.0

(contrary to the experimental value of;2.0). It is likely that similar results are

obtained in all atoms simulations where apolar molecules have very small

partial charges. In the latter case, the simulation of the interactions of two

separated charges would overestimate electrostatic interactions and forces by

a factor ;2.0. Motivated by the theoretical and practical limitations of most

popular force fields, progress has been made in recent years in the

development of polarizable force fields where permanent charges and

inducible dipoles are clearly separated (Halgren and Damm, 2001).

The choice of using a higher dielectric constant faces the problem that the

dielectric constant in Uð~rr1;~rr2; . . . ;~rrnÞ cannot be changed at will because

hydrogen bonds, of utmost importance for biomolecular structure, are

reproduced in modern force fields through electrostatic and van der Waals

terms. On the other hand, if a dielectric constant 1.0 is retained in the MM

part of the potential of mean forceW and a dielectric constant 4.0 is used for

the PBSA part, two widely separated and solvated charges will interact with

an approximate dielectric constant of 4/3 instead of ;80, because the

solvation term is depressed by a factor 4.0:

DG ¼ q1q2

r
1

q1q2

80r
�q1q2

4r

� �
� 3q1q2

4r
:

In this work, we adopted the following procedure to have a dielectric

constant e ¼ 4.0 while retaining short ranged hydrogen bond interactions

and optimal local geometry: we implemented in CHARMM a switching

function (the same used by CHARMM to implement cutoffs) to turn off the e
¼ 1 interactions and to turn on the e ¼ 4 interactions:

U
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U
elec

12 ¼ q1q2

er
for r[ru; (2)

where rl and ru are the lower and upper limits of the switching region and e is
the ‘‘long range’’ dielectric constant (4.0 in the present work). An unwanted

consequence of this treatment is that Ramachandran plots obtained on

a model system do not resemble very closely those found in explicit solvent

molecular dynamics or with MM/PBSA using a dielectric constant of 1.0

(see, e.g., Fogolari et al., 2001).

We tested at first as switching distance 6–8 Å. Note that this is a rather

rough implementation leading to nonmonotonic behavior of electrostatic

forces and sometimes very strong electrostatic forces in the switching

region. Even applying this scheme (and therefore an inner dielectric constant

of 4.0 in the PB computation), solvation forces may be rather high (in the

range 5–10 kcal mol�1 Å�1).

We chose at first to impose an upper limit on solvation electrostatic forces

of 2 kcal mol�1 Å�1. After a first trial, the same scheme has been

implemented using a switching function between 0 and 8 Å and imposing

a 10 kcal mol�1 Å�1 upper limit on solvation electrostatic forces. This value

has been chosen higher than all forces at the beginning of the simulation.

For the surface tension coefficient g, several values have been used in the

literature. According to Nicholls et al. (1991), a value of 0.05 kcal mol�1

Å�2 should be appropriate for the surface tension at the interface between

proteins and water. When this term is considered in hybrid MM/PBSA

protocols, however, it should also be considered that intramolecular van der

Waals forces, in the absence of an explicit representation of solvent, will

provide a strong tendency toward collapse because of missing solute-solvent

van der Waals forces. We considered the energy minimized extended (with

disulfide bridges reduced) and folded form of the protein. Upon folding,

a solvent accessible area of ;3200 Å2 is buried corresponding to a free

energy of ;160 kcal mol�1 using the surface tension coefficient 0.05 kcal

mol�1 Å�2 proposed by Nicholls et al. (1991). Upon folding, the van der

Waals energy of the protein decreases by ;100 kcal mol�1. Since the

surface tension coefficient is already taking into account implicitly van der

Waals interactions, to avoid double counting, we have to decrease the value

of g to a new value �gg in such a way that gAE!F ¼ ~ggAE!F1DEE!F
vdW ; where

E ! F indicates the transition from extended to folded conformation. In this

way, we obtain approximately the value of 0.02 kcal mol�1 Å�2 for �gg, which

has been used in the simulations. This surface tension coefficient value is

comparable to the value of 0.01 kcal mol �1 Å�2 suggested for the GB/SA

methodology (Qiu et al., 1997). It must be noted that in many studies, the SA

free energy term is neglected altogether, because for small fluctuations

around an equilibrium structure, the overall change in solvent accessible

surface area is rather small (see the Results section).

Compared to analytic computation of forces in explicit solvent MD

simulations, computation of PBSA solvation forces, requiring accurate

solution of the PB equation and proper treatment of molecular surface, is

computationally demanding. Therefore, PBSA solvation forces are not

computed at every minimization or MD time step, but they are updated as

seldom as possible.

One issue that must be considered is that the orientational dielectric

relaxation constant of water (;10 ps) would allow a large update interval.

Indeed, both electrostatic and hydrophobic solvation forces are due to bulk

water molecules that do not reorient immediately. The measured orien-

tational dielectric relaxation time of water is ;10 ps (Harvey, 1989) con-

sistent with the average lifetime of 4 ps for a hydrogen bond in bulk water

(McCammon and Harvey, 1987) and with estimates based on simple

macroscopic models (Debye, 1929). The rather long orientational dielectric

relaxation time of water offers the possibility of updating solvation forces

more seldom than usually done, as noted a decade ago by Niedermeier and

Schulten (1992). However, update intervals longer than ;50 fs imply large

changes in computed forces.

With these issues in mind, we followed a protocol very similar to that

used originally by Sharp (1991) where: i), a starting structure is minimized in

vacuo; ii), solvation forces are computed; iii), N minimization or MD steps

are performed using MM and PBSA solvation forces; and iv), steps ii and iii

are iterated until the wanted total number of steps has been performed. A

slight modification to this scheme has been used previously (Fogolari et al.,

2001) where, to smooth fluctuations in solvation forces, newly computed

forces are averaged with previous forces, thus introducing de facto a kind

of relaxation time on solvation forces. In this work, we use this smoothing

approach to lengthen substantially the time between two PBSA calculations

while matching more closely the dielectric relaxation time of water. In

particular, we test an updating scheme where solvation forces f PBSA are

computed every 1 ps and multiplied by 0.1 and added to solvation forces at

the previous step f ðt � DtÞ multiplied by 0.9, except for the first step where

no previous forces are available:
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f ð0Þ ¼ f
PBSAð0Þ

f ðtÞ ¼ 0:1 3 f
PBSAðtÞ10:9 3 f ðt�DtÞ for t[0: ð3Þ

This simple procedure implies an exponential decay or rise of solvation

forces with a relaxation time constant of ;10 ps.

For computation of PB forces, a large grid of 653 653 65 nodes spaced

by 1 Å has been used that entails all the protein and roughly two Debye

lengths, then for each amino acid a focusing step is performed employing

a grid of 33 3 33 3 33 spaced by 0.45 Å and employing boundary

conditions taken from the previous PBE solution on the coarse grid. Note

that the focusing steps are parallelizable and the amount of computation is

roughly proportional to the number of amino acids. The choice of these

parameters has been previously determined (Fogolari et al., 2001). Solute

and solvent dielectric constants were 4.0 and 80.0, respectively. Solvation

energies and forces have been determined with respect to a homogeneous

medium with a dielectric constant of 4.0. Ionic strength was 100 mM, ionic

radius 2.0 Å, and solvent probe radius 1.4 Å. The linearized PB equation

(see Fogolari et al., 1999, for applicability limits) was solved using the

incomplete Choleski preconditioned conjugate gradients algorithm, as

implemented in UHBD, using 100 surface points at each atom and

a convergence criterion of 10�2. Atomic charges were the same employed

for molecular dynamics, i.e., those provided by the CHARMM package v.22

(MacKerell et al., 1998). We scaled forces exceeding 2 kcal mol�1 Å�1 or

alternatively 10 kcal mol�1 Å�1 resulting in no scaling on a few sampled

snapshots from the trajectories.

To enhance sampling, we used Langevin dynamics employing a time

constant of 20 ps�1 and the integration scheme of Verlet (1967).

No cutoff has been used for nonbonded interaction. Due to the

nonanalytic procedure used for computation of solvation forces, we stopped

overall translation and rotation every 10 time steps. Not all MD simulation

programs offer this possibility, which is of fundamental importance to

prevent all kinetic energy to be associated with center of mass motions and

overall rotations.

We have used as a test system viscotoxin A3 (Protein Data Bank

identification code: 1ed0, model 1) for which an ensemble of structures has

been determined by Romagnoli et al. (2000). This protein belongs to the

thionin protein family; it entails two helices and a two-strand b-sheet, and is

stabilized by three disulfide bonds.

The protein has been first minimized in vacuo with 200 steepest descent

steps and 500 conjugate gradient (50 cycles) steps. The system was further

minimized adding PBSA forces for another 50 steps conjugate gradients

steps (20 cycles). The system was then heated to 300 K in 1 ps. During this

time electrostatic forces were not updated.

Explicit solvent simulations

Model 1 of the 10 NMR structures of the viscotoxin A3 (Romagnoli et al.,

2000) was used as the initial structure (Protein Data Bank identification

code: 1ed0). The ionization states of the protein residues were predicted

following the methodology of Antosiewicz et al. (1994). Six chloride ions

were added to neutralize the 16 charge of the protein. The Poisson-

Boltzmann equation was solved using standard parameters and 100 mM

ionic strength. The first ion was placed at the highest potential point at 0.56

nm from the van der Waals surface of the protein. The calculation was

performed again and the ions were placed following the same procedure.

This procedure was used to have hydrated counterions in the high potential

regions and therefore to start from a rather stable system. A word of caution

is due, because equilibration and configurational sampling for ions might

take much longer times than the one simulated here.

The protein, whose largest dimension is ;3.4 nm, and six counterions

were solvated in a cubic box (with 5.6 nm edges) of preequilibrated waters

using the CHARMM program version 27b2 (Brooks et al., 1983). Water

molecules that were found to be within 0.28 nm of any atom in the solute

were removed. The resulting system contained 673 solute atoms and 16,641

solvent atoms. The TIP3P (Jorgensen et al., 1983; Neria et al., 1996) water

model was used to describe the solvent. A 1.0 nm short-range cutoff was

used for all nonbonded interactions and long-range electrostatic interactions

were treated by the particle mesh Ewald method (Essmann et al., 1995), with

a grid size of 5.4 3 5.4 3 5.4 nm. The SHAKE algorithm (Ryckaert et al.,

1977) with a tolerance of 10�4 nm was applied to constrain all bonds

involving hydrogen atoms in all simulations.

The system was energy minimized and equilibrated as follows. The

protein was energy minimized using 200 steps of steepest descent to

eliminate bad atomic contacts and then it was surrounded by six chloride

ions whose coordinates were determined as described above. The solvent

cubic box alone was heated up to 300 K in 12 ps using 2 fs time step and then

equilibrated at 300 K for 30 ps using a 2 fs time step. The entire box of water

was overlayed onto the solute (protein and six ions) and those water

molecules that overlapped with it were removed. The final system was

treated as described below, in a stepwise fashion. The solute (protein and

ions) was fixed and the solvent was energy minimized using 200 steps of

steepest descent followed by further 200 steps of steepest descent for the

whole system without solute constraints. A solvent equilibration (solute

fixed) was carried out by performing molecular dynamics for 10 ps at 300 K

using 2 fs time step to let the water molecules move to adjust to the

conformation of the solute. The whole simulation system (solute and

solvent) was heated up to 300 K over a period of 12 ps using a 2 fs time step.

Finally, it was equilibrated for 20 ps at 300 K with velocity rescaling every

0.1 ps using a 2 fs time step and for further 20 ps at 300 K using a 2 fs time

step. After the equilibration, data acquisition was carried out for 1.0 ns at 300

K using periodic boundary conditions in the NPT ensemble (constant

pressure equal to 1 atm). A 2 fs time step was used and a snapshot of the

trajectory was stored every ps (500 time steps) for later analysis. All energy/

MD calculations were performed using CHARMM force field in the NPT

ensemble using the CPT algorithm implemented in the CHARMM program.

We wish to point out that even after 1.5 ns explicit solvent simulations,

ion distribution is not equilibrated. During the simulation, only one ion

crosses the box boundary.

The simulation was performed on a single 500 MHz Pentium III

processor personal computer and continued for ;1500 h.

RESULTS

The results of five different simulations have been compared

to assess the reliability of the MM/PBSA methodology for

molecular dynamics simulations. It must be noted that such

comparison does not provide an absolute validation of the

methodology, but rather a validation relative to a generally

accepted and much more validated methodology.

The five 1 ns totally unrestrained MD simulations will be

referred to as S0, S1, . . . , S4 and have been performed using:

i. An explicit solvent and ions representation as described

in the Methods section (S0).

ii. PBSA solvation forces updated every 50 fs and averaged

with previous step solvation forces, using a switching

function between 6 and 8 Å for the MM electrostatic

terms and imposing an upper limit to PBSA forces at

2 kcal mol�1 Å�1 (S1).

iii. PBSA solvation forces updated every 1 ps and mixing

newly computed solvation forces with forces at the

previous step corresponding to a relaxation time of ;10

ps, using a switching function between 6 and 8 Å for the

MM electrostatic terms and imposing an upper limit to

PBSA forces at 2 kcal mol�1 Å�1 (S2).
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iv. PBSA solvation forces updated every 1 ps and mixing

newly computed solvation forces with forces at the

previous step corresponding to a relaxation time of ;10

ps, using a switching function between 0 and 8 Å for the

MM electrostatic terms and imposing an upper limit to

PBSA forces at 2 kcal mol�1 Å�1 (S3).

v. PBSA solvation forces updated every 1 ps and mixing

newly computed solvation forces with forces at the

previous step corresponding to a relaxation time of ;10

ps, using a switching function between 0 and 8 Å for the

MM electrostatic terms and without imposing any upper

limit to PBSA forces (S4).

Analysis of viscotoxin simulated
dynamical features

One of the key issues used to improve the MM/PBSA

methodology presented in this work is the observation

that for deliberately (and trial) misset switching functions

or simulation parameters, the root mean-square deviation

(RMSD) for backbone atoms from the starting deposited

structure was largely increasing within the first ;100 ps of

the dynamics. We have therefore compared the RMSD with

respect to the starting structure for all simulations. All

schemes gave reasonable results except S3 that lead to an

increasing RMSD approaching 4.5 Å after 1 ns simulation.

This scheme was not therefore further examined.

As mentioned in the Introduction, there is no guarantee

that for simulations longer than 1 ns RMSD will not be

increasing, but in view of the results obtained with misset

parameters, this seems unlikely. The same observation,

however, holds for explicit solvent simulations.

In Fig. 1, the RMSD for all 1 ns MD trajectories (S0, S1,

S2, S3, and S4) are reported. It is to be noted that the lowest

curve is the one for the explicit solvent MD trajectory, as

expected, but other trajectories (except S3) do not have very

high values, mostly between 1.3 and 2.0 Å. Most important,

for trajectories employing trimmed solvation forces, very

similar curves are obtained with different updating schemes,

thus supporting longer update intervals usage.

Perhaps more significant than the RMSD itself is the

analysis of the average single residues contributions to the

RMSD. This has been computed by pairwise superposition

of the backbone for 100 snapshots of each trajectory, and

averaging the results. The plot of local RMSDs that monitor

the mobility at each residue compared to the global structure

is reported in Fig. 2. It is apparent that the same features are

present in explicit and implicit solvent simulations, although

details vary, also due to the limited sampling performed.

In particular, local RMSD minima are observed at some,

but not all, cysteine residues involved in disulfide bonds

(namely Cys-3, Cys-4, Cys-26, and Cys-40). In general, as

expected, regions most constrained by secondary structure

and disulfide bonds are found with lower RMSD, with very

similar patterns in explicit and implicit solvent simulations.

For instance, the first b-strand, the center of the first helix,

and the region encompassing the second helix and the second

strand exhibit lower RMSD in all simulations. The same

features appear also in simulation S3 in which deviation from

the deposited structure was fairly high. The lowest RMSD is

found for simulation S2, although this should be regarded as

artifactual, probably because an overall rotation acquired

during the simulation. The simulation was repeated and the

same overall rotation was found. This could be a conse-

quence of imposing an upper limit to solvation forces.

FIGURE 1 RMSD for the five different MD simulations. The lower curve

refers to reference explicit solvent simulation S0. Other curves, starting from

the lower one, refer to MM/PBSA simulations S2, S1, S4, and S3,

respectively.

FIGURE 2 Average residue backbone RMSDs upon global backbone

superposition obtained on 100 snapshots of a 1 ns MD trajectory: S0

(continuous line), S1 (dotted line), S2 (long dashed line), S3 (dot-dashed

line), and S4 (dashed line).
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Ramachandran plots have been generated for all trajecto-

ries at 1 ps intervals. Overall features of the Ramachandran

maps are similar in the five trajectories, although in explicit

solvent simulations, regions corresponding to helices and

extended structures seem more defined than in implicit sol-

vent simulations. This could reflect poorer sampling or, as

we believe, less accurate features of the PBSA methodology.

In particular, the two simulations employing a switching

function for electrostatic energy between 6 and 8 Å display

rather irregularf,c distributions. This may be a consequence

of rather high forces in the switching region. This feature is

lost with increasing the width of the switching region

(simulation S4), although also here the distribution is not

exactly matching what was expected. It is likely that much

work should be devoted to refine parameters to recover

typical Ramachandran map.

We tested also the presence of typical secondary structure

elements using the DSSP emulator of WHATIF. Helical

regions are reasonably well preserved during all simulations.

When discontinuities in helical regions appear, a tendency to

an interchange of a-helical and 3–10 helical conformation is

found. b-sheet regions are somewhat less well preserved

than helical regions.

Analysis of free energy components

For all continuum solvent simulations, we have analyzed the

behavior of different free energy components during the

trajectory. PBSA free energy components were computed

according to an averaging scheme parallel to PBSA forces

averaging scheme.

In all PBSA simulations, the larger energy variations were

associated with force field energy terms (Figs. 3–6) with

changes in the range of 100 kcal/mol. These changes thus

dominate the total potential of mean force that is decreasing

in the first equilibration 100 ps and later exhibits large

fluctuations around an average value.

The absolute values of force field energy in simulations

using different dielectric constant switching schemes are

obviously not directly comparable.

In the case of simulation S1, a sudden jump in the MM

energy component is seen (Fig. 4) corresponding to

a rearrangement in the region between the two helices. It is

worth remarking that this rearrangement is rather limited in

size, corresponding to an RMSD, with the conformation 1 ps

earlier of just 0.64 Å. Actually this observation is pointing

out once more the difficulties of continuum approaches

where the stability of a folded protein (typically around 10

kcal/mol) should be obtained by addition and subtraction of

very large energy components. The electrostatic free energy

of solvation in all simulations is large and negative as

expected (Fig. 5). The dependence on protein conformation is

not very strong provided that a compact state is maintained.

Indeed, changing dielectric switching schemes for elec-

trostatic interactions leads to differences \50 kcal/mol in

electrostatic solvation energies. The same switching scheme

and different upper limits to solvation forces resulted in

overall similar electrostatic solvation energies and overall

similar total energies. In simulation S3, the average RMSD

with respect to the reference deposited structure is at the end

of the 1 ns MD run around 4.5 Å. It is, however, reassuring

the observation that the average potential of mean force is

higher by a few tens kcal/mol than the potential of mean

force computed, using the same parameters, on snapshots of

S4 (not employing an upper bound on PBSA forces), which

is much closer to the native conformation.

CONCLUSIONS

The main conclusion of this work is that MM/PBSA

simulations are feasible on proteins (and possibly other bio-

molecules) provided that electronic polarizability is taken

into account. In particular, the scheme employing a switching

FIGURE 3 MM/PBSA total energy in simulations S1 and S2 (lower

curves), S3, and S4 (upper curves).

FIGURE 4 MM/PBSA energy components: force field energy in

simulations S1 and S2 (lower curves), and S3 and S4 (upper curves).

164 Fogolari et al.

Biophysical Journal 85(1) 159–166



function for electrostatic interactions between 6 and 8 Å,

with an upper bound on forces of 2 kcal mol�1 Å�1 and up-

dating continuum forces every 1 ps, with the smoothing func-

tion proposed here, corresponding to a dielectric relaxation

time of ;10 ps, is able to provide a 1 ns trajectory, which

preserves native structure for a small protein.

The scheme we developed produced good results in terms

of RMSD with respect to the deposited structure and the

overall preservation of structural elements, at least on a very

stable system such as the one tested.

The analysis of free energy components points out the

problems associated with this and other continuum-based

approaches where solvation free energy is split in a polar and

an apolar component.

Our results show that, even applying different molecular

mechanics schemes, the electrostatic solvation free energy

terms is very large and opposing intramolecular electrostatic

energy. Small molecular changes have a rather large effect

on both MM and PB terms, compared to the typical experi-

mental free energy difference between the folded and un-

folded state. Moreover, the Ramachandran plots obtained in

all MM/PBSA simulations deviate somehow from typical

Ramachandran plots.

It is thus of fundamental importance to refine the

parameters and scheme employed in this work to make

MM/PBSA simulations useful.

The computation time needed by MM/PBSA methodol-

ogy (it should be stressed here, without any particular op-

timization on the molecular dynamics algorithm, but just

employing an almost straightforward implementation) up-

dating electrostatic forces every 1 ps is approximately one-

tenth of the time employed by the reference explicit solvent

simulation. The recent work of Luo et al. (2002) could speed

up significantly computation because initial conditions for

iterative PBE solution are set starting from the PBE solution

at the previous step, thus reducing the number of iterations.

The price paid in accuracy is obviously high, as judged by

the RMSD with respect to the deposited structure in all MM/

PBSA simulations. Future work will be devoted to parameter

optimization on small systems to make the approach useful

for accurate simulations.
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