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Instabilities in the Transient Response of Muscle

Andrej Vilfan and Thomas Duke
Cavendish Laboratory, Cambridge CB3 0HE, United Kingdom

ABSTRACT We investigate the isometric transient response of muscle using a quantitative stochastic model of the
actomyosin cycle based on the swinging lever-arm hypothesis. We first consider a single pair of filaments, and show that when
values of parameters such as the lever-arm displacement and the cross-bridge elasticity are chosen to provide effective energy
transduction, the T2 curve (the tension recovered immediately after a step displacement) displays a region of negative slope. If
filament compliance and the discrete nature of the binding sites are taken into account, the negative slope is diminished, but not
eliminated. This implies that there is an instability in the dynamics of individual half sarcomeres. However, when the symmetric
nature of whole sarcomeres is taken into account, filament rearrangement becomes important during the transient: as tension is
recovered, some half sarcomeres lengthen whereas others shorten. This leads to a flat T2 curve, as observed experimentally. In
addition, we investigate the isotonic transient response and show that for a range of parameter values the model displays
damped oscillations, as recently observed in experiments on single muscle fibers. We conclude that it is essential to consider
the collective dynamics of many sarcomeres, rather than the dynamics of a single pair of filaments, when interpreting the
transient response of muscle.

INTRODUCTION

The transient response of muscle to a sudden adjustment of

its extension, or to an abrupt change in load, has been one

of the most important sources of information about the

mechanism of contraction for over three decades. Ever since

the pioneering work of Huxley and Simmons (1971),

experimental data on transients has informed theoretical

models of the interaction between myosin and actin (Huxley

and Simmons, 1971; Hill, 1974; Eisenberg et al., 1980; Chen

and Brenner, 1993; Huxley, 2000), providing a more detailed

picture than could be obtained from the force-velocity

relation (Hill, 1939; Huxley, 1957) alone. The reason is that

the actomyosin interaction involves several processes which

occur on different timescales, and these individual compo-

nents can be resolved during the transient response (Huxley

and Simmons, 1971; Ford et al., 1977, 1985, 1986; Brenner,

1991; Brenner et al., 1995). The quickest process is the

elastic deformation of the myosin cross-bridges that link the

thick and thin filaments. Rapid transitions between two or

more different bound states of the myosin molecule are

thought to be the next fastest events, whereas detachment

and reattachment of myosin heads occur on a slower

timescale.

In an experiment to determine the isometric transient

response, a muscle fiber is held at both ends to prevent it

from contracting. The muscle is then suddenly shortened (or

stretched) by a fixed amount, and the tension T that it

generates is measured. Immediately after the imposed

change of length, the tension shifts from the isometric value

T0 to a new value, which is termed T1. But shortly afterwards
(typically within 2 ms), the tension adjusts to a new value,

termed T2. Subsequently, it gradually reverts to the origi-

nal isometric value T0, and the entire transient response is

usually completed in a fraction of a second. It is generally

accepted that the initial response T1 corresponds to the

mechanical deformation of cross-bridges and provides

a direct measure of their elasticity (Huxley and Simmons,

1971). The interpretation of T2 is rather more controversial. It

is often attributed to force generation by the working stroke

of bound myosin molecules (Huxley and Simmons, 1971;

Hill, 1974; Eisenberg et al., 1980; Huxley and Tideswell,

1996; Brenner et al., 1995; Duke, 1999, 2000) and this

interpretation has recently gained support from x-ray in-

terference techniques applied to shortening fibers (Irving

et al., 2000; Piazzesi et al., 2002b). But alternative models

suggest that the force regeneration might be due, in part, to

the rapid binding of new myosin heads to the thin filament

(Brenner, 1991; Howard, 2001), or that it might involve the

activation of the second myosin head (Huxley and Tideswell,

1997).

In this article, we wish to address a fundamental problem

connected with the interpretation of force transients. The

present theories are all based on the consideration of a sin-

gle pair of filaments, i.e., one filament containing myosin

molecules, interacting with one actin filament. The dynamics

of this filament pair is generalized to that of a whole muscle

fiber by assuming that all filament pairs in a fiber behave in

exactly the same way. This assumption is certainly justified

as long as there are no static or dynamic instabilities in

the system. However, the possibility of such instabilities

has been known for a long time (Hill, 1974). Moreover,

a stochastic model of the actomyosin cycle, based on the

swinging lever-arm hypothesis, has shown that instabilities

do arise when values of parameters such as the lever-arm
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displacement and the cross-bridge elasticity are chosen to

provide effective energy transduction (Duke, 1999, 2000).

Such instabilities would give rise to a region of negative

slope in the T2 curve of a single filament pair. Several

reasons have been advanced for the absence of any negative

slope in the experimentally determined T2 curve. Huxley and
Simmons (1971) argued that the power stroke is subdivided

into several small steps, and fixed the step size so that the T2
curve had zero slope for limitingly small changes of length.

In the model proposed by Eisenberg et al. (1980), the flatness

of the T2 curve was explained by a broad distribution of

cross-bridge strain after attachment, combined with a specific

strain dependence of the transition rates to ensure the proper

occupancies of the two bound states. A further explanation

involved the compliance of the filaments and the distribu-

tion of binding sites on the thin filament in addition to

a subdivided power stroke (Huxley and Tideswell, 1996).

Duke (1999) has suggested that the flat T2 curve of a muscle

fiber can arise despite an instability in the dynamics of a

single pair of filaments, owing to the symmetry of a sar-

comere. We investigate this possibility further in this article.

METHODS

Simulation of the stochastic evolution of the system was performed using the

Gillespie kinetic Monte Carlo algorithm, which works as follows. In each

simulation step the rates of all possible transitions are calculated. The time

until the next event is chosen as a random number with an exponential

distribution and the expectation value given by the inverse of the sum of all

rates. The event itself is chosen randomly with a statistical weight

proportional to its rate. In the situations with stiff (noncompliant) filaments

and continuous binding sites the transition rates can be factorized into factors

that depend only on the backbone position (which are the same for all motors

in a group) and factors that only depend on the binding position of a motor

(which does not change with time unless that motor undergoes a transition).

This allowed us to use a very efficient (n log n) algorithm based on binary

trees.

We assumed complete mechanical relaxation of the system in each step,

i.e., the strain of all elastic elements is equilibrated before the next transition

takes place. The structure involving sarcomeres, filaments, and myosin

heads was described as a circuit of elements with given resting lengths and

compliances. The strain of every cross-bridge was calculated, given the

constraint of fixed total length of the system (isometric conditions), or of

fixed force acting on the ends of the system (isotonic conditions).

The T2 transients were always determined 2 ms after the stretch/release.

All other parameter values are summarized in Table 1.

MOTORS ACTING BETWEEN A SINGLE PAIR
OF FILAMENTS

Isometric transient in a swinging lever-arm model

We model the chemical cycle of a myosin head as described

in Duke (1999, 2000) and shown in Fig. 1. A molecule can

exist in either a detached state (D) or in one of the attached

states, A1 (with ADP�Pi) or A2 (with ADP). The state A1 is

also referred to as the weak-binding state (Brenner, 1991).

The chemical transition between states A1 and A2 is

concomittant with a conformational change of the molecule,

in which the lever arm moves through displacement d. From
state A2 the head undergoes another conformational change

with a lever-arm shift d, associated with ADP release. In the

ATP-rich physiological environment, this step is quickly

followed by detachment of the head and we therefore skip

the transitional state (A3) in our model. The attachment and

detachment rates, which are summarized in Table 1, deter-

mine the shape of the force-velocity relation, but have little

influence on the transient response to length steps, which

mainly depend on the power-stroke displacement d and the

elastic constant K of the myosin cross-bridge. We assume

that the transitions A1$ A2 take place on a faster timescale

than the detachment and reattachment of heads. Therefore,

once a head has bound with strain j in the state A1, its state

can be described as a statistical ensemble of the states A1 and

A2 with probabilities given by the Boltzmann factors

P2ðjÞ ¼ 11 exp
�DGstroke 1

1

2
Kd

2
1Kdj

kBT

� ��1

(1)

and P1(j) ¼ D�P2(j), where DGstroke is the free energy

change associated with phosphate release.

TABLE 1 Model parameters

Cross-bridge spring constant K 2.5 (1.5*) pN/nm

Power stroke D 8 nm

d 0.328 nm

Free energy gain DGstroke 60 pN nm

Transition rates kbind 40 s�1

kunbind 2 s�1

k1!2 1000 s�1

k�ADP 80 s�1

Thermal energy kBT 4.14 pN nm

Dimensionless parameters e0 ¼ Kd2/2kBT 19.3 (11.6*)

e1 ¼ Kd2/2DGstroke 1.33 (0.8*)

e2 ¼ Kdd/kBT 1.6 (0.95*)

g1 ¼ k�ADP/kbind 2

g2 ¼ kunbind/kbind 0.05

Spacing between binding sites c 5.5 nm

Effective lateral cross-bridge

bending stiffness

KA 15 pN nm

Actin elasticity g 44,000 pN

*The numbers in parentheses show an alternative parameter set, corre-

sponding to the oscillating case.

FIGURE 1 Reaction scheme for a myosin head. The dashed lines

represent transitions which are considered sufficiently slow to be neglected

in the calculation.
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Now consider a filament containing N myosin motors

interacting with an actin filament which is held to prevent it

from sliding. If NA heads are bound to the actin with

a distribution of strains F(j) (normalized to 1), then the

isometric force that they generate is

T0 ¼ NA

ð
FðjÞKðj1P2ðjÞdÞdj: (2)

If a stretch Dx is suddenly applied to the pair of filaments, the

force will first change to

T1ðDxÞ ¼ T0 1NAKDx; (3)

as the cross-bridges are deformed. In the next instance,

transitions between states A1 and A2 occur and the

probability distribution reequilibrates to P2(j 1 Dx). As

a result the force adjusts to

T2ðDxÞ ¼ NA

ð
FðjÞKðj1Dx1P2ðj1DxÞdÞdj: (4)

As a first approximation, we can neglect the distribution of

strains and assume j ¼ 0 for all myosin heads, which allows

us to calculate the T2 curves analytically. Their shape

depends on two dimensionless parameters,

e0 ¼
Kd

2

2kBT
; (5)

e1 ¼
Kd

2

2DGstroke

; (6)

which provide a measure of the energy stored in the elastic

element when the head performs a power stroke (A1! A2).

The parmeter e0 measures this energy relative to the thermal

energy, while e1 compares it to the magnitude of the

chemical free-energy change DGstroke that accompanies the

power-stroke transition. Note that if e1\1, the power stroke

can occur immediately after the myosin head binds to the

thin filament; but if e1 [ 1, the conformational change is

energetically inhibited initially, and it is only likely to occur

once the thin filament has been moved forward by the ac-

tion of other motors. On grounds of efficiency of energy

transduction, we expect the value of e1 to be as high as

possible, while ensuring that there is sufficient chemical

energy to drive the power stroke, i.e., e1 � 1 (Duke, 1999).

The power-stroke displacement d has been measured directly

in a number of single-molecule experiments, and the values

obtained range between 5 and 10 nm (reviewed by Tyska and

Warshaw, 2002). Data on the cross-bridge elasticity K are

less reliable, because there are inevitably other sources of

compliance in the system (Veigel et al., 1998). But indirect

evidence is provided by the energetic efficiency of muscle,

which peaks at ;50% (Kushmerick and Davies, 1969;

Barclay, 1998; Piazzesi et al., 2002a). Thus a lower estimate

for the energy stored in the elastic element after the power

stroke is one-half the free-energy change accompanying the

hydrolysis of an ATP molecule DGATP � 20 kBT, which

leads to e0 >
;

10. Taking into account that not all energy

stored in the spring can be converted to mechanical work one

obtains a better estimate e0 � 20 (Duke, 1999) (which is

consistent with e1 � 1 if most of the energy of hydrolysis is

used to power the stroke DGstroke � DGATP). This cor-

responds to an elastic constant K ¼ 2.5 pN/nm if a power-

stroke distance of d ¼ 8 nm is assumed.

The form of the T2 curve depends critically on the values

of these dimensionless parameters. If e0[2, an interval with

a negative slope (a hysteresis) exists (Hill, 1974). This means

that under isotonic (constant load) conditions the system can

be bistable. The location of the interval of negative slope

depends on the value of e1. If the hysteresis spans the origin,
then the state with Dx ¼ 0 will be unstable under isotonic

conditions. Putting dT2=dðDxÞjDx¼0\ 0 we see that this

occurs if

1� 1

e0
lnðe0 � 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0ðe0 � 2Þ

p
Þ

� ��1

\e1

\ 1� 1

e0
lnðe0 � 11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0ðe0 � 2Þ

p� ��1

(7)

With a value of e1 � 1 the T2 curve always has a negative

slope around the stationary point. For example, with e0 ¼ 20,

Eq. 7 yields 0.85\ e1\ 1.22. However, it should be borne

in mind that this calculation does not take into account the

distribution of strains on cross-bridges within the ensemble,

and so the actual range might deviate slightly from this

estimate.

An example of the T2 transient for a group of myosin

heads between two firmly clamped filaments is shown in

Fig. 2.

FIGURE 2 The T2 transient response to a sudden extensionDx for a group

of 300 motors in the isometric state for two different values of the parameter

e1. The dotted and the dashed-dotted lines shows the response of a group of

motors which are pulling against an elastic element instead of being

completely isometric before the length step (although the length step is then

imposed on the motors alone, without the elastic element). For each value of

e1, values of the other parameters are listed in Table 1.
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Group of stiffly coupled motors under
near-isometric conditions

For a single pair of filaments, true isometric conditions imply

that both filaments are held fixed. However, experimental

conditions are usually near isometric, in that the average

velocity is zero, but the filaments still have the freedom to

move. This situation occurs, for example, if both filaments

are held at their ends by a flexible spring (in which case the

motors cause the filaments to slide until the stall force is

reached), or if the filaments suffer a constant load which is

precisely adjusted to prevent net sliding. In this case the

conditions are actually isotonic (or nearly so) and the

instability discussed in the previous section implies that there

is no steady state of the system with zero velocity when Eq. 7

is satisfied. Instead, as shown in Fig. 3, the pair of filaments

oscillates in near-isometric conditions. The mechanism that

generates the oscillations is the following. An ensemble of

bound motors pulling against a constant load has two stable

configurations: one with a majority of motors in state A2, the

other with the majority in state A1. Because the detachment

of motors is faster from state A2 than from state A1, the total

number of bound motors decreases when the system is in the

first configuration. As a result, the load per motor increases

until the remaining motors cannot support the load any more,

whereupon the system flips into the second configuration.

Subsequently, the number of bound motors starts to grow

again, and when the load per motor falls below a critical level

the system flips back to the first configuration. Repetition

of the cycle gives rise to an oscillation whose asymmetry

reflects the differences in attachment and detachment rates.

Could the isometric transient be modified if it is measured

in near-isometric conditions, instead of exactly isometric

conditions? Fig. 2 shows the average T2 response in the

situation where the filaments are held at the ends by an

external spring. In the nonoscillating case (e1 ¼ 1.33, dashed
line) the difference between this T2 curve and the one in the

strictly isometric state is only quantitative. The most

important result is that the range of negative slope in T2
remains. On the other hand, in the oscillating case (e1 ¼ 0.8,

dot-dashed line) the negative slope is flattened out because

of the broader distribution of strains on cross-bridges.

Effect of filament elasticity

The compliance of the thick and thin filaments is also

expected to affect the T2 curves. We model it by introducing

a linear elasticity in the backbone connecting the heads

(which is, to first order, equivalent to an elasticity in the track

the motors are running on) (Vilfan et al., 1998). With g being

the linear modulus of the filaments, which has the measured

value g ¼ 44,000 pN (Kojima et al., 1994), the spring

constant of a filament segment of length L is Kf ¼ L�1g. In

(Vilfan et al., 1998) a linear two-state model was used to

study the effect of filament elasticity on force-velocity

relations, showing that they reduce the isometric force if

the compliance of a filament segment between two bound

motors becomes comparable to the motor spring constant K.
Thin filaments are just stiff enough to prevent significant

losses due to this effect. However, the filament compliance

can have a significantly bigger effect on the transient

response. The result of a simulation is shown in Fig. 4.

Although the filament compliance almost halves the total

stiffness of the system, it leaves the major part of the interval

of negative slope unaffected.

FIGURE 3 (A) A group of motors pull-

ing against a spring. The curve shows the

spring extension y as a function of time t.

When the motors reach stall the average

velocity is zero, but fast oscillations occur

on the length scale of the power stroke. The

observed oscillations are characteristic of

the case where the criterion in Eq. 7 is

fulfilled. The simulation involved 300

motors pulling on an elastic element with

spring constant Kext ¼ 10 pN/nm, using the

alternative parameter set listed in Table 1.

(B and C) The mechanism of oscillations:

(1) When the majority of bound motors are

in state A2, the average detachment rate is

higher than the attachment rate, which leads

to a fall in the number of attached motors

(2). The force per bound motor, shown in B,

therefore increases. When the upper limit of

the hysteresis is reached, the system

abruptly jumps to the other fixed point in

which most bound motors are in the state

A1 (3). Because the detachment rate is low

in the state A1, the number of bound motors increases again (4) whereby the average force per bound motor drops. This eventually leads to a transition back to

the fixed point in which most motors are in state A2 (1), at which point the oscillation cycle repeats.
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Effect of discrete binding sites

So far we have assumed that a myosin head can bind

anywhere on the actin filament with equal probability.

However, in reality the binding sites on actin are c ¼ 5.5 nm

apart. In addition, the actin filament has a helical structure

with a half pitch of ;38 nm (7 monomers). We therefore

propose that the binding rate to a particular site is pro-

portional to the Boltzmann factor determined by the spring

distortion energy, composed of a longitudinal and a lateral

component

kbindðj;fÞ ¼ kbind exp �Kj
2
1KAf

2

2kBT

� �
; (8)

with j ¼ x � (i 1 7j)c and f ¼ pi=7; where j denotes the
repeat on the helix and i the consecutive number of the actin

monomer. The total binding rate at a given position x then

reads

kbindðxÞ ¼ kbind +
i;j

exp �Kðx � ði1 7jÞcÞ2 1KAðpi=7Þ2

2kBT

� �
:

(9)

These curves have been measured experimentally using

S1 myosin heads by Steffen et al. (2001) and the data were

fitted with KA¼ 15 pN/nm, the value which we use here. The

position dependence of the binding rate for these parameters

is shown in Fig. 5. A similar distribution has also been

measured for myosin V (Veigel et al., 2002).

The dot-dashed line in Fig. 4 shows the T2 response when
taking into account discrete binding sites and the elasticity of

actin filaments. As noted by Huxley and Tideswell (1996),

both the filament compliance and the discrete binding sites

contribute to the flattening of the T2 curve. However, our

simulation indicates that their combined effect is not

sufficient to cancel the negative slope with the parameters

used here. We therefore conclude that the absence of

negative slope in the measured T2 curves cannot be

explained in terms of a single-filament model, but requires

taking into account the action of serially connected

sarcomeres.

MOTORS IN MUSCLE SARCOMERES

Redistribution of filaments

The situation changes essentially if we take into account that

the experiments are performed on whole muscle fibers,

where several hundreds of sarcomeres are connected in

series, as shown in Fig. 6 D. The tension in each half

sarcomere must be the same, but the extension of each half

sarcomere can differ, provided that their sum equals the total

stretch of the muscle fiber. To see what happens in this

situation, it is instructive first to look at a minimum unit

consisting of two filament pairs, joined back to back as

shown in Fig. 6 B. This unit represents two thin filaments and

a thick filament, the basic building block of a sarcomere. A

sudden stretch of the unit will first displace both halves

equally, according to the elasticity of cross-bridges. But in

the next phase, when the distribution of states A1 and A2

equilibrates, the position of the thick filament can become

unstable. This means that a slight fluctuation in one direction

will cause the motors pulling the thick filament in that

direction to increase their force and those on the other side to

decrease it, and the thick filament will jump sideways to one

of the stable points. A schematic example is shown in Fig. 7.

The result of a simulation using different numbers of

filament pairs, connected in series (the situation illustrated in

FIGURE 4 T2 curves for a stiff (solid line) and an elastic (dashed line)

filament. The simulations were performed with a group of N ¼ 150 myosin

heads, attached to a filament of a total length 1000 nm and elasticity g ¼
44,000 pN. The dotted line was obtained when an additional segment of

length 500 nm of free actin between the clamp and the active part was taken

into account. The dot-dashed line shows the same situation, but additionally

taking into account discrete binding sites on actin. In the latter case the

binding rate kbind ¼ 100 s�1 was adjusted to give a realistic fraction of

attached heads in the isometric state, therefore g1 ¼ 0.8 and g2 ¼ 0.125. All

these effects together are still not able to completely cancel the negative

slope.

FIGURE 5 The binding rate kbind(x)/kbind of a myosin head as a function

of its position along the actin filament. The longitudinal spring constant was

K ¼ 2.5 pN/nm and the lateral spring constant was KA ¼ 15 pN nm.
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Fig. 6 C), is shown in Fig. 8. The interval of negative slope is
increasingly flattened out as the number of pairs increases.

Apart from the cancellation of the hysteresis, a shift in the

curves is also observable, corresponding to the transition

between the strictly isometric conditions and those where

a filament is held under isotonic conditions before the

stretch, cf. Fig. 2. The effect of redistribution can best be

seen if one plots the distribution of stretches of individual

half sarcomeres against the total stretch per half sarcomere

(Fig. 9). For large stretch amplitudes the distribution is

concentrated on the diagonal, in agreement with the ex-

pectation that all filaments experience the same stretch. For

two filament pairs in series, the distribution splits in the

intermediate range. The two peaks represent two stretches

for which the single-filament T2 curves produce the same

force. Their position is determined by the condition that the

average stretch must equal the value on the x axis. With four

filament pairs in series, a similar situation occurs, but with

three different regimes. First three out of four pairs get

displaced in one direction whereas the fourth is displaced in

the other direction. Then this ratio changes to two against

two and finally to one against three, before the regime with

all filaments being subject to the same displacement settles

in. With higher numbers of filaments in series (Fig. 9 C
shows the situation for 32) this pattern becomes increasingly

continuous. In the regime where the negative slope stretches

over the isometric point, the individual filaments perform

small oscillations (Fig. 3) while the whole muscle is held at

a constant length. These oscillations blur the distribution

further (Fig. 9 D). T2 curves for four different values of K are

shown in Fig. 10.

Isometric state

It is instructive to take a closer look at the parameters of the

globally isometric state (by globally we mean that the total

length of a fiber composed of many sarcomeres is constant,

rather than the positions of individual filaments) in the two

cases: one where the individual filaments oscillate and one

FIGURE 6 (A) A single actin filament interacting with a single myosin

filament. (B) A pair of actin filaments, interacting with a myosin filament.

(C) n ¼ 3 pairs of actin filaments, connected in series. (D) A musclelike

structure with n ¼ 3 sarcomeres connected in series and each sarcomere

containing p ¼ 3 thick filaments, connected in parallel via the Z-discs.

FIGURE 7 The force-displacement re-

lations of the left and the right half of

a myosin filament before (A) and after (B)
a length step. The sum of their displace-

ments must equal the total sarcomere

stretch, Dx11 Dx2¼ 2Dx. This condition

is imposed by plotting the force-displace-

ment relation of one set of motors as

a function of Dx1 (x axis) and that of the

other set as a function of Dx2 ¼ 2Dx �
Dx1 (upper x axis). The forces on the

myosin filament are in equilibrium if the

forces produced on both sides (T2(Dx1)

and T2(Dx2)) are equal, which is given by

the intersection of both curves. The

equilibrium is stable if the first curve

crosses the second from below and

unstable if it crosses it from above. If

there are three stationary points (B), the

central one is always unstable and those

to either side stable. The force-displace-

ment relation of the two-filament unit is

given by the force at the stable in-

tersection as a function of the mean

displacement Dx.
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where their positions just fluctuate. All data were determined

in a situation where a large number (32 in the simulation) of

filament pairs were connected in series and the total length

held constant (situation C in Fig. 6). One expects the

oscillating filaments to consume more ATP than the

nonoscillating filaments. The results are summarized in

Table 2. An exact comparison with experimental data is

difficult, because the fraction of attached heads in the

isometric state is not known reliably, and also because the

experiments were carried out at different temperatures and

with different types of myosin. For example, the value

measured by Barsotti and Ferenczi (1988), 0.4 ATP

molecules per second per head (with 25% of the heads

attached this gives 1.6 s�1 per attached head), is compatible

with the first scenario. However, other measurements give

higher values (Ebus and Stienen, 1996), more consistent with

the second case. We therefore conclude that from the ex-

perimental values of the ATPase rate in the isometric state

neither scenario can be excluded.

At high values of e1, the model shows an interesting

feature. In the isometric state the number of cross-bridges in

the state A2 can be very low, although the generated force

per attached cross-bridge is as high as 5 pN, in agreement

with single-filament measurements (Kawai et al., 2000). This

allows the muscle to support a load under isometric

conditions with little ATP consumption (Duke, 2000). It

might at first sound paradoxical that most of the isometric

force is generated by the prepower-stroke state A1. This is

possible because the myosin heads bind with a stochastic

distribution of strains. Because those with a negative strain

are more likely to undergo the power stroke and then detach,

the remaining ensemble produces a positive force. In this

aspect, the power-stroke actually serves to eliminate neg-

atively strained cross-bridges rather than direct generation

FIGURE 8 The T2 response of a single actin-myosin filament pair,

compared with 2, 4, 8, and 16 filament pairs in series. Each myosin filament

contains 300 heads.

FIGURE 9 Plot showing the probability density of transient stretches of

individual half sarcomeres ( y axis) against the total stretch per half

sarcomere. The three plots were obtained for (A) 2, (B) 4 and (C) 32 filament

pairs in series, each containingN¼ 300 motors. (D) shows a simulation with

32 filament pairs and e1 ¼ 0.8, in which spontaneous oscillations of

individual filaments take place, thereby blurring the individual shifts.

FIGURE 10 T2 curves with filament redistribution. The simulations were

performed with n ¼ 16 filament pairs in series, each containing N ¼ 300

myosin motors. Different curves show data for different values of the cross-

bridge elasticity K, corresponding to values of e1 between 0.8 and 1.6, and

e0 between 11.6 and 23.2.

TABLE 2 The parameters of the globally isometric state in

the nonoscillating and the oscillating case

Nonoscillating Oscillating

Elastic constant K ¼ 2.5 pN/nm K ¼ 1.5 pN/nm

e0 19.3 11.6

e1 1.33 0.8

e2 1.6 0.95

Fraction heads attached 92% 68%

Heads in state A2/attached

heads

3.5% 32%

Force/attached heads 4.8 pN 7.4 pN

ATPase/attached heads 1.7 s�1 17.4 s�1
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of positive force. This notion is in agreement with recent

experiments, which have shown that high phosphate con-

centration does reduce the isometric force significantly

(Cooke and Pate, 1985), but it does not have a visible effect

on the conformation of the myosin heads or even their

catalytic domains (Baker et al., 1999). But let us stress again

that this holds only for the isometric state. The force in

a contracting muscle originates mainly from the state A2.

Isotonic response

Another important class of experiments which provides

information on the actomyosin interation involves the iso-

tonic transient. Here the applied force is initially set at the

value of the stalling load T0, so that the fiber is prevented

from contracting. The force is then suddenly changed and

held constant at a different value, while the length of the fiber

is recorded. Some early experiments showed that after a small

step change of load, damped oscillations were imposed on

the steady contraction or extension of the fiber (Podolsky,

1960; Granzier et al., 1990). Such oscillations are particu-

larly clear in recent experiments on single muscle fibers

(Edman and Curtin, 2001).

One possible cause of this oscillatory response has

previously been suggested on the basis of the stochastic

model of the actomyosin interaction used in this article.

When e1[ 1, the chemical cycles of myosin motors on the

same filament can become synchronized at loads close to the

stalling force (Duke, 1999, 2000). A pair of filaments then

slides in a step-wise fashion under isotonic conditions. But

during steady shortening, the motors on different filaments

within the same muscle fiber operate out of phase, so that

there is no macroscopic manifestation of the steps. However,

an abrupt change in the load can cause the synchronization of

a large fraction of the bound motors, whereupon the steps do

become observable (Duke, 1999). Because the correlation of

the motors soon decays, the macroscopic steps fade and

a damped oscillation is seen.

A much stronger oscillatory response is seen in the regime

where individual pairs of filaments perform oscillations in

the near-isometric state (Fig. 3). The synchronized oscil-

lations can then be very pronounced after a small decrease in

the load, as shown in Fig. 11 A. On the other hand, no

damped oscillations are observed after a larger drop in the

load, e.g. to T0/3 (Fig. 11 B), because the individual filament

pairs immediately move out of the hysteretic regime. These

properties are in agreement with recent experiments on the

isotonic response of single muscle fibers carried out by

Edman and Curtin (2001).

In steady isotonic conditions, another kind of instability

can arise due to a hysteresis in the force-velocity relation-

ship. The possibility of such an instability was first discussed

in the context of a two-state ratchet model (Jülicher and

FIGURE 11 The isotonic transient

response of a sarcomeric structure to:

(A) a small drop, (B) a large drop, and

(C) a rise in the load, when the initial

value of the load is chosen precisely to

stall the contraction. The upper graph

shows the force per myosin filament as

a function of time. The lower graph

displays the length change per half

sarcomere and the number of attached

myosin heads per myosin filament,

which is a measure of the fiber stiffness.

The data were computed with N ¼ 300,

e1 ¼ 0.8 and with 50 myosin filaments

acting in parallel. The results were

averaged over 125 events (which has

the same effect as simulating that

number of sarcomeres in series). A

small drop in the load synchronizes the

cross-bridges and therefore causes ob-

servable macroscopic oscillations (A).

The oscillations are less pronounced,

but still visible after a small increase in

the load (C).
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Prost, 1995) and subsequently in a kinetic cross-bridge

model with a strain-dependent detachment rate (Vilfan et al.,

1999). With the parameters we use, this hysteresis covers

a rather small range of velocities and only results in a small

inflexion in the force-velocity curve (Duke, 1999, 2000).

DISCUSSION

In the past, the isometric transient model of muscle has been

modeled by considering the dynamics of a single pair of

filaments. A significant problem with this approach is that,

with a general choice of parameters in a cross-bridge model,

the T2 curve is not flat (Hill, 1974); it typically has either

a positive or a negative slope for limitingly small step

displacements. Thus, in order to reproduce the experimental

T2 curve of muscle, some of the parameters have needed to be

finely adjusted (Huxley and Simmons, 1971; Eisenberg et al.,

1980), and limitations have been imposed on the size d of the
power stroke and the rigidity K of the cross-bridges (Huxley

and Tideswell, 1996). In this article we have investigated the

isometric transient response using a stochastic model of the

actomyosin cycle. When values of the parameters d and K are

chosen to explain other characteristics of muscle, like the

force-velocity relation and the efficiency of energy trans-

duction, the T2 curve of a single pair of filaments displays

a region of negative slope, which cannot be eliminated by

factors including filament compliance and the discrete nature

of the binding sites on the actin filament. However, we argue

that the symmetric structure of sarcomeres must be taken into

consideration when computing the isometric transient re-

sponse of muscle. After a step change of length of a muscle

fiber, a redistribution of sarcomere lengths occurs within the

fiber. Some half sarcomeres contract, whereas others extend.

This redistribution always eliminates the negative slope,

leading to a flat T2 curve. It is a generic feature of unstable

elements connected in series, and does not require any special

values of model parameters.

Our model shows that there are two different regimes of

the microscopic dynamics in near-isometric conditions. For

a range of values of the parameter e1 close to unity, the

isometric point falls in the interval where the slope of the T2
curve is negative. In this case individual filament pairs

oscillate with small amplitude. In the other regime, where the

T2 curve has positive slope at the isometric point, the

individual filaments are stationary, apart from stochastic

fluctuations. The macroscopic manifestations of these two

regimes differ in few respects. Because the oscillations of

different filament pairs have different phases, oscillatory

motion is not normally observable on the scale of a whole

muscle fiber in steady conditions. However, a sudden change

of load can synchronize the oscillations and thereby make

them visible. The existence of damped oscillations in the

isotonic transient response of single muscle fibers (Edman

and Curtin, 2001) therefore argues in favor of the oscillating

regime. We note, however, that damped oscillations can also

be a manifestation of step-wise shortening (Duke, 1999),

which can exist in both regimes. Because the efficient

transduction of energy demands e1 � 1, which is close to

value of this parameter at the boundary of the two regimes, it

is possible that both regimes exist depending on conditions

such as the myosin isoform, phosphate concentration, pH,

ionic strength and temperature. Indeed, measurements by

Edman and Curtin (2001) show a dependence of the os-

cillation decay on the solution pH and on muscle fatigue.

Further experiments, in which conditions are systematically

varied, could shed more light on the mechanism of

oscillation.

As a final remark, we emphasize that according to our

model, the T2 curve of an individual pair of filaments differs

from that of a muscle fiber. Recently, assays have been

developed to measure the force-velocity relation of a single

filament within a half sarcomere (Kawai et al., 2000). In

order to test our predictions, it would worthwhile to develop

such high-precision techniques to measure the transient

response of a single filament.
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