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ABSTRACT HIV-1 protease is a major drug target against AIDS as it permits viral maturation by processing the gag and pol
polyproteins of the virus. The cleavage sites in these polyproteins do not have obvious sequence homology or a binding motif
and the specificity of the protease is not easily determined. We used various threading approaches, together with the crystal
structures of substrate complexes which served as template structures, to study the substrate specificity of HIV-1 protease with
the aim of obtaining a better differentiation between binding and nonbinding sequences. The predictions from threading
improved when distance-dependent interaction energy functions were used instead of contact matrices. To rank the peptides
and properly account for the peptide’s conformation in the total energy, the results from using short-range potentials on multiple
template structures were averaged. Finally, a dynamic threading approach is introduced which is potentially useful for cases
when there is only one template structure available. The conformational energy of the peptide—especially the term accounting
for the side chains—was found to be important in differentiating between binding and nonbinding sequences. Hence, the
substrate specificity, and thus the ability of the virus to mature, is affected by the compatibility of the substrate peptide to fit
within the limited conformational space of the active site groove.

INTRODUCTION

HIV-1 protease cleaves the gag and pol polyproteins of the

virus to release the structural proteins and enzymes required

for virus structure and replication. This process is essential

for the production of infectious virus particles; hence HIV

protease has been a major target for drug design against

AIDS. Structure-based drug design efforts resulted in six

FDA-approved protease inhibitors, all of which are pepti-

domimetics. Unfortunately, treatment with protease inhib-

itors can lead to the selection of drug-resistant virus mutants.

Understanding the basis of molecular recognition events in

HIV-1 protease is of vital importance in the development of

next-generation drugs against AIDS.

The protease is highly specific in catalyzing the cleavage

of 10 sites in the gag and pol polyproteins. These sites,

however, share little sequence homology and lack an

obvious consensus binding motif. It is known that the

protease can bind to a large variety of peptides but the

principles governing and the physical parameters determin-

ing substrate recognition and specificity remain poorly

understood.

Crystal structures of HIV-1 protease in complex with

a variety of inhibitors are deposited in the Protein Data Bank

(PDB). However, there was, until recently, a lack of

structures with natural substrates. The crystal structures of

an inactive (D25N) protease with six decameric peptides

corresponding to the natural cleavage sites within the gag

and pol polyproteins were solved (Prabu-Jeyabalan et al.,

2002). The structural information obtained enables us to

investigate how different sequences bind to the same

molecule.

To understand the principles of substrate recognition, we

applied an approach that has been used to address the inverse

protein-folding problem. In this method, referred to as

threading, the amino-acid sequence is threaded through

known three-dimensional structures and the energy of the

structure is evaluated based on pairwise contact potentials.

The application of this approach to peptide complexes was

originally proposed by Altuvia and co-workers and applied

to the complexes of major histocompatibility complex

(MHC) molecules (Altuvia et al., 1995, 1997; Schueler-

Furman et al., 2000). In the present work, we expanded upon

this approach to look at the substrate specificity of HIV-1

protease.

The recently solved structures of HIV-1 protease substrate

complexes provide ideal structural information to be used in

threading analysis. The number of conformations the peptide

can adopt in the binding groove is limited and defined by the

protease structure that imposes physical constraints on the

peptide. We applied several different threading procedures to

differentiate between binding and nonbinding sequences and

determine which factors are important in peptide recognition

of HIV-1 protease. The first method was that of Altuvia et al.

(1995), where a statistical potential matrix was used to

evaluate the interaction of peptide with the protease residues

it contacts (Miyazawa and Jernigan, 1996). The residues

were considered to be in contact or not according to three

different distance criteria. This corresponds to approximating

the interaction between residues by a square-well potential.
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In the second method, we employed distance-dependent

statistical potentials (Bahar and Jernigan, 1997). Then, we

further developed the force field to include the effect of

peptide conformation in the energy evaluation. With all three

methods, we investigated whether using multiple template

structures and taking the average improves the predictions

or not. Finally, we used a dynamic Monte Carlo relaxation

procedure after threading a peptide sequence onto the tem-

plate structure. After these analyses, we found that using

distance-dependent, long-range potentials and taking multi-

ple peptide conformations into consideration improves the

threading procedure, and that dynamic threading is a po-

tentially useful method when there is only one complex

structure available. Besides the long-range potentials ac-

counting for the interactions between the peptide and the

protease, the side-chain short-range potentials of the pep-

tide were found to be important in discriminating between

binding and nonbinding peptides. Although the active site

can also adapt to some extent depending on the sequence

bound, there is a constrained conformational space accessi-

ble to the bound peptide. Hence, the compatibility of the

peptide sequence with the space in the binding groove has an

important role in molecular recognition. This is also in

accordance with the idea that a shape rather than specific
amino acid residues is recognized by the protease (Prabu-

Jeyabalan et al., 2002), and implies that the peptide

conformation should be taken into consideration to improve

the predictions of threading methods.

MATERIALS AND METHODS

Template structures

The crystal structures of HIV-1 protease in complex with six of its natural

substrates (Prabu-Jeyabalan et al., 2000, 2002) are used as the template

structures. These structures are deposited in the Protein Data Bank (PDB)

with codes 1f7a (ca-p2), 1kj4 (ma-ca), 1kj7 (p2-nc), 1kjf (p1-p6), 1kjg

(rt-rh), and 1kjh (rh-in) (Bernstein et al., 1977; Berman et al., 2000).

Threading with a contact potential matrix

In this method, binding affinity of a peptide is predicted by the total energy

of interaction with contact residues. The contacts of the peptide in the

available template co-crystal structure are determined according to three

different criteria: 1), a-carbon atoms are closer than 7.5 Å (Covell and

Jernigan, 1990); 2), b-carbon atoms are closer than 7 Å (Altuvia et al.,

1995); and 3) any two atoms are closer than 4 Å (Madden et al., 1993). Then,

the amino-acid sequence of the query peptide is threaded onto the

coordinates of the peptide in the template. The contacts are assumed to be

conserved, and the total interaction energy is obtained by summing the

interaction energy values of peptide residues using a contact potential

matrix. The intraresidue energy for the host molecule (protease) amino acids

is not included in the computation as it is considered to be constant for all the

threaded peptides for a given template structure. The contacting residues are

determined for the conformation in the known structure, and therefore are

only approximate for different sequences threaded. Energy values for amino

acid-to-amino acid interactions are taken from the table of statistical pairwise

contact potentials derived by Miyazawa and Jernigan (1996).

Threading with distance-dependent potentials

The interaction energy of the peptide is calculated by employing distance-

dependent interresidue potentials (Bahar and Jernigan, 1997). These

potentials were derived using 302 structures from the PDB (Bernstein

et al., 1977; Berman et al., 2000). They are not fit to functions, and are

discrete instead, at 0.4 Å resolution. Bahar and Jernigan used both solvent-

exposed and residue-exposed reference states, which correspond to

formation of a specific residue-to-residue contact at the expense of contacts

with the solvent and with an average residue, respectively. An effective set

of parameters to be used in protein simulations were derived from the

potentials with these reference states that operate at different environments.

Bahar and Jernigan also presented effective contact potentials obtained from

the integration of radial distributions over different distance ranges. They

could reproduce Miyazawa and Jernigan potentials as one case of these

integrations. Miyazawa and Jernigan potentials were discussed to have quite

weak specificity as they have a high radius of interaction (6.5 Å). The

dominance of highly specific hydrophilic interactions at close separations

was demonstrated by Bahar and Jernigan potentials. Hence, these potentials

are expected to better account for specific side-chain contacts that may be of

great importance in peptide-to-protease interactions.

In the previous method of threading with a contact potential matrix, the

interaction energy between residues was approximated by a square-well type

potential. For any two residues, the depth of the well was determined by

the corresponding potential value in a statistical scoring matrix, and the

interaction was considered to be in or out of the well according to a distance

criterion. Hence, the selection of the distance criterion was a major concern

in this all-or-none approach. In this next method, we eliminated the need of

such a tentative criterion by using distance-dependent potentials. Two

effective interaction sites per residue (its a-carbon atom for the backbone

and a residue-specific side-chain site) were considered, and the energy of

interaction between any two interaction sites were evaluated depending on

the distance in between, and the type, of amino acid that the sites belong to.

The total interaction energy of the peptide is found by summation over all

n peptide and N protease residues as

ELRðFÞ ¼ +
n

i¼1

+
N

j¼1

ESSðrijÞ1 +
n

i¼1

+
N

j¼1

ESBðrijÞ1 +
n

i¼1

+
N

j¼1

EBBðrijÞ;

(1)

where rij is the distance between sites i and j in conformation F. The terms

account for potentials between side-chain sites (SS), side-chain and

backbone sites (SB), and two backbone sites (BB) of residues i and j,
respectively.

Threading with conformational potentials

In this method, the conformation of the peptide was taken into consideration

in calculating the total energy. To evaluate the conformational energy of the

backbone, the statistical potentials, as based on the virtual bond model given

by Bahar et al. (1997a) for bond angle and bond torsions, are used as

ESRðFÞ ¼ +
N�1

i¼2

EðuiÞ

1 +
N�1

i¼3

½Eðf�
i Þ=21Eðfi

1 Þ=2� DEðf�
i ;fi

1 Þ�

1 +
N�1

i¼3

½DEðui;f
�
i Þ1DEðui;fi

1 Þ�: (2)

Here, the first summation is to account for the bending of backbone bond

angles; the second is for the torsion of bonds f�
i and f1

i referring to the

rotational angles of the virtual backbone bonds preceding and succeeding the
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ith a-carbon, respectively. The last term in this summation and the last

summation account for the pairwise interdependence of the torsion and/or

bond angle bending.

For the side chains, the probability distributions of Keskin and Bahar for

packing of side chains in low-resolution models (Keskin and Bahar, 1998)

were converted into statistical potentials using the Boltzmann relationship.

The energy associated with a side-chain bond angle at state ui for a residue

type A is evaluated from

EAðuiÞ ¼ �RT ln½PAðuÞ=Po

AðuÞ�; (3)

where PA(u) is the statistical probability of finding that bond at angle u and

Po
AðuÞ is the background probability assuming uniform distribution

probability. In the discrete state formalism adopted, the background

probabilities are directly proportional to the mesh sizes. Analogous

expressions were used for side-chain bond lengths and torsions. The side-

chain conformational energy is summed up over all n side-chains in the

peptide as

E
s

SRðFÞ ¼ +
n

i¼1

Eðlsi Þ1 +
n

i¼1

Eðus

i Þ1 +
n

i¼1

Eðfs

i Þ; (4)

where lsi , u
s
i , andf

s
i are the bond length, bond angle, and torsion angle of side

chain i.
The total energy of the peptide is found by the summation of its backbone

and side-chain conformational energies, and the long-range interaction

energy with the protease, which was evaluated using distance-dependent

potentials as in the previous method.

Dynamic threading

The Monte Carlo (MC) minimization process used in dynamic threading is

based on the reduced model and MC method previously used to simulate

various protein structures (Bahar et al., 1997b; Haliloglu and Bahar, 1998;

Kurt and Haliloglu, 1999; Haliloglu, 1999). The algorithm is as follows:

both the protease and the threaded peptide are moved by a random

combination of perturbations and the energy of the structure after each

perturbation is checked. The protease and peptide are moved by randomly

choosing a backbone or side-chain interaction site, and perturbing the

Cartesian coordinates of the site by an amount Dx ¼ k (2r � 1), where r is
a random number 0 # r # 1, and k is a proportionality factor controlling

the strength of perturbation. Here, k was chosen to be 0.8 Å (consistent

with the above-cited previous applications in protein simulations), which

allows the protein to move only in the neighborhood of the original

conformation.

The acceptance of each move is controlled on the basis of the Metropolis

criterion (Metropolis et al., 1953): conformations whose energy is lower

than the previous one, or whose Boltzmann factor is greater than a random

number between 0 and 1, are accepted. The total energy considered here is

the combination of both short-range and long-range potentials summed over

the entire structure,

EðFÞ ¼ +
N

i¼2

EðliÞ1ESRðFÞ1E
S

SRðFÞ1ELRðFÞ; (5)

where ESR, E
S
SR, and ELR are from Eqs. 2, 4, and 1, respectively. The term

E(li) controls the stretching of the virtual backbone bonds by a stiff harmonic

potential with a force constant of 10 RT/Å2, which allows only relatively

small changes in the virtual bond lengths of the original structure.

In accordance with conventions, one Monte Carlo step (MCS) comprises

the N perturbations, where N is the total number of residues in the structure.

The structure of ca-p2 complex with PDB code 1f7a is used as the starting

conformation.

System and programs

All programs for threading analysis are written in FORTRAN programming

language and run on a Silicon Graphics R5000 workstation. Prediction

results from threading programs can be obtained in seconds, whereas a run

of 1000 Monte Carlo step relaxations takes ;2–3 h of computational time.

The programs can be run on UNIX operating systems and are available upon

request.

RESULTS

The 10 natural substrates of HIV-1 protease from the gag and

pol polyproteins and five peptides which were predicted to

have the lowest affinity to protease (Chou 1996) were used

as the test set. K. C. Chou used a discriminant function

algorithm based on the Markov-chain theory for predicting

the cleavability of peptides by HIV protease. The probabil-

ities of amino acids to occur at various positions along the

sequence were calculated using a training database consist-

ing of 62 substrates and 239 noncleavable peptides taken

from experimental data. Using these probabilities, the

algorithm predicts a discriminant function which is a criterion

for the affinity of a given peptide to HIV-1 protease. Here,

we use five lowest-affinity peptides as predicted by this

algorithm.

We also included the sequence of nc-p1 to the test set

by shifting it one amino acid to the N-terminal side (called

‘‘nc-p1s’’), as the sequence homology to the other sub-

strates increases in this case (notice F and L residues in the

P1 and P19 sites of p1-p6 and rh-in), but nevertheless

the original sequence is recognized by the protease. The

sequences of the substrates and peptides are given in Table 1.

TABLE 1 Ten natural substrates of HIV-1 protease and

lower-affinity peptides used in threading experiments

Name* P4 P3 P2 P1 P19 P29 P39 P49

ma-ca Ser Gln Asn Tyr Pro Ile Val Gln

ca-p2 Ala Thr Ile Met Met Gln Arg Gly

p2-nc Ala Thr Ile Met Met Gln Arg Gly

nc-p1 Arg Gln Ala Asn Phe Leu Gly Lys

p1-p6 Pro Gly Asn Phe Leu Gln Ser Arg

tf-pr Ser Phe Asn Phe Pro Gln Ile Thr

pr-rt Gln Ile Thr Leu Pro Lys Arg Pro

rt-rh Thr Leu Asn Phe Pro Ile Ser Pro

rh-in Ala Glu Thr Phe Tyr Val Asp Gly

auto Arg Lys Val Leu Phe Leu Asp Gly

pep1 Trp Arg Asn Arg Cys Lys Gly Thr

pep2 Met Met Lys Ser Arg Asn Leu Thr

pep3 Leu Ala Ala Ala Met Lys Arg His

pep4 Thr Thr Gln Ala Asn Lys His Ile

pep5 Val Asn Cys Ala Lys Lys Ile Val

nc-p1s Gln Ala Asn Phe Leu Gly Lys Ile

The names of substrates whose complex structures with HIV-1 protease are

available are in bold, and those of the lower-affinity peptides are

underlined.

*The substrates are identified with the abbreviations of proteins released

upon cleavage of the site: matrix (ma), capsid (ca), nucleocapsid (nc), trans-
frame peptide (tf ), protease ( pr), autoproteolysis site (auto), reverse

transcriptase (rt), RNase H (rh), and integrase (in).
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The peptide sequences in the test set were threaded onto

the crystal structures of the HIV-1 protease-substrate

complexes (Prabu-Jeyabalan et al., 2000, 2002) (see Ma-

terials and Methods). Different methods were used to obtain

an estimate of the binding affinity of the threaded sequences,

with the goal of differentiating between binding and

nonbinding sequences in the set.

Threading with a contact potential matrix

We applied the method of Altuvia et al. (1995) to score and

rank the binding affinities of peptides in Table 1 to HIV-1

protease. The threading methodology was described in detail

in the original reference and summarized here in Materials

and Methods. Table 2 gives the ranking of peptides

according to the binding affinities predicted by this threading

algorithm and using the ca-p2 complex structure as the

template with three different distance criteria to define

the contacting residues. Although it is reasonable to use the

same distance criterion as in the parameterization of the

statistical contact potentials, we applied all three criteria of

Altuvia et al. (1995) to enable a direct comparison of the

results.

In this threading method, determination of protease

residues that are in contact with the peptide is a major

concern. For the MHC system, the nearest atom criterion was

found to give the best results (Altuvia et al., 1995). Here, we

found that the criterion for a-carbon distances to determine

the contacting residues gives a better prediction compared

to others. Surprisingly, although it still ranks high, the

template structure’s own peptide (ca-p2) does not have the

highest score, indicating that this force field may not have

adequate precision. The shifted nc-p1s structure has a better

score than the nc-p1 sequence, which is actually recognized

by HIV-1 protease. Overall, there is a tendency that the

nonbinding peptides are ranked lower than the binding ones,

but it is not possible to differentiate the two using these

rankings.

We performed the same analysis with another substrate

(ma-ca) complex of HIV-1 protease (Prabu-Jeyabalan et al.,

2002). Table 3 gives the ranking results with this template

structure, and Table 4 gives the average of results from the

two template structures. With the ma-ca complex structure as

the template, the nearest atom criterion seems to work better.

However, the template structure’s own peptide (ma-ca) has

a very bad score, and is predicted to have a binding affin-

ity even lower than nonbinding peptides. The results of

threading are very much dependent on the template structure

used, as a peptide ranks high if its binding scheme is similar

to the template peptide. Hence, using multiple templates

potentially should provide a better fit for the binding

peptides. However, when the results from two template

structures were averaged, no improvement in ranking was

seen. Even when five and six template structures were used,

the results did not change much. Especially within the

coarse-grained scale of the a-carbon criterion, the residues

considered to be in contact are almost the same for different

template structures. Therefore, this crude force field is not

TABLE 2 Ranking of peptides according to their predicted

binding affinity by threading using a scoring matrix and

ca-p2 (1f7a) substrate complex structure as the template

Ca\ 7.5 Å Cb\ 7.0 Å Nearest atom\ 4.0 Å

rh-in �172.85 rh-in �156.31 rh-in �191.94

pr-rt �160.60 nc-p1s �136.52 ca-p2* �183.82

ca-p2* �150.18 p2-nc �134.47 pr-rt �181.67

nc-p1s �149.88 pr-rt �134.00 tf-pr �180.32

p2-nc �149.77 auto �132.99 p2-nc �175.01

auto �148.94 ca-p2* �130.85 auto �173.49

tf-pr �148.69 nc-p1 �130.70 nc-p1s �173.32

rt-rh �147.71 rt-rh �130.47 pep1 �172.38

nc-p1 �144.34 p1-p6 �128.70 rt-rh �167.89

ma-ca �141.14 tf-pr �124.45 ma-ca �164.35

p1-p6 �137.59 pep4 �122.15 pep4 �160.65

pep1 �137.31 ma-ca �118.21 pep3 �159.49

pep4 �136.83 pep1 �111.87 p1-p6 �158.99

pep3 �130.05 pep3 �105.73 nc-p1 �158.42

pep5 �119.28 pep2 �105.26 pep5 �148.15

pep2 �118.36 pep5 �101.65 pep2 �140.09

The predicted contact energies are given in dimensionless units of RT,

where R is the gas constant and T the absolute temperature. The nonbinding

peptides are underlined.

The residues in the template were considered to be in contact according to

three different criteria: their a-carbon atoms are closer than 7.5 Å; their

b-carbons are closer than 7 Å; and any nearest atoms are closer than 4 Å.

*Structure used as template.

TABLE 3 Ranking of peptides according to their predicted

binding affinity by threading using a scoring matrix and the

ma-ca (1kj4) substrate complex structure as the template

Ca\ 7.5 Å Cb\ 7.0 Å Nearest atom\ 4.0 Å

rh-in �173.56 rh-in �180.21 rh-in �142.58

p2-nc �156.68 p2-nc �151.93 pr-rt �131.82

ca-p2 �155.97 nc-p1s �150.58 tf-pr �127.89

pr-rt �155.65 nc-p1 �149.37 p2-nc �125.64

nc-p1s �154.98 rt-rh �149.20 ca-p2 �125.50

auto �154.88 ca-p2 �146.81 auto �125.12

tf-pr �153.93 p1-p6 �145.42 rt-rh �124.53

rt-rh �148.98 auto �142.41 nc-p1s �120.41

p1-p6 �146.54 pr-rt �141.04 ma-ca* �119.90

nc-p1 �143.82 pep4 �134.91 p1-p6 �117.01

pep4 �143.71 ma-ca* �133.14 nc-p1 �116.39

pep1 �142.76 tf-pr �130.51 pep1 �114.12

ma-ca* �140.00 pep1 �124.79 pep4 �110.65

pep3 �135.36 pep2 �116.41 pep3 �107.73

pep2 �124.13 pep5 �110.87 pep2 �96.25

pep5 �121.53 pep3 �110.35 pep5 �94.45

The predicted contact energies are given in dimensionless units of RT,

where R is the gas constant and T the absolute temperature. The nonbinding

peptides are underlined.

The residues in the template were considered to be in contact according to

three different criteria: their a-carbon atoms are closer than 7.5 Å; their

b-carbons are closer than 7 Å; and any nearest atoms are closer than 4 Å.

*Structure used as template.
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accurate enough to distinguish the subtle differences be-

tween the various peptide sequences.

Threading with distance-dependent potentials

We modified the calculation of interaction energy of the

peptide in threading by employing distance-dependent in-

terresidue potentials (Bahar and Jernigan, 1997). These

structure-derived potential functions have been previously

used in dynamic simulations and threading experiments to

find the tertiary structures of proteins (Jernigan and Bahar,

1996; Bahar et al., 1997b). They provide a more detailed/

precise force field for long-range interactions compared to

contact potential matrices.

Table 5 gives the results of threading with distance-

dependent interaction potentials using the two template

structures and the average of results from the two. In the

current energy evaluation scheme, there is no need for

a criterion to decide on the contacting residues. Rather,

a distance-dependent energy function is used with a less

coarse-grained model, considering two sites per residue; one

at its a-carbon atom and one at the side chain. This approach

improves the accuracy of the threading. In this case, the

template structure’s own peptides have reasonable rankings;

and, as expected, taking the average of two templates

improves the ranking. This technique can even distinguish

the subtly different nc-p1s sequence, which has a lower score

than the real substrate. The nonbinding peptides rank worse,

but the energy gap between the binding and nonbinding

peptides is not yet significantly separated.

Threading with conformational potentials

Besides the long-range interactions it makes with neighbor-

ing protease residues, the binding affinity of a peptide also

depends on its own conformation. The consideration of the

conformational energy gives a measure of how favorable the

given conformation is for a peptide, and to account for this

we incorporated short-range energies to the total energy.

Statistical short-range potentials for bond angles and torsions

were used to calculate the conformational energy of the

backbone and side chains of the peptide.

The threading results with conformational potentials are

given in Table 6 for two different template structures. When

the conformation of the peptide in the template is taken into

account in evaluating the energy, the template structure’s

own peptide has the best score in both cases. This results

from using a more detailed force field which defines the

energy of the peptide more precisely.

For the other sequences, it is not possible to differentiate

substrates and nonbinding peptides based on energy using

a single template; however, some substrates have lower scores

using one template and have high scores in the other (for

example, pr-rt and tf-pr; these sequences fit better to the

conformation of ma-ca, compared to that of ca-p2). Using

multiple templates provides more possible conformations

accessible in the binding groove than the binding sequences

can possibly assume. Therefore, taking the average of results

from the two templates improves the results as seen in Table 7.

The shifted nc-p1s sequence is identified as having lower

affinity than the real nc-p1 substrate, and ranked among the

TABLE 4 Ranking of peptides according to their predicted

binding affinity by the average of threading results from

two template structures, the substrate complexes:

ca-p2 (1f7a) and ma-ca (1kj4)

Ca\ 7.5 Å Cb\ 7.0 Å Nearest atom\ 4.0 Å

rh-in �173.21 rh-in �168.26 rh-in �167.26

pr-rt �158.13 nc-p1s �143.55 pr-rt �156.75

p2-nc �153.23 p2-nc �143.20 ca-p2* �154.66

ca-p2* �153.08 nc-p1 �140.04 tr-pr �154.11

nc-p1s �152.43 rt-rh �139.84 p2-nc �150.33

auto �151.91 ca-p2* �138.83 auto �149.31

tf-pr �151.31 auto �137.70 nc-p1s �146.87

rt-rh �148.35 pr-rt �137.52 rt-rh �146.21

nc-p1 �144.08 p1-p6 �128.53 pep1 �143.25

p1-p6 �142.07 pep4 �128.53 ma-ca* �142.13

mc-ca* �140.57 tf-pr �127.48 p1-p6 �138.00

pep4 �140.27 ma-ca* �125.68 nc-p1 �137.41

pep1 �140.04 pep1 �118.33 pep4 �135.65

pep3 �132.71 pep2 �110.84 pep3 �133.61

pep2 �121.25 pep3 �108.04 pep5 �121.30

pep5 �120.41 pep5 �106.26 pep2 �118.17

The predicted contact energies are given in dimensionless units of RT,

where R is the gas constant and T the absolute temperature. The nonbinding

peptides are underlined.

The residues in the template were considered to be in contact according

to three different criteria: their a-carbon atoms are closer than 7.5 Å; their

b-carbons are closer than 7 Å; and any nearest atoms are closer than 4 Å.

*Structure used as template.

TABLE 5 Ranking of peptides according to their predicted

binding affinity by threading with distance-dependent

interaction energies through different templates

rh-in �86.33 pr-rt �82.24 rh-in �83.77

pr-rt �83.58 rh-in �81.21 pr-rt �82.91

ca-p2* �83.20 rt-rh �80.43 rt-rh �80.69

p2-nc �81.04 nc-p1 �79.22 ca-p2* �79.78

rt-rh �80.96 ma-ca* �77.57 nc-p1 �79.67

ma-ca �80.64 p1-p6 �76.95 ma-ca* �79.10

auto �80.25 p2-nc �76.75 p2-nc �78.89

nc-p1 �80.13 ca-pa2 �76.37 p1-p6 �78.20

nc-p1s �79.50 tf-pr �75.92 auto �77.72

p1-p6 �79.45 auto �75.19 tf-pr �77.56

tf-pr �79.19 nc-p1s �74.77 nc-p1s �77.13

pep4 �78.04 pep4 �72.44 pep4 �75.24

pep5 �75.08 pep1 �66.78 pep5 �70.44

pep1 �73.55 pep5 �65.80 pep1 �70.17

pep2 �68.58 pep3 �64.80 pep3 �66.13

pep3 �67.46 pep2 �62.78 pep2 �65.68

The predicted contact energies are given in dimensionless units of RT,

where R is the gas constant and T the absolute temperature. The nonbinding

peptides are underlined.

*Structure used as template.
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nonbinders. The nonbinders are ranked lower than the binding

substrates, but once again, the energy difference between the

binding and nonbinding peptides is not significant.

However, when the five templates are averaged—we

excluded p1-p6 complex structure here, as the peptide

assumes a very different conformation than the others, as

seen in the crystal structure, and its inclusion worsens the

predictions as the peptide conformation is very important in

this method—the results improve significantly as given in

the right panel of Table 7. The only sequence that could not

easily be distinguished is nc-p1s, which does not clearly

belong to the nonbinders’ group, but has a score comparable

to the real sequence. This is likely because the sequence is

highly homologous to other substrate sites, even though it is

not itself a substrate. Otherwise, the energy gap between the

binding and nonbinding peptides is now ;10 RT, which
would allow identifying the two groups efficiently without

prior knowledge of their identities.

TABLE 6 Ranking of peptides taking into account both the interaction energy with protease and the short-range conformational

energy of the peptide

Name bb sc lr Total Name bb sc lr Total

ca-p2* 2.02 �22.26 �83.20 �103.44 ma-ca* �11.72 �5.89 �77.57 �95.18

rh-in 0.86 10.99 �86.33 �74.48 pr-rt �11.14 15.14 �82.24 �78.24

p2-nc 0.07 12.75 �81.04 �68.22 tf-pr �10.28 11.10 �75.92 �75.10

rt-rh 0.36 16.97 �80.96 �63.62 p1-p6 �8.95 19.82 �76.95 �66.09

p1-p6 �1.11 21.94 �79.45 �58.62 p2-nc �10.14 24.84 �76.75 �62.05

nc-p1 0.90 21.55 �80.13 �57.69 rt-rh �10.96 36.19 �80.43 �55.19

auto �0.34 24.09 �80.25 �56.50 pep2 �9.38 20.00 �62.78 �52.16

ma-ca �0.98 26.60 �80.64 �55.02 rh-in �10.36 41.62 �81.21 �49.95

nc-p1s �0.38 36.09 �79.49 �43.78 nc-p1 �9.63 40.36 �79.22 �48.49

pr-rt �1.37 42.42 �83.58 �42.54 nc-p1s �9.04 36.39 �74.77 �47.42

pep2 �0.69 26.95 �68.58 �42.33 pep5 �8.92 30.25 �65.80 �44.47

pep5 0.29 34.32 �75.08 �40.48 pep1 �9.59 35.31 �66.78 �41.07

tf-pr �1.17 41.34 �79.19 �39.02 auto �10.49 45.02 �75.19 �40.66

pep1 0.61 37.06 �73.55 �35.88 cap2 �9.65 49.66 �76.37 �36.37

pep4 1.97 43.24 �78.04 �32.83 pep3 �8.69 43.70 �64.80 �29.79

pep3 1.22 43.38 �67.46 �22.86 pep4 �7.91 54.18 �72.44 �26.17

The predicted contact energies are given in dimensionless units of RT, where R is the gas constant and T the absolute temperature. The nonbinding peptides

are underlined.

The total energy (total) used for ranking the peptides is the summation of backbone short-range energies (bb), side-chain short-range energies (sc), and energy

associated with long-range interactions evaluated by distance-dependent potentials as before (lr).
*Structure used as template.

TABLE 7 Ranking using the average of total energies in Tables 6 and the average of total energies from five templates

Name bb sc lr Total Name bb sc lr Total

ma-ca* �6.35 10.35 �79.10 �75.10 rt-rh* �7.70 10.89 �83.30 �80.11

ca-p2* �3.82 13.70 �79.78 �69.90 p2-nc* �6.54 13.47 �80.23 �73.31

p2-nc �5.04 18.79 �78.89 �65.14 rh-in* �6.95 19.78 �85.18 �72.34

p1-p6 �5.03 20.88 �78.20 �62.36 p1-p6 �6.40 22.90 �80.82 �64.32

rh-in �4.75 26.30 �83.77 �62.21 ca-p2* �5.65 23.75 �80.51 �62.42

pr-rt �6.26 28.78 �82.91 �60.39 pr-rt �8.01 30.55 �84.81 �62.27

rt-rh �5.30 26.58 �80.69 �59.41 ma-ca* �7.99 26.05 �80.23 �62.16

tf-pr �5.72 26.22 �77.56 �57.06 tf-pr �7.44 28.33 �80.41 �59.52

nc-p1 �4.37 30.95 �79.67 �53.09 auto �6.88 27.64 �79.53 �58.77

auto �5.42 34.56 �77.72 �48.58 nc-p1 �5.99 27.98 �80.01 �58.01

pep2 �5.03 23.47 �65.68 �47.24 nc-p1s �6.25 29.49 �80.73 �57.49

nc-p1s �4.71 36.24 �77.13 �45.60 pep2 �6.50 26.90 �69.12 �48.72

pep5 �4.32 32.28 �70.44 �42.48 pep1 �6.38 30.73 �71.30 �46.96

pep1 �4.49 36.19 �70.17 �38.47 pep3 �5.48 28.36 �68.86 �45.99

pep4 �2.97 48.71 �75.24 �29.50 pep4 �4.60 37.54 �77.45 �44.51

pep3 �3.74 43.54 �66.13 �26.33 pep5 �6.03 36.83 �72.53 �41.73

The predicted contact energies are given in dimensionless units of RT, where R is the gas constant and T the absolute temperature. The nonbinding peptides

are underlined.

The total energy (total) used for ranking the peptides is the summation of backbone short-range energies (bb), side-chain short-range energies (sc), and energy
associated with long-range interactions evaluated by distance-dependent potentials as before (lr).

*Structure used as template.
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Dynamic threading

As a last method, we modified the threading methodology by

introducing dynamics to allow the relaxation of the system to

equilibrate and minimize its energy after threading the query

amino-acid sequence onto the structure. This is potentially

helpful when there are not multiple structures to be used as

templates. We employed a Monte Carlo/Metropolis-type

dynamic minimization process with a simplified coarse-

grained model of the protein structure.

The total energy of the peptide, comprising long- and

short-range potentials throughout a minimization of 2000

MC steps (MCS), is given for three of the natural substrates

in Fig. 1. Two independent runs are made for each threaded

sequence. The results from both are given in the graphs as

separate curves in broken lines and they are quite similar.

For the threaded substrates in Fig. 1, there is a rapid relaxa-

tion and decrease in energy to approach the energy of the

template’s own peptide. The results for two of the non-

binding peptides are given in Fig. 2 in the same format as

Fig. 1. In this case, there is not a rapid relaxation of the

energy and the energy does not converge to the reference

energy during the simulation. The results are promising in

differentiating between binders and nonbinders; therefore,

we carried out the relaxation process for all the sequences in

the test set.

One case clearly demonstrated the efficacy of introducing

relaxation into threading. Fig. 3 gives the results for one of

the substrates (tf-pr) and one of the nonbinding peptides.

This substrate was predicted to have lower affinity than the

nonbinding peptide when threaded onto the ca-p2 structure

(see Table 6). Hence, the energy value at time zero in the

graphs is higher for the substrate. When the systems were

allowed to move with the force field, the energy of the

substrate relaxed quickly and became favorable (as with the

other substrates given in Fig. 1), whereas the nonbinding

peptide did not relax as fast, nor did it converge.

We calculated the mean total energy of the threaded

peptide during the simulations in various time windows, and

ranked them accordingly. In all time windows, the substrates

ranked higher than the nonbinding peptides, with the

FIGURE 1 Total energy of the substrate during energy minimization after

threading onto ca-p2 complex structure. The total energy comprises long-

range interactions of the substrate with protease and short-range energies to

account for its backbone and side-chain conformation. Note that the initial

energy value at time zero corresponds to the total energy given in Table 6

for that sequence. Two solid lines (the same in all graphs) are from the

simulations with the structure’s own substrate, ca-p2, which can be regarded

as the reference. With a rapid relaxation, the energy decreases to approach

the energy of the template’s own peptide.

FIGURE 2 Total energy of two of the nonbinding peptide sequences

during energy minimization after threading onto ca-p2 complex structure.

Refer to the caption to Fig. 1 for explanation. Contrary to substrates, the

difference between the reference energy is maintained throughout the

simulation.
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exceptions of the autoproteolysis site and the nc-p1s. A

larger energy difference was obtained between the binders

and nonbinders when the time window was in the first-half of

relaxation. The rankings of threaded peptides according to

their mean energy in different time windows of relaxation are

given in Table 8. Despite the high degree of similarity in two

independent runs, the fluctuations in the energy reduces the

reliability on the rankings if the differences are only a few

RT. When the two sequences mentioned above are not

considered, the differences between the mean energy value

of the worst ranking substrates and the best ranking

nonbinding peptides are in the order of 10 RT. Hence,

a significant energy gap is achieved between the two groups

of sequences.

When the results of the dynamic threading (Table 8) are

compared to the conventional static threading with a single

template (Table 6), there is a significant improvement in

prediction of binders and nonbinders. A short relaxation of

1000 MCS is enough for this improvement, and it takes

computationally very reasonable times (;2–3 h per se-

quence on an R5000 SGI workstation).

DISCUSSION AND CONCLUSIONS

Different threading methodologies employing force fields of

various levels of detail were applied to HIV-1 protease with

a test set consisting of both its natural substrate sequences

and nonbinding peptides. The aim was to find which method

gives better predictions to differentiate between the two

groups in the test set, and hence determine which factors are

important in the substrate recognition in HIV-1 protease. We

found that using a more detailed force field and using the

average of results from multiple template structures resulted

in better predictions.

In the first method applied, the interactions between the

peptide and protease residues in close proximity were ap-

proximated by square-well-type long-range potentials. The

depth of the well was determined by the type of amino acids

in contact, and taken from a statistical contact potential

matrix. The important point in this approach is to determine

the distance parameter of the square-well potential; that is,

the maximum distance, between atoms of the residues, that is

required to consider their interaction (a constant value) or

not. We tried using three different criteria to answer this

question as was done for the MHC system (Altuvia et al.,

1995). Nevertheless, we could not obtain results that could

separate the binders from the nonbinders in the test set even

when we used multiple templates.

Employing distance-dependent potentials as a second

method of evaluating the long-range interaction of the

peptide, we obtained improvement in the results. Instead of

the square-well potential, here we used distance-dependent

statistical potentials specific for the type of interacting amino

acids. This approach eliminates the need of choosing

a distance criterion to determine which residues are in

contact and which are not. Instead, the potential energy

function gives a certain value depending on the distance. The

residues were represented by two effective interaction sites,

one for the backbone and one for the side chain specific to

the amino-acid type. Introducing a more detailed repre-

sentation of the long-range interactions and using multiple

templates enabled predictions to separate the binders and

nonbinders in the test set.

When the structures of six substrate complexes of HIV-1

protease were solved, it was seen that superposition of the

structures of any three substrates defines a consensus volume

where the substrates fit (Prabu-Jeyabalan et al., 2002). This

leads to the idea that a shape, rather than certain amino acids,

are recognized by the protease. Although the protease also

adapts to bind different sequences, the binding groove re-

stricts the conformations accessible to the bound peptide.

The affinity of the peptide is thus affected by how well it can

fit into the volume defined by the binding groove. To account

for this restriction, we added conformational short-range po-

tentials to the energy evaluation scheme in threading. In

this approach, one has to consider different conformations

accessible to the peptide, and thus it is very important to

use multiple template structures. In accordance with these

notions, we obtained a clear differentiation between binders

and nonbinders in the test set with the employment of

conformational potentials in addition to distance-dependent

FIGURE 3 Energy minimization for a substrate and a peptide. When the

sequences are threaded onto the template, the nonbinding peptide is

predicted to have higher affinity than the substrate (see Table 6). Hence, the

starting energy value at time zero is more favorable for the nonbinding

peptide. However, the substrate relaxes rapidly to minimize its energy

whereas the energy difference of the nonbinding peptide with the reference

is maintained throughout the simulation.
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long-range potentials and multiple templates. This finding

suggests that the ‘‘fitness’’ of a given peptide to the con-

formations accessible in the bound form is an impor-

tant determinant of its binding affinity; hence short-range as

well as long-range potentials should be considered in the

evaluation of energy in threading methods. In the general

field of protein structure prediction, there have been works

to include extra terms to the score or force field accounting

for local information, by secondary structure predictions

(Russell et al., 1996; Rost et al., 1997) or experimental data

such as nuclear magnetic resonance (Ayers et al., 1999).

Wolynes and co-workers demonstrated that including local

environmental preferences and residue contacts refined their

screening technique in correctly discriminating correct folds

(Goldstein et al., 1992). There have also been some

approaches with emphasis on the local aspects of confor-

mation and forces that operate on the short range of

a polypeptide backbone (Jones, 1999; Sippl, 1990). Our

results indicate that short-range potentials are important in

protein-to-protein interactions, where the conformation of

the side chains is expected to play an important role.

In another test to justify the improvement obtained in the

threadingmethods, we evaluated their performances using the

rank analysis: how are the binding potentials of the natural

cleavage site sequences ranked among all the possible 8-mer

sequences derived from the overlapping peptides in the gag-

pol polyproteins? We would expect that the sequences that

best fit to the binding site will be recognized and cleaved by

HIV-1 protease, and therefore threaded all possible 8-mers in

the polyproteins onto the known peptide complexes to see if

the cleavage sites could be found. The structure of the

polypeptides when they are cleaved by the protease is not

known and this could also affect the recognition events.

Nevertheless, consistent with the results for the test set, there

was an improvement in the rankings of the cleavage sites as

the force field was improved, and as multiple templates were

used (Fig. 4). Applying the most accurate method, where both

short- and long-range potentials are used, the template

structure’s own peptide always ranks the first among all

possible 8-mers in the polyproteins. This indicates that the

force field precisely defines the energy of the peptide when

the exact conformation is available. Other sites within the

polyprotein, which are not known to be cleavage sites, also

score well; however, local secondary and tertiary structure

may prevent them from being cleaved.

In all the threading methods discussed so far, the

coordinates in the available co-crystal structure were used

to evaluate the binding affinities of peptides whose complex

structures with the protease are not available. Therefore, the

results are only approximations for the different sequences

threaded, assuming that there is a unique spatial path

possible for the peptide in the active site. However, both the

peptide and the protease can adapt for recognition (Prabu-

Jeyabalan et al., 2002). To take into account this adaptation,

multiple templates were used as representatives of different

possible conformations of both the peptide and the protease.

Also, the dynamic-threading method, where a short dynamic

simulation is performed to allow the system to move and

equilibrate after threading the peptide sequence, allows for

this adaptation. The structures moved with a root-mean-

square deviation of 2.06 0.2 Å on the average, at the end of

MC runs. In the simulation scheme used here, we allowed

both the peptide and the protease to move as the protease

also adapts to recognize its substrates, and we obtained

TABLE 8 Ranking of peptides according to their mean energies in various time windows during relaxation simulations, using

a single (ca-p2 complex) structure as the template

t ¼ 250–500 MCS t ¼ 250–750 MCS t ¼ 250–1000 MCS t ¼ 500–1000 MCS

ca-p2* �125 ca-p2* �126 ca-p2* �128 ca-p2* �129

ma-ca �116 ma-ca �121 ma-ca �123 ma-ca �127

rt-rh �114 rt-rh �118 rt-rh �119 tf-pr �122

p1-p6 �113 p1-p6 �114 tf-pr �117 rt-rh �121

rh-in �108 tf-pr �112 p1-p6 �115 p1-p6 �115

pr-rt �107 rh-in �111 rh-in �112 rh-in �114

nc-p1 �106 p2-nc �105 p2-nc �109 p2-nc �112

tf-pr �106 pr-rt �105 nc-p1 �105 nc-p1 �105

p2-nc �102 nc-p1 �104 pr-rt �105 pr-rt �103

nc-p1s �102 nc-p1s �100 nc-p1s �102 auto �103

auto �90 auto �95 auto �98 nc-p1s �102

pep1 �86 pep2 �89 pep1 �93 pep1 �96

pep2 �85 pep1 �89 pep4 �92 pep4 �96

pep4 �84 pep4 �87 pep2 �91 pep2 �93

pep3 �75 pep5 �79 pep3 �84 pep3 �88

pep5 �74 pep3 �79 pep5 �81 pep5 �84

The predicted contact energies are given in dimensionless units of RT, where R is the gas constant and T the absolute temperature. The nonbinding peptides

are underlined.

The total energy (total) used for ranking the peptides is the summation of backbone short-range energies (bb), side-chain short-range energies (sc), and energy

associated with long-range interactions evaluated by distance-dependent potentials as before (lr).

*Structure used as template.
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a significant improvement in the predictions using a single

template when dynamics were introduced into threading.

This method is therefore potentially useful for systems for

which multiple complex structures are not available.

Threading should enable a computationally fast and less

expensive screening of candidate sequences using a rough

estimate of the binding affinity. Although the threading pre-

dictions improve upon employment of more detailed energy

evaluations, all-atom representations and force fields such

as in MD simulations and detailed structure predictions are

not appropriate for threading. Hence, an optimum should be

found by balancing the detail and speed of the method, tak-

ing into account the nature of the problem. Here we found

that a threading method using conformational short-range

and distance-dependent long-range potentials with two

effective interaction sites per residue gives good enough

predictions to differentiate between substrates and non-

binding sequences, when either multiple template structures

are used or dynamic threading algorithm is applied with

a single template. Both of these methods are computationally

fast and effective. In this postgenomic era, they are po-

tentially useful for screening a library of potential binding

sequences to the newly discovered proteins.
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