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Information Content of Molecular Structures
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ABSTRACT For a completely enumerated set of conformers of a macromolecule or for exhaustive lattice walks of model
polymers it is straightforward to use Shannon information theory to deduce the information content of the ensemble. It is also
practicable to develop numerical measures of the information content of sets of exact distance constraints applied to specific
conformational ensembles. We examine the effects of experimental uncertainties by considering ‘‘noisy’’ constraints. The
introduction of noise requires additional assumptions about noise distribution and conformational clustering protocols that make
the problem of measuring information content more complex. We make use of a standard concept in communication theory, the
‘‘noise sphere,’’ to link uncertainty in measurements to information loss. Most of our numerical results are derived from two-
dimensional lattice ensembles. Expressing results in terms of information per degree of freedom removes almost all of the chain
length dependence. We also explore off-lattice polyalanine chains that yield surprisingly similar results.

INTRODUCTION

An important challenge for structural biology is to provide

structural and functional information on the same grand scale

as the genome sequencing projects. Although there are many

experimental procedures aimed at the determination of the

structures of proteins and nucleic acids, relatively little

attention has been paid to measuring the quality of any given

method, and a framework for discussing the optimum utility

of diverse procedures is lacking. (See, however, Brunger

et al. (1993) for error analysis in crystallography). Further-

more, many experimental efforts combine direct structural

data with sequence alignments or molecular refinement

techniques, adding to the difficulty of analysis. In this paper,

we introduce a protocol to quantify the information content

of structural data and we explore some of the many issues

that arise in reducing such a protocol to practice.

The process of determining the structure of a macromol-

ecule is largely a matter of specifying the conformational

states of highest occupancy for a given physical environ-

ment. Although we speak of the ‘‘structure’’ of a molecule,

we are normally referring to the equilibrium properties of an

ensemble of molecules that constitute a thermodynamic

state. Individual molecules undergo dynamic transitions

among conformations and only time-averaged properties of

the ensemble can be measured directly. For biomacromole-

cules, except at the highest resolution, the lengths of the

chemical bonds and the bond angles are taken to be constant.

Conformations are essentially established through direct or

indirect specification of the dihedral angles as the critical

variables. In this paper, we explore how much information

must be supplied to fix these angles within a certain tolerance

or uncertainty. More precisely, we are interested in the

amount of information needed to discriminate among the

different conformations accessible to a macromolecular sys-

tem in a well-characterized thermodynamic state.

We will make use of information theory (Shannon, 1948;

Young, 1971) to link the information content of a particular

experiment or procedure (Havel et al., 1983; Sibbald, 1995)

to the conformational entropy of a molecular ensemble.

There have been attempts to deduce the entropy of

a molecular assembly from the variation of the atomic co-

ordinates (Levy et al., 1984; Luo and Sharp, 2002; Potter and

Gilson, 2002; Schlitter, 1993). Although this approach works

exactly for ideal gases, it is still unclear whether it yields a

proper result for systems with conformational degrees of

freedom (Schafer et al., 2000, 2001). A large number of stud-

ies on chain entropy for polymer systems have been carried

out (Dill et al., 1995; Flory, 1953; Pande et al., 1994; Wang

et al., 1999) using a variety of models. Clearly, if it were

possible to enumerate all (accessible) conformations and

associated occupancies for a molecular ensemble, the total

conformational entropy would easily be obtained.

However, an enumeration approach has two major

difficulties for proteins or nucleic acids. First, the natural

orthogonal variables are the dihedral angles. Although such

data are available from multidimensional NMR coupling

experiments, a full set has not been reported. Instead, ex-

periments typically yield a partial set of labeled (assigned)

intramolecular distances and coupling constants from NMR

or a set of unlabeled distances/phases from diffraction ex-

periments. These data are strongly self-correlated so that

constraints are generally nonorthogonal and the information

gained is not a simple linear function of the number of

constraints. Such correlations must be accounted for in any

assessment of the information content of an experiment. The

second problem is that exhaustive enumeration of the con-

formations of a macromolecule is not currently feasible both
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because of the large numbers involved and because anywork-

ing definition of a macromolecular ‘‘conformation’’ is in-

tegrally connected to assumptions about energy surfaces that

introduce additional complications.

We envision two general approaches for measuring

information content using nonlinear conformational con-

straints. First, correlated constraints can be mapped to an or-

thogonal space. For example, distances can be mapped to

dihedral angles, although the relationship can be signifi-

cantly error prone. The second approach, explored in this

paper, is to use model systems where exhaustive enumera-

tion of conformational ensembles is feasible.

In previous work, Dill and co-workers and Wang et al.,

among others, used lattice structures to probe the statistical

properties of ensembles of protein structures (Crippen, 2000;

Dill et al., 1995; Dobson et al., 1998; Wang et al., 1999).

Choy and Gregoret (Choy and Forman-Kay, 2001; Gregoret

and Cohen, 1991) have also reported off-lattice models of

unfolded states. We will use the Dill ensembles to examine

the information content of interbead distance constraints

and to explore the degradation of information as noise is

introduced (Berger et al., 1996). In addition to supplement-

ing the work of Gutin and Shakhnovich (1994) on random

constraint sets, we examine the dependence of information

content on specific constraints.

THEORY AND METHODOLGY

Ensemble generation

Two-dimensional lattice walks

In this initial study, we primarily use two-dimensional (2D)

square lattice structures. Chains of beads, each bead rep-

resenting one ‘‘residue,’’ are arranged in self-avoiding walks

according to the following rules. The elementary step, the

distance between consecutive beads, di,i11, is fixed at unit

length. The move set is limited to a single step with diago-

nal moves disallowed. Beads cannot overlap. This set of

walks is the same as the exhaustive ensembles of Chan and

Dill (1989) that count all conformations not related by

translation, rigid rotation, or reflection. These latter restric-

tions are readily accomplished without loss of generality by

limiting the first move to be along the positive y axis and by

restricting the first turn to the positive (x, y) quadrant. The N-
terminus to C-terminus directionality of proteins is preserved

in these ensembles. This directionality permits discrimina-

tion between ‘‘retro-inverso’’ conformational pairs (Chorev

and Goodman, 1995), two conformations that become

identical upon reflection and reversal of the bead numbering.

Ensembles of unconstrained self-avoiding lattice walks

and a separate subset of square Hamilton lattice walks were

enumerated exhaustively up to N ¼ 28 (N is the number of

beads in the chain) (Table 1) and N ¼ 49 (Table 2),

respectively. Enumerations of up to N ¼ 25 have been

published (Chan and Dill, 1991; Irback and Troein, 2002) for

unconstrained walks. Square Hamilton walks of up to N ¼
36 have been enumerated by Chan and Dill (1989). Our

values for W, the number of distinguishable walks, agree

with theirs in all cases.

We studied longer self-avoiding chain ensembles (N¼ 49,

100) using stochastic generation. During stochastic genera-

tion, conformations with the first turn outside of the positive

(x, y) quadrant were terminated and removed. For these

ensembles, simple backtracking from a point of chain over-

lap produces an overrepresentation of compact states com-

pared to the exhaustive results (Rosenbluth and Rosenbluth,

1955). Instead, one must discard the run leading to failure

and start a new walk from its beginning.

TABLE 1 Self-avoiding square-lattice walks

N* Wy ISz

2 1 0.000

3 2 1.000

4 5 2.322

5 13 3.700

6 36 5.170

7 98 6.615

8 272 8.087

9 740 9.531

10 2034 10.990

11 5513 12.429

12 15,037 13.876

13 40,617 15.310

14 110,188 16.750

15 296,806 18.179

16 802,075 19.613

17 2,155,667 21.040

18 5,808,335 22.470

19 15,582,342 23.893

20 41,889,578 25.320

21 112,212,146 26.742

22 301,100,754 28.166

23 805,570,061 29.585

24 2,158,326,727 31.007

25 5,768,299,665 32.425

26 15,435,169,364 33.846

27 41,214,098,278 35.262

28 110,164,686,454 36.681

*The number of beads in a chain of length N�1
yThe number of conformations (see text)
zCalculated as log2(W)

TABLE 2 Square Hamilton walks

N W IS

4 1 0.000

9 5 2.322

16 69 6.109

25 1081 10.078

36 57,337 15.807

49 3,383,820 21.690
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Ellipsoidally constrained 3D polyalanine ensembles with
excluded volume

The program YARN (Gregoret and Cohen, 1991) was used

to generate random three-dimensional (3D) polyalanine con-

formations that obey excluded volume constraints. In the

default mode, combinations of f and c are chosen based

on statistics from a reference set of proteins described by

Gregoret and Cohen (1990). An ellipsoid constrains the size

of generated conformations to gyration radii consistent with

experimentally derived structures (Gregoret and Cohen,

1991).

Entropy and information

Given a set of constraints, X, the information content of

the constraint set can be measured in bits by its partitioning

effect on the structural ensemble using Shannon’s formula-

tion (Shannon, 1948):

IðXÞ ¼ �+½pk log2ðpkÞ�; (1)

where pk is the population of cluster k expressed as a fraction
of the ensemble, summed over all clusters. These clusters are

subsets of the population of conformers that are indistin-

guishable under a particular constraint.

A direct connection with classical statistical mechanics is

available if it is possible to identify the conformations that

belong to a specific thermodynamic microstate and if ad-

ditional information is provided about the relative energy

of each conformation (Wang et al., 1999). For this paper, we

will assume that all lattice conformations have the same

energy and hence the same occupancy. This assumption is

equivalent to an ‘‘infinite temperature’’ limit.

The measured information content of a particular con-

straint set, X, can be compared to the theoretical information

content of the ensemble defined as:

I
S ¼ log2ðWÞ; (2)

where W is the ensemble size. IS is referred to as the

‘‘source’’ information (Shannon, 1948). Other terms we will

use are: IM, defined as the maximum amount of information

that can be recovered using a given set of measurements and

IL, the information lost at any stage of an experiment (see

Problem Formulation section for further discussion).

Nomenclature

We use the Cartesian (through-space) distance, d, between
beads i, j as:

di;j ¼ ðxi � xjÞ2 1 ðyi � yjÞ2
� �1=2

: (3)

[d]i,j will represent the (i,j)th element of the distance

matrix, which can take on multiple values, and di,j will

represent the specific value of this element in a particular

conformation. The sequential separation, si,j, is defined as:

si;j ¼ ji� jj: (4)

The city-block sequence distance, B, for two pairs of beads
(i, j) and (i9, j9), is defined as:

B ¼ ji� i9j1 jj � j9j: (5)

There are several measures of determining the difference,

d (a,b), between a pair of conformations, a and b. The most

popular are the minimal root mean square difference

(RMSD) of the coordinates after rigid translation and

rotation and the closely related summation of the difference

of the distance matrices (Levitt, 1976). We will also make

use of a new measure of distance uncertainty based on

examination of the distance-difference matrix, D:

Di;jða; bÞ ¼
��ðdi;jÞa � ðdi;jÞb

��; (6)

where a and b refer to specific conformations and i, j are
taken over all bead numbers, j[ i. Specifically, we focus on
the maximum element in D defined as:

e
a;b ¼ maxðDi;jða; bÞÞ: (7)

This definition is motivated by the simplicity of some

results when formulated this way (see Results section). We

note that most of these measures are not proper metrics

because they do not obey the triangle inequality.

For an N-mer lattice walk, the full set of constraints for any

conformation is defined as J such that:

J ¼ f½d�i;jj1# i#N; 1# j#N; i 6¼ jg and M � J:

We denote the size of M as jMj.

Example of the information content
of a constraint

The information content of a distance element, [d]i,j, for
a given ensemble is calculated by partitioning the ensemble

based on the distribution of distance values, di,j, for every
(i,j) in the ensemble. The fraction of the ensemble having

a particular distance value for [d]i,j, defines the value for pk.
The indexing length for k is determined by the number of

accessible distance values for [d]i,j
For example, for a chain of length N ¼ 3, the information

encoded in [d]1,3, I([d]1,3), is determined as follows: The

number of conformations in the ensemble, W, is 2 because

the only allowed conformations are straight(s) and bent(b),
which results in k ¼ 2 and ps ¼ pb ¼ 0.5. For one-half the

conformations d1,3 ¼ 2 and for the other half d1,3 ¼ �2.
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Using Shannon’s equation:

Ið½d�1;3Þ ¼ �2½0:5ðlog2ð0:5ÞÞ� ¼ 1 bit:

The information content of sets of distances is calculated

in a similar manner. Cluster members share the same dis-

tance values across all distance elements of the set.

It is important to recognize that this protocol measures the

amount of information associated with knowledge of the full

set of distance values for each distance element, rather than

the (different) amount of information contained in knowing

a specific value for a particular distance element. Further,

although this formulation is useful for any lattice model, it

would need to be altered for systems where internal distances

vary in a continuous fashion. For example, in our studies of

the polyalanine models, we will make the assumptions that

each structure generated represents a different conformation

and that enough sampling is done to provide reliable

estimates of the distance distributions (see below). Because

we do not impose any force fields on the polyalanine en-

sembles, these structures are not related to discrete local

minima on an energy landscape.

Discrete noisy systems

Model

Our discussion so far has assumed that the constraint set is

noise free and exact. However, this is not the general case.

To study the effects of inexact measurements and the ad-

dition of noise to the system, we will use a simplified com-

munication model. It has the following components:

Information source: the set of noise-free messages that

can be communicated—in this paper, the set of fully

enumerated conformations.

Transmission system: the set of constraints that select

conformations for ‘‘broadcast.’’ Noise sources in trans-

mission can give rise to ‘‘noisy’’ or inexact constraints.

Reception system: reconstruction of the messages from

the transmitted signal. The reconstruction process may

use filters (prior knowledge about the messages) or

processing algorithms to recover the signal. Additional

noise sources may be associated with the reception

process.

Information loss from noise

We consider a conformational ensemble to be a set of W
independent, distinct messages, {wi}, of equal probability.

The information content of the ensemble is defined as

log2(W) (Shannon, 1948). As noise is introduced in the

constraint sets some messages that were distinct in a noise-

free environment become indistinguishable. A set of

transition probabilities, pi(j), the probability of message i
being received as message j, describes this behavior. We

denote the information of the source and the received signal

as IS and IM respectively. In a noiseless case IS ¼ IM whereas

in the noisy case IM \ IS (see Entropy and information

section for definitions) The missing amount of information is

equal to IL, the conditional entropy of the message knowing

the received signal. The Shannon information loss due to

noise, averaged across the ensemble, is:

hILi ¼ �+
W

j¼1

pðjÞ+
W

i¼1

pjðiÞlog2pjðiÞ; (8)

where p(j) is the probability of transmitting a particular

symbol wj.

To derive numerical results in the lattice model system,

we assume that each symbol is transmitted with equal

probability p(i) ¼ p(j) ¼ 1/W. We use the ‘‘noise-sphere’’

model (Young, 1971) for the transmission loss, in which

conformations wj that are within a hypersphere of radius r
centered about conformation wi are indistinguishable. Let

ui(r) be the number of conformations about wi, inclusive,

within a radius r: The model of the transmission error

probability, for a particular r, can thus be expressed as:

pjðiÞ ¼
0 if dðwi;wjÞ[r

1=ui if dðwi;wjÞ# r
;

�
(9)

Under this model, Eq. 8 simplifies to:

hILi ¼ 1

W
+
W

i¼1

log2 ðuiÞ�1
� �

; (10)

We can use the same approach to calculate the loss of

information for noise in individual distance constraints. The

noise sphere will contain all conformations (ui) whose di,j is
within r of the di,j of the reference conformation, i. The
calculation uses each conformer in turn as the reference. IL is
obtained from Eq. 10.

Conformer distributions

To calculate how many conformers lie within a fixed

interval, we will use the methods of Sullivan and Kuntz

(2001). We assume a conformational space in which

individual conformations are points and whose axes are the

true mechanical degrees of freedom. We are interested in two

situations. In the first case, we consider an ensemble that can,

in principle, be generated exhaustively, although we may

resort to stochastic enumeration for long chains. In the

second case, we assume that we cannot carry out exhaustive

enumeration, but that we do have some prior knowledge

about the conformer distribution, e.g., that conformations are

distributed uniformly in the (conformational) space. In either

case, we can develop a geometric model for the conforma-

tion space as an appropriately dimensioned hypersphere and

define the integrated radial pair conformational density

function, v(r), as the fraction of the ensemble within a given

radius, r, averaged over all conformations:
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vðrÞ ¼ 1

W
+
W

i¼1

1

W � 1
+
W

j¼1

1 d
i; j
# r and i 6¼ j

0 otherwise
;

�
(11)

Formulating the conformation space as a hypersphere with

volume,

vðrÞ ¼ Cr
n

(12)

allows us to identify n as the marginal number of dimensions

of the hypersphere and C as a constant that depends on the

value of n. We solve for n as a function of r by equating the

logarithms:

logðvðrÞÞ ¼ logðCÞ1 n log ðrÞ (13)

yielding n as the slope in a plot of log(r) versus log(v(r)).
In our previous work (Sullivan and Kuntz, 2001), we

studied protein and polymer chains with Ca-RMSD as the

measure of conformational distance. In this paper, we will

use both RMSD and ea,b, the maximal difference distance

element, as defined earlier.

The concept of the marginal or effective dimensionality of

conformation space can be clarified with an example

(Sullivan and Kuntz, 2001). Consider a conformation space

shaped as a long solid cylindrical rod. The marginal di-

mensionality depends on the radial scale being explored.

On average, for any point surrounded by a sphere of radius r
the sphere volume (i.e., the number of conformations if

uniformly distributed) increases as the cube (n ¼ 3) of the

probe radius for r much less than the diameter of the rod, but

for large probe lengths, the number of conformers can only

increase linearly (n ¼ 1). This same behavior is seen in

molecular dynamics simulations of proteins where the mar-

ginal dimensionality is equal to the total number of mechan-

ical degrees of freedom only for very small displacement.

Larger displacements are limited to only a few degrees of

freedom and/or correlated degrees of freedom (Sullivan and

Kuntz, 2001).

PROBLEM FORMULATION

Individual conformations of an N-mer bead can be char-

acterized by their distance matrices, each composed of a

unique di,j set for the corresponding [d]i,j. Distance matrices

contain enough information to resolve all conformers except

those related by a global inversion or handedness (Crippen

and Havel, 1988). The problem we pose is to measure the

information contained in arbitrary sets of exact and ‘‘noisy’’

distance constraints. We approach this problem by:

Quantifying the information content, I, of each [d]i,j.
Measuring the reduction in information resulting from

correlation among exact distance elements.

Examining various routes to useful sets of constraints, M,

of size jMj, that discriminate among all conformers.

Considering the reduction in information content arising

from noise in di,j.

RESULTS

We begin by exploring the information content of a set of

constraints consisting of specified distances between num-

bered (i.e., ‘‘labeled’’) beads for lattice walks that serve

as models of molecular conformers. We start with the as-

sumption that all these distances are known exactly and

are free from ‘‘assignment’’ errors. We will call such con-

straints ‘‘exact labeled constraints.’’

We first calculate the number of 2D self-avoiding

conformers as a function of chain length (Table 1). In Table

2 we calculate the number of conformers that form perfect

squares (see below). For convenience we also summarize

these results in approximate analytical functions (Table 3).

Given the simple dependence on chain length, we can

calculate the (average) information content of adding a bead

to the chain for different lattices and different chain con-

straints (Table 3). For comparison, we also include entries

deduced from entropic considerations for globular proteins.

Exact constraints

Information content associated with individual
labeled constraints

Information content varies in a predictable way for distance

elements. It is also dependent on the particular lattice and

move set under study (Table 3). For example, our a priori

decision to fix di,i11 to unit length means that knowledge of

this distance carries no partitioning information. In contrast,

distance matrix elements with sequence separation, s [ 1,

can assume multiple distance values and knowledge of these

distances partitions the ensemble. Establishing the rules for

lattice walks is analogous to defining reference states in

thermodynamics. Changes in entropy or information content

based on new constraints are calculated with respect to the

appropriate reference state which can, in principle, be related

to other reference states.

All conformations of a 15-bead chain were enumerated,

and the information content of each [d]i,j, I([di,j]), calculated
according to Eq. 1, is shown in Fig. 1. As expected, in-

formation content increases for [d]i,j off the diagonal (Chan
and Dill, 1990). This trend is seen more clearly in Fig. 2,

which replots the information content for the exhaustive

ensemble of N ¼ 16 and the stochastic ensemble of N ¼ 100

as a function of s. There is a near-monotonic increase of

information with sequence separation that is essentially

independent of the chain length (Figs. 2 and 3). For large N,
the increase in information with s is well approximated by

a logarithmic function (Eq. 14) similar to the Jacobson-

Stockmayer equation (Jacobson and Stockmayer, 1950) that

computes the loss of entropy for loop closures as a function

of loop size.

Ið½d�
i;jÞ ¼ 1:363 log2ðsi;jÞ � 0:92 (14)
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Exhaustive enumerations of self-avoiding walks for N¼ 3

to N¼ 16, shows the tendency for even sequence separations

to be slightly more informative than odd sequence

separations (Fig. 3 a). This observation is consistent with

even-odd oscillations in other structural features on square

lattices (Chan and Dill, 1989) and has no obvious im-

plication for protein structures.

Correlation of constraints

Although the single-most informative distance element is the

‘‘end-to-end’’ sequence separation (1, N for odd N; 1, N�1

for even N) (Fig. 3 a), finding the most informative set of

distance elements is a more complex problem. The principal

issue is the overlapping information contained in the distance

elements. We begin by examining pairs of distance elements.

A related problem has been considered in depth by Chan and

Dill (1990), who calculated the entropic losses associated

with pairs of prespecified contacts for two- and three-

dimensional lattices. In contrast, we examine the non-

additivity (loss) of information for all pairs of distance

elements. We develop a numerical relationship that summa-

rizes the average relative loss as a function of the separation

of the distance elements. We quantify the correlation by the

relative pairwise information reduction for two distance

elements [d]i,j and [d]i9,j9 defined as:

fDI=Ig ¼ f½Ið½d�i;jÞ1 Ið½d�i9;j9Þ�
� ½Ið½d�i;j; ½d�i9;j9Þ�g=½Ið½d�i;j; ½d�i9;j9Þ�: (15)

FIGURE 1 Information content, I, for each distance element [d]i,j for N ¼
15. Color coded as indicated.

FIGURE 2 Mean information content as a function of s for single distance

elements for ensembles from chains of N ¼ 16 (�)(exhaustive enumeration)

and N¼ 100 (�) (stochastic enumeration of 10,000 conformations). The line

fit is given by Eq. 14.

TABLE 3 Information content for lattice walks

Lattice Constraints* W(N)* Choices/residue Bits/residue

2D Square None 4N 4 2

No reversal 3N 3 1.58

Self-avoiding 0.103 (2.691N) 2.69 1.43

Square Hamilton self-avoiding 0.269 (1.399N) 1.4 0.48

3D Cubic None 6N 6 2.58

No reversal 5N 5 2.32

Self-avoiding (Chan and Dill, 1990) 0.293 (4.782N) 4.78 2.26

Hamilton walk (Pande et al., 1994) e�4.361.2 (1.86N) 1.86 0.90

Flory, mean field (Flory, 1953)

z� 1

e

� �N

1.84 0.88

3D Tetrahedral None 4 2

No reversal 3 1.58

Self-avoiding (Wang et al., 1999) 1.72 0.78

Off lattice

Stochastic chains Fit to extreme value distribution

(Feldman and Hogue, 2002)

1.2–2.0

Protein backbone Native ! Compact (Dill, 1985) 1.7 0.76

Protein backbone 1 side chain Native ! Unfolded (Cooper, 1999) 7.5–20.5 2.9–4.4

*W(N) for N � 1.
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This measure is bounded by zero (no loss), if there is no

correlation, and unity for complete correlation. In Fig. 4, a–c,
the relative loss of information is plotted as a function of

(i9,j9) for particular reference values of (i,j) for N ¼ 16. As

expected, the loss is greater between elements close to each

other in the distance matrix (Chan and Dill, 1990). Fig. 4,

d–f, replots the information reduction logarithmically for

the same reference distance elements. As the contour lines

appear to lie more on the matrix diagonals than on circles

about the reference point, we replot the log of the

information loss as a function of the city-block sequence

distance, B, for all pairs of sequence distance elements for N
¼ 14 (Fig. 5 a). This simple equation explains much of the

information loss behavior, with the correlation constant r2 ¼
�0.882 for the best-fit line. However, the individual

sequence separations, s ¼ si,j and s9 ¼ si9,j9, also influence

the information reduction, where proximal distances with

larger s (and thus inherently more information) are reduced

relatively more than distances with smaller s. Dividing B by

the sum of the sequence separation (SSD), where SSD ¼ s1
s9, tightens the correlation (Fig. 5 b), bringing r2 ¼ �0.920.

Most of the scatter is in the low information-loss (weak

correlation) region of the plot. When considering only the

points with DI/I[ 0.001, r2 ¼ �0.972. Although the scatter

in information loss as a function of these simple distance

element transformations appears significant on a logarithmic

scale, it is much less significant on a linear scale. In Fig. 5, c
and d, (1 � DI/I) vs. B shows that at worse, 90% of the joint

information is available at a city-block separation of 4 and

95% of the information is available (worst case) at a B of 6.

In summary, although we have no simple analytical

statement of the information correlation of pairs of Cartesian

distances, information loss is dominated by the sequence

proximity (loop size) of the beads involved in the two

distances, with the loss dropping rapidly for loops whose

ends are separated by more than four beads.

Finding the optimal constraint set

The optimal constraint set is defined as the smallest number

of exact constraints that partition all the conformers

FIGURE 3 Information content by sequence separation. (a) Mean I[d]i,j as a function of si,j. for single distance elements [d]i,j, plotted for exhaustive

ensembles of N ¼ 4 to N ¼ 16. (b) Independence of information content on chain length or chain position for fixed si,j ¼ 5.

FIGURE 4 Relative information loss DI/I is plotted for all distance

elements [d]i,j., assuming prior knowledge [d]i,j. Reference [d]i,j: (1,11) for

a and d; (1,16) for b and e; (4,13) for c and f. For a–c, the absolute

information loss is plotted, equal to {[I(i,j) 1 I(i9,j9)] � [I(i,j;i9,j9)]}/
[I(i,j;i9,j9)]. In d–f, the decimal logarithm of the information loss is plotted.
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uniquely. Distance-distance correlation makes the problem

a difficult one. However, efficient procedures have been

developed to construct any specific conformation on 2D and

3D lattices from distance data. Faulon et al. (2002) show that

O(n) distances are sufficient for n sites. In this paper we wish
to compare arbitrary constraint sets using the Shannon

information to quantify the constraint set quality. Specifi-

cally, we examine three constraint sets:

1. The globally optimal constraint set: For a prespecified set

size, jMj, the globally optimal set of distance constraints,

Mglobal, is determined by measuring I(M) for all possible

constraint combinations. Because of computational

limitations, this calculation is only possible for small N
and small constraint set size jMj.

2. The greedy algorithm constraint set: A less resource-

intensive method is a ‘‘greedy’’ algorithm. The constraint

set, Mgreedy, is calculated by first finding the single most

informative distance constraint, [d]max and then itera-

tively finding additional maximal constraints. In the case

of our lattice models [d]max is [d]1,N or [d]1,N�1 for odd

and even length chains, respectively. Of course, this

approach has the usual limitations of greedy algorithms

(Cormen et al., 2001).

3. The random constraint set: Finally, as a simple control,

we measure the information contained in sets of ran-

domly selected distance constraints (Shakhnovich and

Gutin, 1990).

Method 1: We calculate I(M) for all possible element

combinations

t!=ðt � jMjÞ!;

where t is the number of all possible pairings for a bead of

length N, equal to ((N � 2) 3 (N � 1)/2). As noted

repeatedly, I(M) is not additive as jMj increases (Fig. 6). One
element sets (jMglobalj ¼ 1) are the most informative, per

constraint, for all chain lengths. For large N and small jMj,
the information content of distance constraints approaches

simple additivity; e.g., I(M j jMglobalj ¼ 2) is 81% greater

FIGURE 5 Relative information loss, DI/I, for all pairs of distances, shown on a log10 scale, calculated by Eq.14 as a function of transformations of the

distance element distances. (a) The x axis is the block element identity distance, B, equal to ji� i9j1 jj� j9j. (b) The x axis is B/SSD, where SSD¼ (si,j1 si9,j9).

(c) Plots (1 � [DI/I]) versus B. (d) Plots (1 � DI/I) vs. B/SSD.
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than I(M j jMglobalj ¼ 1), for N ¼ 16. Progressively more

constraints yield less information per constraint. Combina-

torial exploration of optimum constraints up to jMglobalj ¼ 5

is shown in Fig. 6. For reference, IS for each chain length is

also given.

Method 2: The best set of constraints found with the

greedy algorithm for the 12-mer chain shows a similar trend

(Fig. 7). Fig. 7 a illustrates a problem: the relatively small

amount of information contained in the later choices makes

the results very path dependent. Fig. 7 b shows the complex

evolution of choices as the greedy algorithm explores the

distance matrix. Interestingly, much of the information

content can be realized with fewer constraints than the

N�2 true degrees of freedom. For example, in a 15-mer

chain, 95% of IS can be encoded through a set of eight

distance elements (jMgreedyj ¼ 8) (Fig. 8). The difference

between the number of constraints needed to achieve the

maximum information and the number needed for a fixed

percentage of the information increases exponentially with

chain length. To recover IS completely with the greedy

algorithm requires significantly more than N�2 distance

constraints. This discrepancy derives in large part from the

imperfect search by such algorithms over all constraint

combinations.

Method 3: Random selection of constraints performs

much worse than the previous two strategies (Fig. 7 a).
Nearly twice as many randomly selected constraints are

required to achieve the same level of information as those

selected by the greedy algorithm.

There are practical issues raised by this analysis. Our

calculations are limiting values for the information per con-

straint. Real systems will be less efficient for many reasons.

First, only experiments that can report a range of distance

values (e.g., fluorescence labeling, diffraction) can return

the maximum amount of information per measurement.

Second, only systems in which a significant fraction of all

conformers are being sampled can approach the limits

shown. More typically, in an experiment on compact states

(e.g., native structures of proteins) with a method that is only

sensitive to distances within a narrow range (e.g., NMR

nuclear Overhauser effect (NOE)) one would expect con-

siderably less information per measurement. Finally, we

have been assuming that data are available to sufficient pre-

cision to discriminate all distance values for any distance

element; ‘‘noise’’ in distance values will reduce the

FIGURE 6 Maximum information IM for best sets of distance constraints

for jMglobalj ¼ 1–5 as a function of N. The line represents the maximum

information per chain length based on the number of self-avoiding lattice

walks (Table 1). �: 1 distance; �: 2 distances; }: 3 distances; n: 4 distances;
/: 5 distances; —: Is.

FIGURE 7 Information content dependence on number of constraints. I(Mgreedy) was calculated using a greedy algorithm for N ¼ 12. Seventeen distance

constraints are required to obtain IM by this method. (a) I(Mgreedy) versus number of distances, jMj. The continuous line serves only to guide the eye. Dashed

line I(Mrandom), averaged over 100 random constraint sets per jMj, with standard deviation given by upper/lower bars. (b) The greedy algorithm choices for jMj
¼ 17 and N ¼ 12 plotted by i,j identity.
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information even further. We explore these points more

quantitatively in a later section.

Information content of unlabeled distance constraints

One interesting difference between typical diffraction and

NMR experiments on proteins is the ‘‘unlabeled’’ nature of

the diffraction data until the ‘‘chain tracing’’ and ‘‘phasing’’

steps occur, whereas, in the NMR studies, assignment of the

peaks can be carried out in a largely orthogonal manner to

the calculation of tertiary structure. A simple assessment of

the information contained in the assignments is available

from lattice models of compact states as representatives of

folded proteins. We ask what fraction of the total number of

conformers have the maximal number of contacts for a given

chain length. The ensemble of maximally compact structures

contains the contacts that could give rise to (unassigned)

NOEs. Each structure contains the same number of contacts.

Additional information, beyond just the contact number, is

needed to select an individual structure from this set and can

be taken as the information to be gained via the assignment

procedure for well-folded structures. Values of the maximal

number of contacts are simply calculated for square and

rectangular Hamilton walks (see Chan and Dill (1989) and

below). For example, the number of square Hamilton walks

is approximated by WSHW ¼ 1.40N�3.90 (Tables 2 and 3), so

the additional information to find a unique structure from this

set can be estimated as log2(1.40) or .48 bits/bead (Cejtin

et al., 2002; Pande et al., 1994). Attempts have been made to

do ‘‘real space’’ assignments from NMR data (Grishaev and

Llinas, 2002; Oshiro and Kuntz, 1993). This analysis in-

dicates that any procedural or time-saving advantages of such

approaches will carry a cost associated with the loss of or-

thogonal assignment information.

Information loss from uncertainties in
distance constraints

There are three major sources of uncertainty that affect

distance measurements: 1), upper/lower bounds on the dis-

tance measurements, 2), imprecise distance measurements,

and 3),misassignment of distances through incorrect labeling/

assignment. Berger et al. (1996, 1999) have studied this last

category of error, which we will not discuss here.

Uncertainty gives rise to information loss by preventing

discrimination among different conformations. This infor-

mation loss can often be attributed to the transmission stage

of information transfer (Cole, 1993) and is defined as:

IL ¼ ðIS � IMÞ; (16)

Bound limitations

Consider an upper bound on distances, Du, such that,

di;j #Du

and Du depends on the physical principles of the experiment

and the experimental conditions. For example, because

the magnitude of an NOE is proportional to d�6, NOEs are

typically only determined for hydrogen atoms separated by

\5 Å. For our lattices, assuming a one-bead to one-residue

mapping, detecting an NOE would be equivalent to knowing

that two beads are in contact, i.e., separated by the lattice

unity distance. Fluorescence energy transfer and chemical

cross-link data have longer distance limits. Crystallographic

structures have upper bounds set by the smallest diffraction

angle that can be observed and lower bounds related to the

limit of resolution. We want to calculate the dependence of

the information content on the distance detection limit, Du.

If the particular experiment provides a monotonic re-

lationship between ‘‘signal intensity’’ and ‘‘distance,’’ we

can proceed in a straightforward manner to assign distances

greater than Du a lower bound of Du. For example, it is

common practice in some experiments and calculations to

report atom pairs as either ‘‘contact’’ (di,j # Du) or ‘‘no-

contact’’ (di,j [ Du). However, in NMR and FRET the

measured signal is a product of both a distance term and an

angular correlation term, which can drive the signal close to

zero regardless of the distance. To be logically consistent

with the underlying physics we must allow for this pos-

sibility and give all distances the same lower bound, Dl, for

such experiments.

In the first case, where the distance magnitudes are un-

ambiguous, IM increases linearly for all values of Du (Fig. 9).

IM for the most limiting contact/no-contact detection limit

(Du ¼ 1) retains nearly half the value of IS. However, in the

FIGURE 8 Distance constraints for percentage information. The mini-

mum number of distance constraints necessary to retain a given percentage,

P, of the ensemble IS, conformational information, is plotted as a function of

chain length. A greedy algorithm was used to calculate the minimum number

of distance constraints. P ¼ �: 100%; �: 95%; }: 90%; n: 80%; /: 70%.
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second case, where we are not allowed to use ‘‘negative’’

data, the information content of the experiment is much less.

IM equals zero for simple contact/no-contact decisions. Only

for Du $ 2, i.e., ‘‘next-nearest neighbors,’’ does such an ex-

periment yield information on the 2D lattice ensemble.

The dependence of I([d]i,j) on Du varies with sequence

separation (Fig. 10). Information content decreases the most

for large sequence separations and low values of Du. In

general, the most informative distance elements have se-

quence separations of Du 1 2. For example, the most infor-

mative contact/no-contact (Du ¼ 1) distance element occurs

at a sequence separation of three, and only yields 0.53 bits.

Thus, the information content of knowing that a contact

exists, which generally increases with sequence separation

(as contacts become more rare with increasing sequence

separation) is offset by the loss of the information potential

of knowing the distances associated with longer sequence

separations. The rarity of contacts at larger sequence sep-

arations means that knowing two highly separated residues

are in contact is very informative. This is seen in Fig. 11,

which plots the information content of knowing two beads

(i,j) are in contact (di,j ¼ 1) as a function of si,j.

Uncertainty due to limitations in precision of measurements

An issue common to all experiments is the magnitude of the

‘‘noise’’ or imprecision in the measurements. To explore the

impact of random noise on the ability to distinguish con-

formations from one another, we consider two limiting cases

for fully enumerated conformational ensembles from 2D lat-

tices. First, we identify conformations most resistant to noise,

defined as pairs of conformations that are maximally differ-

ent and second, in the same ensemble, we find which confor-

mational pairs are most similar. The conventional measures

for conformational difference (see Methods section) are the

RMS atom-position difference after superposition and the

RMS of the distance-difference matrix elements (Levitt,

1976). We will also use the largest element in distance-

difference matrix, ea,b(see Methods).

FIGURE 9 IM with upper bounds on distances. For the unfilled symbols

(�, �, n: u ¼ 1, 1.42, 2 units, respectively), IM is calculated from all

interbead distances encoded as di,j for di,j # u and as equal to u for di,j[ u.

For the filled symbols (n,m: u¼ 1.42, 2 units respectively), as above, except

distances longer than u are treated as unknown. Solid line: No limit.

FIGURE 10 Information content, I[di,j] by sequence separation with

bounded distance detection. Mean information content as a function of

sequence separation for single distance constraints is plotted for N¼ 15 with

given distance detection limits, u. Distances are encoded as di,j for di,j # u

and as equal to u for di,j[ u. �: 1 unit; �: 1.42 units; }: 2 units; n: 6 units;

/: No limit.

FIGURE 11 Information content of contact/no contact determinations.

The information content of knowing a contact exists (d ¼ 1) is plotted

averaged over distance identities of the given sequence separations. Values

for even-value sequence distances are not given because these contacts are

geometrically unfeasible. �: 10-mer; �: 16-mer; n: 49-mer.
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The use of ea,b yields unexpectedly simple comparisons

among chains of different lengths, especially when ea,b is

normalized through division by the chain length, N. The
value ea,b can assume has natural limits. The largest possible

distance differences, over all conformational pairs, is in

element [d]1,N (Fig. 12 a). The smallest possible nonzero

difference elements likewise occur near [d]1,N for cases

where the bead displacement between two conformations

is nearly orthogonal to the interbead vector. For N $ 7, the

smallest ea,b over all pairs of da and db for the ensemble of 2D

conformers is in the single conformational pair in Fig. 12

b for which

Di;Nða; bÞ ¼ ððN � 3Þ2 1 4Þ1=2 � ðN � 3Þ: (17)

To provide an overview of the distribution of conformer-

conformer differences we plot, in Fig. 13, the fraction of

distinguishable conformational pairs compared to all con-

formational pairs, (1�v(r)), as a function of ea,b/N for the

fully enumerated square lattice walks of size up to N¼ 13. In

addition to these complete distributions, we also show the

limiting values for the most similar and most different pairs

of conformers for 3 # N # 25. A related plot shows the

fraction of indistinguishable conformational pairs compared

to all pairs (Fig. 14). Both plots show a remarkable inde-

pendence from chain length.

There are several features of Fig. 14 that are useful for our

analysis. First, as noted earlier, v(r) can be thought of as

a cumulative distance distribution function for pairs of con-

formations on specific lattices. It provides, when normal-

ized, the fraction of the ensemble within a specific error, or

conformational distance, of a given conformation, averaged

over all ensemble members. It also provides a visualization

of the impact of noise on the ability to discriminate one

conformer from all the others. Additionally, we can calculate

the marginal dimensionality, n, from Fig. 14 by computing

the slope of the line passing through the points for limiting

conformational pairs from the ensembles of length N�1 and

N11. We find, for 2D square lattices, that the limiting

marginal dimensionality is nearly equal to N�2, the true

number of mechanical degrees of freedom for these walks

FIGURE 13 Conformational distinguishability. The fraction of distin-

guishable conformational pairs compared to the total number of conforma-

tional pairs, equal to 1-v(r), (see text) is plotted as a function of the relative

noise, equal to r ¼ e/N. �: 3-mer; n: 6-mer; .: 9-mer; *: 12-mer; �: 13-mer.

FIGURE 12 Limiting conformations on 2D square lattices. Top pair (a)

has the largest ea,b value (even�N) and the bottom pair (b) illustrates the
lowest ea,b pair (N $ 7).

FIGURE 14 Conformational indistinguishability. v(r) is plotted as

a function of the relative uncertainty, r ¼ e/N. The limiting threshold noise

levels for ensembles N ¼ 7–23 are given by ensemble identity, N, and are

placed at x ¼ {[(N � 3)2 1 4]1/2 � (N� 3)}/N, y ¼ 2/[W3 (W � 1)] which

are the limiting relative noise levels and inverse of total number of

conformational pairs, respectively. �: 3-mer; �: 6-mer; }: 9-mer; n: 12-mer;

,: 15-mer; 7–23: Limiting errors for 7–23 mers.
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(Fig. 15). This value for the slope can also be derived directly

from the formulas given in the legend of Fig. 14, assuming N
� 1. Following this idea one step further, we can interpret

the slope at all points on Fig. 14 as the number of degrees of

freedom that are effective in producing the conformational

differences associated with a particular (normalized) dis-

placement.

Effect of uncertainty on compact lattice structures

The properties of the fully enumerated ensembles are

dominated by extended conformers analogous to denatured

states of proteins. To provide insight into arguably more

biologically relevant ensembles such as the native and

molten globule protein states (Chan and Dill, 1989), we

studied the subset of compact conformers by generating

perfect-square Hamilton walks where every lattice site is

occupied. We exhaustively enumerated square Hamilton

walks up to N ¼ 49 (Table 2).

The dependence of information content on bead sequence

separation is fundamentally different in square Hamilton

walk ensembles compared to full enumeration ensembles

(Fig. 16; compare to Figs. 2 and 3). In the latter case, as we

saw, I([d]i,j) depends exclusively on sequence separation.

For Hamilton walks, I([d]i,j) also depends on N, but it

becomes nearly constant for sequence separations greater

than ;N1/2. This result agrees with the expectation that

positional correlation between beads i and j is constant for
sequence separations greater than the diagonal distance,

which increases as ;N1/2.

We also calculated v(r) as a function of eab/N for the

Hamilton walk ensembles (Fig. 17). The curves are sur-

prisingly similar to the fully enumerated walks (Fig. 14),

even though the Hamilton walk ensembles sample only a

small subset of full enumeration conformational space and

have additional degeneracy. For example, in the N ¼ 36

Hamilton walk ensemble, 3608 pairs of conformations

become indistinguishable with an absolute uncertainty of

1.24 (equal to
ffiffiffi
5

p
� 1) or relative uncertainty of 0.0343.

The full enumeration ensembles, discussed previously,

have limiting characteristics largely governed by simple re-

lationships among extended conformations. None of these

situations arises when the ensemble of interest is restricted to

FIGURE 15 The marginal dimensionality, n, is plotted as a function of the

chain length, N. The marginal dimensionality for N was calculated from the

logarithmic slope between the two points for N � 1 and N 1 1 in Fig. 14.

FIGURE 16 Mean information content for Hamilton square walks as

a function of sequence separation for single distance constraints (N ¼ 9, 16,

25, 49), a full enumeration ensemble (FE) (N ¼ 16) and a stochastic,

nonexhaustive ensemble of unconstrained conformations (FES) (N¼ 49).�:
16-mer FE unit; �: 49-mer FES; }: 9-mer HW; n: 16-mer HW; /: 25-mer

HW; .: 49-mer HW.

FIGURE 17 Conformational indistinguishability for Hamilton walks. v(r)

is plotted as a function of the relative noise, e/N, for the Hamilton walk

constrained ensembles (see Fig. 14). �: 9-mer; �: 16-mer; }: 25-mer; n: 36-

mer; ,: 49-mer.
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compact conformers. Thus it is not clear at this point whether

the similarity in (normalized) pair distributions arises from

some fundamental principle or from specific geometric

constraints.

We note that the pair distributions show multimodal

character (notice the small break in the curve near eab/N ¼
0.03 in Fig. 14), as we saw in our earlier work on nonlattice

chains (Sullivan and Kuntz, 2001). Very similar v(r)
distributions are obtained using off-lattice polyalanine chains

(Fig. 18). Note that the 30 residue chains with 58 dihedral

degrees of freedom closely approximate the distribution

from a stochastic sampling of a 60 bead (58 degrees of

freedom) 2D lattice walk.

Relating information loss to noise

Extracting a relationship between information loss and noise

requires a detailed model of how noisy messages are

misread. One such model uses the ‘‘noise sphere’’ concept

outlined in the Methods section. Briefly, a set of W distinct

messages, {wi}, becomes scrambled as noise is introduced

and some messages become indistinguishable. Note that this

approach requires that after the noise has been introduced,

every conformer still be a proper member of the set; distorted

(off-lattice) geometries are not allowed. We define a ‘‘noise

sphere’’ in which conformations wj that are within a hyper-

sphere of radius r centered about conformation wi are

indistinguishable. The radius r can be associated with any

measure of noise and formulated with any explicit error

distribution function: we use either RMSD or ea,b and

assume a uniform distribution of noise.

This procedure can be used for entire conformations, but

as noted in the methods section, it is also directly applicable

to information loss for individual constraints or sets of

constraints. In Fig. 19 we show the fractional information

loss for the [d]1,N distance element for 2D chains as

a logarithmic function of the noise magnitude that we take

as the noise sphere radius. Although there is some small

dependence of normalized loss on the chain length, the

curves indicate a smooth relationship with half of the in-

formation lost when the noise magnitude is equal to the lat-

tice spacing.

For 2D lattice walk ensembles, the relationship between

information loss per degree of freedom and ea,b (derived via

Eq. 10) is shown in Fig. 20 a. The curves relating

information loss and coordinate RMSD for the same en-

sembles are shown in Fig. 20 b. Fig. 21 shows similar plots

for Hamilton walks. At very low noise magnitudes, there

is no information loss, as expected for a set of discrete con-

formers. As the noise increases beyond a critical value, there

is a region of barely perceptible loss as the most similar

conformers are merged. At some point, increasing error

causes major information loss because many conformations

populate the average noise sphere. Finally at large noise

levels, there is a slow loss of information because only the

most different conformers are left to merge.

To summarize this section: the noise sphere model allows

a straightforward treatment of the effect of noise on in-

formation content for individual distance elements, sets of

distance constraints, and full enumeration conformational en-

sembles. Not surprisingly, the information loss/noise curves

are the steepest when the noise magnitude is near the lattice

spacing. Most of the chain length dependence can be re-

moved by reporting information per residue, which is sen-

sibly constant at longer chain lengths.

FIGURE 18 Conformational indistinguishability for stochastic polyala-

nine ensembles (see text and Fig. 14). �: Yarn 30 extended; �: Yarn 30

compact; ¤: 2D lattice stochastic N ¼ 60; Numbered points 7–15: Limiting

distances for N ¼ 7–15 for 2D extended walks (see Fig. 14). Yarn e values
are divided by 3.8N. 2D lattice e values are divided by N.

FIGURE 19 Relative information loss for [d]1,N, full enumeration

ensemble, for N ¼ 9 (�), 11 (�), 13 (}), 15 (n).
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Information per constraint

As a practical matter, experimentalists are interested in how

much information can be extracted from a necessarily limited

set of measurements. This question has been addressed at

various levels of sophistication by many authors. For

example, Shakhnovich and Gutin, (1990) have studied

a model of polymer chains where the entropy loss on

random cross-linking yields a leading term proportional to

the number of cross-links per residue. Our analysis of exact

constraints on fully enumerated conformers also yields some

limiting answers. For a 2D self-avoiding walk on a square

lattice a single optimal measurement can provide ;log2N
bits (Figs. 2 and 3) whereas N beads can be fixed on the

lattice with N�2 constraints for any given conformer, or

;1.5 bits/constraint. Compact structures, such as the 2D

Hamilton walks, can yield even more information per

constraint (Fig. 11). If the optimal set of constraints is not

available, more measurements are needed. For example, for

N ¼ 12, 17 constraints are needed to supply 14 bits or 0.8

bits/constraint (Fig. 7). If constraints are chosen randomly,

many more would be required to supply the same in-

formation. Thus, for exact (noise-free) constraints, one might

expect ;0.5 bits/constraint over a random set of measure-

ments. Shakhnovich and Gutin give similar numerical re-

sults when converted into the same units. They report 0.5–

1.5 bits/constraint over the chain lengths we consider.

If we turn to constraints that contain random noise, the

information content decreases further. Using Fig. 19 we can

estimate that noise levels of ;0.1 lattice units for individual

distance constraints cost less than 10% of the information per

residue, whereas noise levels comparable to the lattice

spacing would require doubling the number of constraints to

achieve the same information content as noise-free measure-

ments. For noise levels greater than the lattice spacing, the

information content per residue diminishes very rapidly. Fig.

19 suggests that at noise levels of twice the lattice length, five

times as many constraints would be needed compared to

the exact constraints. These numbers are, of course, very

FIGURE 20 Information loss per degree of freedom for full enumeration,

for N¼ 7 (/), 8 (,), 9 (.), 10 (1), 11 (3), 12 (*), 13 (d), 14 (n), 15 (¤). The

factor (N � 2.29) comes from IS ¼ 1.43(N � 2.29), a recasting of the self-

avoiding walk equation forW(N) in Table 3. (a) Plotted against e. (b) Plotted
against coordinate RMSD.

FIGURE 21 Information loss per degree of freedom for compact two-

dimensional lattice structures for N ¼ 16 (�), 25 (}), 36 (n). (a) Plotted

against e. (b) Plotted against coordinate RMSD.
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approximate guides. Presumably, an analogous estimate

would apply to nonlattice models of polymers as long as dis-

crete conformers can be enumerated. For polypeptide chains,

the results of Troyer and Cohen (1995) imply an absolute

minimum separation of ;0.1 Å per residue or a relative

separation of 0.001 Å per residue2 for a 100 residue protein.

These limiting ‘‘conformational radii’’ are quite comparable

to those for the most similar conformers in 2D lattice walks

of the same length derived from Eq. 17.

In summary, by considering the effects of noise on single

distances, we are able to make estimates of how much

additional effort is required, in a best-case scenario, to

overcome the information loss due to random noise in

measurements.

DISCUSSION

Developing a general and quantitative treatment of in-

formation content for macromolecular ensembles raises both

fundamental and practical issues. One serious concern is the

need for enumeration of the conformations. Exhaustive

enumeration will always be limited by computational

resources and is not applicable to off-lattice models for the

foreseeable future (Sullivan and Kuntz, 2001). Feldman and

Hogue’s more optimistic view (Feldman and Hogue, 2002)

is based on the extreme value distribution function that may

overestimate the number of structures at small RMSD. The

real goal for off-lattice structures is an analytic distribution

function with sufficient accuracy to derive thermodynamic

properties. The relative simplicity of the v(r) vs. e curves

offers some hope that such functions can be devised, al-

though the multimodal character of the curves indicates that

direct stochastic sampling may not suffice to probe the most

closely related conformers.

The data for various lattice and off-lattice systems (Table

3) raises the question of what reference state is most

appropriate for comparisons among different models. The

most obvious choice is an unconstrained ideal gas. This is

roughly analogous to measuring thermodynamic energies

using E ¼ mc2; it gives the right answers in a very awkward

form. The important point is that the choice of lattice and

lattice move set (or any other prior constraints) influences the

information content of the resulting ensemble, with varying

amounts of residual information (entropy) being associated

with the set of choices.

The application of noise theory requires the development

of parametric noise models and a set of choices for parameter

values. There is currently little guidance from physical

principles for choosing error metrics and clustering methods.

We elected to use a very simple formulation of the problem

based on the application of the noise sphere model to fully

enumerated lattice ensembles. We postpone a treatment of

energetic differences among conformers, although they

could be put directly into Eq. 10 as population weights.

We assume the noise to be white noise, which implies uni-

form probability of ‘‘scrambling’’ for all conformers within

the noise sphere. More realistic, distance-dependent noise

functions could also be readily incorporated. We chose dis-

placement measures pragmatically rather than attempting

a full physical analysis. We noted earlier that the noise

sphere model is formally adapted to accept other displace-

ment metrics. More sophisticated entropic clustering mod-

els are available from information theory (Guiasu, 1977).

However, their computational complexity is extremely high,

and they are not practicable even for small 2D ensembles.

Although our specific results for the information per

constraint and information lost as a function of noise are

limited to the ensembles studied, the general features of these

curves can provide useful insight into experimental design. It

certainly should be possible to extend these ideas to proteins

and nucleic acid polymers. In situations where diverse types

of data are used and noise propagation is poorly understood,

maximum-information optimization using hypothetical

models of transmission errors could help determine which

combinations of various measurements are most informative.

This would be a first attempt toward improving the utility of

measurements in such systems, a critical step if we are to

improve the quality and speed of current structure de-

termination methods (Rabitz, 1989).

CONCLUSIONS

1. Information content of distance constraints increases as

the log of the sequence separation for all systems studied

except square Hamilton walks where a limiting value is

reached as the sequence separation reaches �N.
2. Although a single noise-free distance constraint, namely

the end-to-end distance, can select individual conformers

from an ensemble and construction methods exist that

use as few as N�2 distance constraints per conformer,

the size of the set of constraints needed to uniquely

partition the entire ensemble is not known in a general

way. The problem is inherently complex (Chan and Dill,

1990) arising from correlations among distance elements

that are largely local in sequence space. We show that

a simple greedy algorithm can supply an arbitrarily high

percentage of the total information (e.g., 95%) with many

fewer than N�2 constraints. On a practical level, ran-

domly selected exact constraints provide much less in-

formation, which we estimate to be 0.5 bits/constraint, on

the average, for 2D lattice ensembles.

3. Using the ‘‘noise sphere’’ model, we show that noise

reduces information content in a surprisingly universal

way for fully enumerated lattice walks and maximally

compact Hamilton square walks. It is not possible to use

the same model for off-lattice ensembles without some

method of estimating the total number of conformations.

4. The slope of the information loss versus noise curves can

be directly related to the number of active or ‘‘effective’’

degrees of freedom for the ensemble.
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5. A complete quantitative treatment of information content

is surprisingly difficult. Many technical issues arise that

involve additional assumptions that influence the numer-

ical results. These issues include: choice of potential

functions, clustering methods, and noise distribution

functions among others. There is currently little guidance

from physical principles or experiment for this selection.

More work is needed to clarify the best way to extend

these studies to off-lattice ensembles.
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