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Vibrational Frequency Shifts and Relaxation Rates for a
Selected Vibrational Mode in Cytochrome ¢

Lintao Bu and John E. Straub

Department of Chemistry, Boston University, Boston, Massachusetts

ABSTRACT The vibrational energy relaxation of a selected vibrational mode in cytochrome c—a C-D stretch in the terminal
methyl group of Met80—has been studied using equilibrium molecular dynamics simulation and normal mode analysis
methods. As demonstrated in the pioneering work of Romesberg and co-workers, isotopic labeling of the C-H (to C-D) stretch in
alkyl side chains shifts the stretching frequency to the transparent region of the protein’s density of states, making it an effective
and versatile probe of protein structure and dynamics. Molecular dynamics trajectories of solvated cytochrome ¢ were run at
300 K, and vibrational population relaxation times were estimated using the classical Landau-Teller-Zwanzig model and
a number of semiclassical theories of resonant and two-phonon vibrational relaxation processes. The C-D stretch vibrational
population relaxation time is estimated to be T; = 14—40 ps; the relatively close agreement between various semiclassical
estimates of T, lends support to the applicability of those expressions. Normal mode calculations were used to identify the
dominant coupling between the protein and C-D oscillator. All bath modes strongly coupled to the C-D stretch are in close
proximity. Angle bending modes in the terminal methyl group of Met80 appear to be the most likely acceptor modes defining the

mechanism of population relaxation of the C-D vibration.

INTRODUCTION

Following fundamental events such as ligand binding or
electron transfer, heme proteins may be vibrationally
excited. Understanding the timescales and mechanisms of
vibrational energy relaxation (VER) is an essential compo-
nent of an understanding of the ultrafast conformational
changes and the reorganization of protein structures that
follow such fundamental events (Zewail, 1996). Much ex-
perimental and theoretical work has been done to investi-
gate the rate of vibrational energy relaxation for small
diatomic ligands (Hill et al., 1996; Maetal., 1997; Park et al.,
2000; Okazaki et al., 2001), particularly CO in the heme
protein myoglobin. Metal carbonyls have high oscillator
strength, large absorption coefficients, and strong electronic
resonance in the visible and ultraviolet regimes, making
them excellent spectroscopic probes. Moreover, the stretch-
ing frequency of carbon monoxide, when bound to iron
(~1960 cm™ ') or free (~2140 cm™ ), falls in a transparent
region of the vibrational density of states of most proteins. In
myoglobin, ligand dissociation can occur when the ligand-
heme complex absorbs a visible or UV photon, which can
cause vibrational excitation of the ligand, heme, and
surrounding residues (Kholodenko et al., 2000; Asplund
et al., 2000) and a global conformational transformation of
the protein. The detailed analysis of vibrational relaxation of
heme proteins has provided important information about the
cooperative nature of protein dynamics (Muench and
Champion, 1975; Greene et al., 1978; Henry et al., 1986;
Anfinrud et al., 1989; Genberg et al., 1989; Lim et al., 1995,
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1996; Hill et al., 1996; Karplus, 2000; Frauenfelder and
McMahon, 2001).

The relaxation kinetics and the structural evolution are
typically monitored experimentally using techniques such as
IR, Raman, or resonance Raman spectroscopy. By exciting
the heme with a selected pulse, time domain experiments can
monitor the decay of the excited vibrational modes. The
advantage of these methods of spectroscopy is their extreme
sensitivity to changes in molecular interaction and structure.
The difficulties encountered in interpreting crowded vibra-
tional spectra can be best overcome through the use of site
specific isotopic labeling. As opposed to fluorescence
methods that require the addition of a bulky probe, isotopic
labeling has the great advantage that it does not alter the
function of the protein and, therefore, is the method least
prone to misinterpretation.

Recently, Romesberg and co-workers have demonstrated
the ability to introduce selective deuterium labels on ali-
phatic carbons and to use the C-D stretch as a sensitive probe
of the proteins’ structure and dynamics (Chin et al., 2001,
2002). Their methodology holds the potential to dramatically
improve the ability of pump/probe spectroscopy to probe the
structure and dynamics of proteins during folding or in
response to an excitation resulting from ligand binding or
electron transfer events. Labeling sites of a large protein
presents a greater synthetic challenge, although correspond-
ing tools have been developed.

For a full exploitation of the information content of vibra-
tional spectroscopy, quantum chemical calculations are ne-
cessary (Augspurger et al., 1991). Calculations treating the
molecular group in a vacuum provide a basis for the
interpretation. For a better understanding of the structure and
interaction of molecular groups within the protein, however,
the environment must be taken into account (Oxtoby, 1979,
1981; Whitnell et al., 1992; Rey and Hynes, 1996; Ma et al.,
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1997). The molecular group and the rest of the protein
influence each other, and the challenge is to merge the
accurate vibrational dynamics of the small group with the
molecular mechanics of the surrounding protein (Vogel and
Siebert, 2000).

In this work, we have studied the relaxation rate of
a selected vibrational mode in the protein cytochrome c (cyt
c). Cyt c is one of the most thoroughly physicochemically
characterized metalloproteins (Sivakolundu and Mabrouk,
2000). It consists of a single polypeptide chain containing
104 amino acid residues and is organized into a series of five
a-helices and six B-turns. The heme active site in cyt ¢
consists of a 6-coordinate low-spin iron that binds His18 and
Met80 as the axial ligands. In addition, two cysteines (Cys14
and Cys17) are covalently bonded through thioether bridges
to the heme. Crystal structures of cyt ¢ show that the heme
group, which is located in a groove and almost completely
buried inside the protein, is nonplanar and somewhat dis-
torted into a saddle-shape geometry. The reduced protein,
ferrocytochrome c (ferrocyt c), is relatively compact and very
stable, due to the fact that the heme group is neutral.

The vibrational mode we have chosen for study is the
isotopically labeled C-D stretch in the terminal methyl group
of the residue Met80, which is connected to Fe in the HEC
plane (see Fig. 1). The C-H and C-D stretching bands are
located near 3000 cm~! and 2200 cm™!, respectively. In
contrast with the modeling of photolyzed CO in myoglobin
(Sagnella and Straub, 1999; Sagnella et al., 1999), essentially
a diatomic molecule in a protein ‘‘solvent,”” we are interested
in the relaxation of a selected vibrational mode of a larger
molecule. As a result, the modeling is more challenging.
There is no clean separation between the system and bath
modes. We demonstrate that the classical and semiclassical
models provide a physically reasonable estimate of both the
timescale of vibrational relaxation and the pathways of the
energy flow. The methods employed in the detailed analysis
of the vibrational energy relaxation process in cytochrome c

C-D bond —

¢ o¢
Met80

FIGURE 1 The active site of cytochrome ¢ showing the heme group and
residues His18 and Met80 which ligate the heme Fe atom. The heme is
covalently attached to the apoprotein by two thio-ether linkages, formed by
addition of the thiol groups of two cysteine residues, Cys14 and Cysl7, to
vinyl groups of the heme side chains.
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provide an effective method for the analysis of vibrational
energy relaxation in proteins.

COMPUTATIONAL MODEL AND METHODS
Molecular dynamics

The proposed computational protocol follows closely that of Sagnella and
Straub (Sagnella and Straub, 1999; Sagnella et al., 1999). An x-ray structure
of the horse heart cytochrome ¢ molecule (Bushnell et al., 1990) was used as
the initial configuration. (Please note that this structure, IHRC, is an oxi-
dized form of cyt c, but it is also the only high resolution x-ray crystallo-
graphy structure for horse heart cyt ¢ in the PDB. Since the difference
between structures of the reduced and oxidized forms of cyt ¢ is in the limit
of resolution of x-ray and NMR instruments, we take 1HRC as our initial
structure, then we use reduced heme, i.e., Fe(Il) heme, parameters in
CHARMM force field to equilibrate the structure.) That structure was then
introduced into a 55.872 X 55.872 X 55.872 A? truncated octahedral box of
equilibrated TIP3 water molecules and simulated using the CHARMM
program (Brooks et al., 1983). The all-hydrogen parameter set (version 27)
with CHARMM (MacKerell, Jr. et al., 1998) was used. Equilibrated water
molecules lying within 2.5 A of the protein molecule were removed, while
the original water molecules of the x-ray structure were preserved. The
excess potential energy due to bad contacts and strain was then reduced
using the steepest descent energy minimization method.

Using classical molecular dynamics, the system was gradually heated to
300 K. One molecular dynamics trajectory was run for 20 ps at constant
pressure and temperature. During equilibration, the velocities were
resampled according to the Maxwell distribution to maintain a constant
temperature. The molecular dynamics employed the Verlet algorithm, which
is time-reversible and symplectic (Verlet, 1967; Tuckerman et al., 1992;
Frenkel and Smit, 2001), with a time step of 1 fs. The van der Waals
potential was truncated using a group switching function extending from 8.0
to 12.0 A, and the electrostatics force was truncated using a switching
function extending from 8.0 to 12.0 A. During the equilibration run, the
volume of the box was found to fluctuate around a well-defined average
value. At that point, it was assumed that an equilibrium state had been
reached and data could be collected from the constant energy dynamics with
a fixed volume of 53.934 X 53.934 X 53.934 A3. Molecular dynamics
trajectories were run for 200 ps at constant energy and volume. Snapshot
configurations were saved every 20 ps. From each of the 10 configurations
obtained in this way, 40 ps trajectories were run at constant energy and
volume during which the coordinates were saved every 200 fs for analysis.

Computational methods for computing T;

The process of vibrational relaxation involves the dissipation of excess
vibrational energy into the surroundings. The time decay of the vibrational
energy relaxation may be a single exponential (the Landau-Teller result)
(Zwanzig, 1961)

(E,(1)) = (Eu(>))
(E,(0)) = (E.(=))

where T, is the vibrational relaxation time. (In general, (E, () will be
assumed to take the thermal value kg7.) By beginning with a specified value
of (E,(0)), we can, in principle, determine T through molecular dynamics
simulations. In this article, we employ Eqs. 3 and 4 below to calculate T
with use of equilibrium MD.

= exp(—t/T)), (D

Semiclassical theories of VER rates

We have shown how direct computation of the classical force autocorre-
lation function on a selected vibrational mode can be used to compute the
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vibrational population relaxation time for a selected mode in a protein
environment (Sagnella and Straub, 1999; Sagnella et al., 1999). Following
Skinner, we employ a number of semiclassical theories to estimate the rate of
energy relaxation (Skinner and Park, 2001). Through comparison with the
results of the classical theory, we might estimate the importance of quantum
corrections and the reliability of our classical models.

An estimate of the rate constant for the » = 1 to v = 0 vibrational
transition, assuming the vibration to be harmonic for the v = 0 to v = 1
states, can be written

k]A»O =

dte" (F()F(0)). . )
i | e E RO,

If we assume that the Fourier transform of a quantum time-correlation
function can be replaced by its classical analog, multiplied by a quantum-
correction factor (Skinner and Park, 2001), the rate becomes

kg = 2@0) J A SEOSFO)),, ()
2uhiwg J ..
where the rate constant
1 1
kio=— s —. 4
1-0 1 _ e‘iﬁhwo T1 ( )

The force correlation function includes the effects of the density of states
and coupling strength to the surrounding solvent. The scalar force along the
bond is computed as

dv (1 ov 1 8\/) .
F=———=—p = “Tcp

drCD Mc ai'c mp af’D
= u(—c——D) +Fep, 5)
mc mp

where F; is the force felt by the atom i of the C-D mode due to the
surrounding “‘bath” of protein and solvent atoms, V is the potential energy
interaction between the C-D mode and the bath, and 7¢p is the C-D bond unit
vector. During the simulation, the C-D bond is constrained to its equilibrium
length using the SHAKE algorithm (Ryckaert et al., 1977) and the force
along the bond is determined. The fluctuating force autocorrelation function
and its Fourier transform are then used to determine the vibrational
relaxation time of the C-D stretch mode (Sagnella and Straub, 1999;
Sagnella et al., 1999).

What Q(w) should be depends on the mechanism of the vibrational
relaxation (Skinner and Park, 2001). In the case of energy transfer from
a vibrational mode of frequency w to a resonant bath mode, the quantum
correction factor may be O = Qu(w) where the harmonic QCF is

10
Ou(w) = fw- (6)

In the case of nonresonant energy transfer, a vibrational mode of fre-
quency w may transfer vibrational energy to one dominant accepting mode
of frequency w; with the remainder, corresponding to w — w;, being taken up
by the nonvibrational energy bath. The quantum-correction factor, QCF,
may then be either Q = Qu(w)Qu(w — wy) or @ = Ou(w)Qus(@ — ),
where the harmonic/Schofield QCF (Skinner and Park, 2001) is

Bhw >1/2

N ?

Classical theory of VER rates

If we take a purely classical view and assume the C-D bond is a Brownian
oscillator, the motion of the solute can be described by the Langevin
equation
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aw(r
ar+ P04 i — R, )
dr
where r is the solute coordinate, y the friction constant, and R(f) the
fluctuating random force acting on the r coordinate. A more accurate
microscopic model is to assume the motion is governed by the generalized
Langevin equation,

t

pr S50+ | weia- s =R, ©
0

where {(7) is the time-dependent friction and W(r) is the potential of mean

force.

For a system that is well-described as an anharmonic oscillator bilinearly
coupled to a bath of harmonic oscillators, the above-mentioned generalized
Langevin equation model is accurate and the relaxation time can be
approximated by a Landau-Teller result of the form (Oxtoby, 1979, 1981;
Zwanzig, 1961),

1
T\ (wy)

where wq is the frequency of the oscillator as determined by the en-
vironment. A remarkable result of Bader and Berne (1994) is that this
estimate of T for a classical solute in a classical solvent is, for the harmonic
model, identical to the T, for the quantum solute in the quantum bath. We
will exploit this result to use classical simulations to derive quantum
relaxation times.

By the second fluctuation-dissipation theorem, the time-dependent
friction is proportional to the equilibrium time correlation function of the
fluctuating random force, R = 6F = F — (F), acting on the oscillator

£(0) = ﬁ (8F(1)5F(0)), an

= r cos(wot){ (t)dt = Z(a)o)a 10

where w is the reduced mass of the oscillator.

Analysis of normal modes

To detect the mechanism of energy relaxation, it is important to identify the
protein and solvent ‘‘bath” vibrational modes that are most strongly coupled
to the C-D bond stretching mode. As the discussion in the previous section
makes clear, this can be done through a normal mode analysis based on
quenched normal modes (QNM) or instantaneous normal modes (INM). In
each case, the normal mode spectrum is determined by taking ‘‘snap-shot”
configurations from the dynamical trajectories. For the QNM spectrum, the
configuration is optimized to the nearest local minimum of the potential
energy, then the normal mode analysis is performed for the quenched states.
QNM is a straightforward way to separate and examine the vibrational
density of states of the system and bath modes. In the INM spectrum, the
normal mode analysis is carried out on the snap-shot configuration itself.
INM is suitable for short-time dynamics of simple solutes in liquids (Seeley
and Keyes, 1989; Goodyear and Stratt, 1996, 1997) and has been applied to
proteins (Sagnella et al., 2000). Using the vibrational frequency shifts for the
C-D stretching mode derived from the normal mode analysis, we can detect
the configuration transformation of the local environment of the C-D mode
during the vibrational energy relaxation process.

When using a normal mode model to calculate the friction along
a vibrational coordinate, we assume that the system can be described as an
anharmonic oscillator bilinearly coupled to a bath of harmonic oscillators x;
(atom positions) of the surrounding protein and solvent

1 1
H= Hosc(p,r) + Z(Em,xlz + EKi'xiz + Cixir), (12)
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where
I,
Hosc(l’;’”) = 2—17 + Vosc(”)~ (13)
o
This Hamiltonian can also be written as
H=T+V, (14)
where
T="L,4 Z (15)
m )C
ZMP ,
and

V= Vosc

Z( KiX; +cxr> (16)

It follows that

o oV OF
‘= ax, or 7(r“)7xi an

and the potential of mean force is

1 2
= VosC(”)i (Z . 2> r. (18)

i Miw;

w(r)

We use mass-weighted coordinates 7 = /u - r and ¢; = \/m; - x;. The
Hamiltonian becomes

H = Hosc(p, T) Z( ]7 + 3 ‘UC] +CCI1) 19)

where p; are the conjugate momenta, and w; are the frequencies of the normal
modes. The time-dependent friction can then be written as a sum over the
bath modes coupled to the oscillator coordinate (Zwanzig, 1973)

(SF(1)5F(0)).  (20)

£(1) = Z(Cf)zcoswir) — MkIBT

We can compare the results for {(f) with the molecular dynamics
calculations. The coupling constant C; between the bath coordinates and the
oscillator (C-D) stretching coordinate is defined as

. 0 3\/
' 8ql o

35(_; 3xj 0 OrdV

j 8q, 8XJ 8Xj or or

Nk

1 1 [V
- ﬁJZU“’ﬁ (axjar> \/_cj, Q1)

where Uj ; are the coefficients of the eigenvector matrix of the normal modes.

Normal mode calculation can also be used to determine the role of
collective motions in the dynamics of the system. The density of states of
a given system can provide insight into possible modes available for
vibrational relaxation of the C-D bond, and is given by

D) = 3 (Yoo - ol ). @2)

We define the participation ratios as
I 4
R =% (Uy), (23)
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and

It Miesidues 3N 212
R = Z [Z Ui,j] ) 24
1 i

where 1/R! is the number of degrees of freedom involved in the /™ mode and
1/R" is the number of protein residues and water molecules participating in
that mode. The participation ratios provide a measure of the degree of
localization of each mode. If a mode is completely localized, only one of the
eigenvector coefficients will be nonzero, which means 1/R! will be equal to
unity. On the contrary, if a mode is completely delocalized, each degree of
freedom will be equally involved in that mode and 1/R} will be equal to 3N.
Using the participation ratios together with the distribution of C?, also called
the “‘influence spectrum,” we can determine the identity and character of the
principal modes responsible for the C-D bond vibrational relaxation.

For normal mode calculations, 100 configurations were picked from 10
independent trajectories. For each of these configurations, any residue whose
center of mass was outside a 12.0 A radius from the center of mass of the
C-D oscillator was removed. The cutoff distance of 12.0 A was chosen based
on Fig. 2, which shows the variation in the frequency of the C-D vibration as
a function of the cutoff distance. Beyond a cutoff of 12.0 A, the C-D stretch
frequency has converged to the infinite or ‘“‘no cutoff” value, justifying the
use of a 12 A cutoff in the computation of D(w). For the QNM calculations,
the system subset of atoms within 12.0 A of the C-D bond was then energy-
minimized using the adopted basis Newton-Raphson method (Brooks et al.,
1983).

RESULTS

In this section, the value of T is estimated, normal mode
methods are used to determine important doorway modes for
energy transfer from the C-D stretch to the protein and
solvent bath, and the dominant contributions to the C-D bond
vibrational relaxation process are identified.

C-D vibrational population relaxation times

Relaxation times of high frequency oscillators can be directly
related to the Fourier transform of the fluctuating force-force
autocorrelation function (8F(0)8F(f)) of the force along
a rigid bond. In determining the vibrational relaxation time,
the value of the friction kernel at the frequency of the
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FIGURE 2 The variation of the C-D vibrational frequency as a function of
the cutoff distance for a number of different configurations.



Vibrational Relaxation in Cytochrome ¢

oscillator is used. The Fourier transform of the classical
fluctuating force correlation function was computed as a
function of frequency from our simulations. The result of the
fluctuating force autocorrelation function (8F(0)8F (1)),
averaged over 10 trajectories, is shown in Fig. 3. Using this
method and

i _ Q(ay)
T, Wi

r dt cos(wot) (6F (1)8F(0)),, (25)

the relaxation time of the C-D oscillator was estimated using
a variety of possible quantum correction factors.

The power spectrum was computed using a step in
frequency of Aw = 0.67 cm™'. To remove noise, the spec-
trum was smoothed by locally averaging over nine data
points. This provided an average value of the power spec-
trum at the frequency of the oscillator (see Fig. 3).

Observing the exponential decay of the power spectrum
over the whole frequency region, we note that in the high
frequency region above 600 cm ™', there is some structure
coupled to the exponential decay. The peaks at the fre-
quencies of ~1340 and 1450 cm ™' correspond to the H-C-H
or H-C-D angle bending of Mez80, respectively. The peaks at
the frequencies of ~830 and 920 cm ™' are associated with
the S-C bond stretch and angle bending of Mer80, re-
spectively. The peak at a frequency of ~690 cm ™' is due to
a torsional mode of the heme. We conclude that the vibra-
tional modes strongly coupled to the C-D oscillator are in
close proximity to the C-D bond.

Normal mode calculations—searching
for mechanism

The densities of states determined using the QNM and INM
formalisms are shown in Fig. 4. As expected, the INM

— 3 I I I LI I
‘Tm le\ 40 -1
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81 i time (ps)
N
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g
& L. Y |
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® (cm'1)

FIGURE 3 The classical fluctuating force correlation function for the C-D
oscillator, proportional to {(f) and computed through the force acting on the
C-D bond, after smoothing over nine points. The V marks the C-D oscillator
frequency at 2133 cm ™', The data have been smoothed for clarity. Displayed
in the inlay is the fluctuating force autocorrelation function for the C-D bond
stretch. This function was averaged over 10 independent trajectories.
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FIGURE 4 The vibrational density of states of the cytochrome ¢ protein,
as defined by Eq. 22 derived from quenched normal mode, QNM, and
instantaneous normal mode, INM, calculations.

spectrum possesses imaginary modes, plotted here in the
standard way along the negative frequency axis. The
imaginary modes make up ~5% of D(w). That fraction of
imaginary modes is similar in magnitude to results for
crystals or ordered liquids such as liquid water (Cho et al.,
1994) and other proteins (Straub et al., 1994). In both
spectra, there is an obvious separation of states—a trans-
parent region—between 2000 and 2800 cm'. That
frequency separation effectively isolates the C-D vibration
from the remainder of the system. As a result, the C-D
vibrational coupling to the system is weak.

Fig. 5 displays the inverse participation ratios for the INM
calculations. The low frequency modes are delocalized with
the lowest frequency modes corresponding to translational
and rotational motion. With increasing frequency, the modes
become more localized. Modes from 2000 to 3000 cm '
involve only 1-2 residues. At higher frequencies, we see
a decrease in localization due to the numerous O-H and N-H
stretching modes. However, the overall degree of localiza-
tion is still considerable.

The distribution of the square of the coupling constants
found in Eq. 22, also called the influence spectrum, is shown
in Fig. 6. The most noticeable peak is at a frequency of
~1400 cm ™" corresponding to the angle bending with Me80
playing a key role. The second most prominent peak can
be seen in the region of ~1000 cm™'. Those modes are
associated with the bond stretching and angle bending
motions still predominantly localized on the Met80. The
region near ~700 cm™' contains torsional motion of the
heme. The residues that affect the C-D stretch are those that
have direct through-bond interaction with the S atom in
Met80-Tyr67, the heme, and of course, Met80 itself. Other
residues that are within a short distance of the C-D bond
include Phe82 and a water molecule. Although some solvent
coupling is evident between 3200 and 3300 cm ', the effect
appears to be minimal.

Biophysical Journal 85(3) 1429-1439
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FIGURE 5 The inverse participation ratios determined from the eigen-
vectors of the ONM and INM calculations. The results may be interpreted as,
a, the number of degrees of freedom participating in a given mode, or b, the
number of residues or water molecules participating in a given mode.

This information, combined with that from the participa-
tion ratios shown in Fig. 5, suggests that the principal modes
responsible for C-D relaxation in cytochrome c are highly
localized. Large-scale collective motions are relatively un-
important in the relaxation process. The residues most
strongly involved in the relaxation tend to be those in close
proximity to the C-D oscillator.

Estimates of quantum correction factors from
semiclassical theory

Our analysis suggests that the dominant mechanism for the
C-D vibrational relaxation is the transfer of one quantum
from the C-D stretch to one quantum of a well-coupled angle
bending mode of Met80, with the remainder being absorbed
either by one quantum of a low-frequency harmonic
vibration or by translations and/or rotations.

The semiclassical quantum corrections described in the
subsection called Computational Methods for Computing T
may be used to construct an overall quantum correction
factor for these multiphonon relaxation mechanisms, as we
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FIGURE 6 The square of the vibrational coupling constants plotted
against a backdrop of the INM density of states for cytochrome c at 300 K.

show in Table 1. For a one-phonon resonant energy transfer
from the C-D stretch @ = 2130 cm™' to a harmonic bath
mode, the quantum correction factor would be Q = Qp(w) =
10.23. If the quantum of C-D vibrational energy, w = 2130
ecm™ !, is accepted by an angle bending mode w; = 1450
cm~ ' and a lower frequency bath vibration @ — w; = 680
cm ', the quantum correction would be Qy(w;)On(w — ;)
= 23.70. Alternatively, if the quantum of C-D vibrational
energy is transferred to an angle bending mode of Met80 at
w; = 1450 cm™" with the remaining energy being accepted
by translation/rotation modes of the bath, the hybrid
harmonic/Schofield correction predicts O = QOp(w;)Ons
(w — wj) = 29.15. Tt is very encouraging that there is re-
latively little variation in the magnitude of the various quan-
tum correction factors. It should be noted that it is unlikely
that vibrational relaxation occurs via a 1:1 Fermi resonance
within a bath vibration, as the use of the Oy(w) quantum
correction factor implies. However, that value is included as
it is equivalent to the estimate of the classical theory derived
from the generalized Langevin equation. Therefore, we
interpret the value of T derived using Q = Qn(w) to be the
standard, uncorrected classical estimate of the relaxation
time.

It is helpful to compare our predicted timescales for the
vibrational population relaxation of the C-D stretch with
observed timescales for vibrational relaxation of selected
modes in other proteins. This predicted timescale for C-D
relaxation is similar to that for CO relaxation in the A-states
of myoglobin (17 = 2 ps) (Owrutsky et al., 1995) and rests
between the generic fast relaxation of the amide I vibration

TABLE 1 Quantum-correction factor for vibrational relaxation
of a C-D stretch in the terminal methyl group of Met80 in cyt ¢
based on different mechanism

On(w) On(w)Ou(w — wy) On(w)Qus(w—w;)
QCF 10.23 23.70 29.15
QCF/Qu(w) 1 2.3 2.8
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(roughly 1.2 ps) (Mizutani and Kitagawa, 2002) and the far
slower relaxation of CO in the B-states of myoglobin (600 *=
150 ps) (Sagnella et al., 1999).

Testing the assumption of a harmonic bath

A simple test to probe the validity of the harmonic ap-
proximation in treating the bath is to analyze the distribution
of the fluctuating force along the bond. If the harmonic
approach is appropriate, the distribution should be Gaussian.
The result of this test is shown in Fig. 7, in which a Gaussian
fit to the data has been overlayed. As can be seen, the data do
exhibit a strict Gaussian character and are reasonably ap-
proximated by a Gaussian distribution shifted to the right by
only 0.15 kcal/(mol A).

Another test of the harmonic approximation is to use INM
theory to calculate a force correlation function for our system
through Eq. 20. The result is pictured in Fig. 8 and compared
with the results from the MD simulation. The computed
density of states shows little variation when compared be-
tween different configurations, but the influence spectra and
fluctuating force autocorrelation functions vary consider-
ably. This is in agreement with the work of Goodyear and
Stratt (1996), who have demonstrated that INM friction
spectra can differ significantly from configuration to con-
figuration. This indicates that the frequencies of the bath
modes are fairly constant, but the magnitude of coupling to
the C-D stretch depends upon the specific configuration. To
demonstrate convergence in the INM friction kernel, the
INM calculations were performed for 100 different config-
urations from 10 independent trajectories. Considering the
underlying approximations, we conclude that the INM
friction kernel approximates the time dependence of the full
MD trajectory average reasonably well on the picosecond
timescale for the high frequency motion of the C-D stretch.

Based on the molecular dynamics simulation, we can
calculate the potential of mean force felt by the C-D bond as

0.1 T | : |
MD ——
Fitted Gaussian --------
c
2
2 005 1
@
a
0 L 1 1 ] L

30 -20  -10 0 10 20 30
F-<F> (kcal/mol A '1)
FIGURE 7 Comparison of the distribution of the fluctuating force with

a Gaussian fitting function. The Gaussian fit was performed about the center
of the original distribution and not about the zero.
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FIGURE 8 The fluctuating force correlation function, proportional to {(7),
derived independently from the INM and molecular dynamics calculations at
300 K.

w(r) = —ksT In p(r), (26)

where p(r) is the probability for the C-D bond to have a bond
length r. The potential of mean force can also be derived
from Eq. 18 based on the harmonic approximation. Vogc(r)
is the CHARMM potential energy of the C-D bond with
force constant k = 322 kcal/(mol A?). The force constant for
the coupling terms between the C-D bond and the bath
modes is 10 kcal/(mol AZ). Therefore, the total force constant
from the harmonic approximation is ~312 kcal/(mol A®) by
Eq. 18. Fig. 9 shows the potential of mean force derived from
molecular dynamics simulation and normal mode analysis.
The force constant derived from the molecular dynamics
simulation, based on a fitted function, is roughly 331 kcal/
(mol Az), which is in excellent agreement with the result of
the normal mode analysis.

The decomposition of the fluctuating force
autocorrelation function

Further insight into the relaxation mechanism of the C-D
oscillator can be gained via the decomposition of the
fluctuating force autocorrelation function into contributions
from the protein, heme, and solvent as

(OF(0)8F (1)) = (8F proi(0)8F prou (1)) + (8Feme (0)8Feme (1))
+ (8F 1y (0)8F 1, (2)) + crossterms,  (27)

where Firoi, Fheme, and Fioy, indicate the force acting along
the C-D bond due to the protein, the heme, and the solvent,
respectively. The independent binary collision model (IBC)
(Litovitz, 1957) has been used successfully to describe
vibrational relaxation in solution. The IBC dynamical model
views the events contributing to the force acting on the
vibration as resulting from the separate independent
collisions. In other words, the IBC model assumes that the
cross correlations, although contributing to the overall
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FIGURE 9 (Top) The distance between the C and D atoms in the C-D
oscillator during the molecular dynamics simulation. (Bottom) The potential
of mean force along the C-D oscillator is depicted as crosses. A fitted
function is found to be in close agreement with the predictions derived from
the harmonic approximation potential function calculated from normal mode
analysis (see Eq. 18).

fluctuating force in the time domain, have little influence on
the power spectrum in the vicinity of the C-D vibrational
frequency.

Several decompositions of the fluctuating force autocor-
relation function were examined. The first involved
separating the system into three segments—the protein, the
heme, and the solvent. From Fig. 10, it is obvious that the
“self”” terms of the protein, heme, and solvent closely
reproduce the total spectrum. Any cooperative interactions
between these groups is negligible, with the exception of
contributions due to modes in the very low frequency region
<500 cm™'. In the low frequency region, interactions
between these three different segments may influence the
vibrational relaxation rate and mechanism of C-D oscillator.

The second decomposition in terms of the contributions of
individual residues was performed to aid in defining the
mechanism of the vibrational relaxation. Based on the
fluctuating random force acting on the C-D bond contributed
by each residue, it was found that residues Met80, Phe§82,
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FIGURE 10 A separate analysis of the protein, heme, and solvent
contributions to the total power spectrum of the autocorrelation function
of the force acting on the C-D bond at 300 K. (@) The total spectrum and the
spectrum obtained by decomposing the force autocorrelation function into
separate protein, heme, and solvent contributions and ignoring cross
correlation. (b) The spectrum of the separate components of the protein,
heme and solvent. All spectra have been smoothed for visual clarity.

Tyr67, and the heme play dominant roles in the relaxation of
the C-D stretch. Solvent effects cannot be ignored.

Romesberg and co-workers have studied the vibrational
frequency of the “CDj3 group in cytochrome c¢ (Chin et al.,
2001). They have argued that these vibrations are sensitive to
hyperconjugative interactions with S-based orbitals. Such
interactions depend on electronic properties of the S atom,
not on the overall electrostatic field at Met80. The short-
range interactions are fixed by through-bond interactions,
such as the strength of the Fe-S bond or the strength and
number of hydrogen bonds to other protein residues, rather
than by through-space interaction.

For Tyr67, there exists a hydrogen bond between the S
atom and the H atom in the hydroxide group in Tyr67. As
shown in Fig. 11, we can see the distance between the S atom
and the H atom in the hydroxide group is usually <4 A,
which demonstrates the existence of the hydrogen bond.
However, we find the distance dependence is also important.
The Phe82 is the closest residue to the C-D bond besides
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FIGURE 11 The distance between S in Mer80 and H of the hydroxyl
group of Tyr67, demonstrating that there is a hydrogen bond between those
key groups throughout the simulation.

Met80 itself. The average distance between the center of the
C-D bond and that of Phe82 is only 4.1 A. The high
electronic density at the phenyl group in Phe82 may also
influence the vibration of the C-D bond.

Finally, interaction with solvent may also play an
important role. The average distance between the center of
the C-D bond and that of the closest water molecule is only
3.2 A. Therefore, we argue that both through-bond and
through-space interactions are important for the vibrational
energy relaxation of the C-D bond.

The fluctuating frequency autocorrelation function calcu-
lated from INM theory

C(t) = (bwep(0)8wep (1)), (28)

where dwcp(f) = wep(f) — {(wep), is shown in Fig. 12 b.
Based on the fitted exponential decay function, the time
constant T is 0.14 ps. The distribution of dwcp is shown in
Fig. 12 a. As we can see from this figure, the frequency is
slightly blue-shifted. Using Kubo’s theory (Kubo, 1963,
1969), the correlation time 7. is defined by

1 £3
Te = WJO C([)d[, (29)

where Aw is the variance characterized by
Aw = (Bog,)'”. (30)

From Fig. 12 a, Aw is found to be 3.40 cm™ ' through the
fitted Gaussian. From Fig. 12 b, 7. is calculated as 0.06 ps
through Eq. 29. Therefore, Aw - 7. = 0.006 < 1. In such
a fast modulation case, the spectrum will show the pheno-
mena of motional narrowing and the associated line shapes
should be sharp with a Lorentzian form (Kubo, 1963, 1969).

Both van der Waals interaction and external electric field
will induce the vibrational frequency shift on the C-D bond.
The van der Waals interaction results in a frequency shift of
the center of the frequency distribution, while the electric
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FIGURE 12 (a) The distribution of the fluctuating frequency éwcp
plotted against the fit to a Gaussian function of frequency. (b) The fluc-
tuating frequency autocorrelation function plotted against the fit to an
exponential function of time. Plotted for comparison is the prediction based
solely on the modulation in the C-D frequency through a Stark effect.

field leads to the detailed inhomogeneity in the spectrum
(Ma et al., 1997). If we assume that the frequency shift is
primarily induced by a Stark shift due to the electric field in
the protein, then

1. . o
AIJCD ~ - Z Al‘l’CD : Eprmein (3 1)

where £ is Planck’s constant and Agiqp is the difference in
the dipole of the ground and first excited vibrational states.
Therefore, the frequency autocorrelation function can be
rewritten as

C([) = <8VCD([)8VCD(0)>

A’ - . = .
=7 ((E(1) - ien (1)) (E(0) - e (0))),  (32)
where &icp is the unit vector along the C-D bond. To aid in
comparison, the frequency autocorrelation function, C(f)
from Eq. 32, is calculated without the pre-factor Au*/h* and

is then scaled by a factor 0.003. The result is shown in Fig.
12 b. The frequency autocorrelation function calculated from
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the Stark effect approximates that from the normal mode
analysis based on Eq. 28 reasonably well. The relaxation of
the INM frequency modulation is on the same time scale as
the modulation due to the Stark shift.

SUMMARY AND CONCLUSIONS

This work has investigated several aspects of vibrational
relaxation of a C-D bond in the terminal methyl group of
residue Mer80 in cytochrome c. Inspired by the innovative
studies of Romesberg and co-workers (Chin et al., 2001),
who have demonstrated the ability to use selective deuterium
labels of aliphatic carbons in combination with femtosecond
spectroscopy to probe protein structure and dynamics, we
have demonstrated how molecular dynamics simulation may
be used to model and interpret vibrational relaxation from
such C-D stretching modes. The data suggest that a harmonic
treatment of the surrounding protein and solvent is a reason-
able approximation for protein dynamics on the timescale of
the C-D stretch vibrational relaxation. Using classical and
semiclassical theories, we find that the vibrational population
relaxation time should occur on a timescale of 14—40 ps.
Considering the underlying approximations, the INM
friction kernel provides a reasonable approximation to the
time dependence of the full MD trajectory. A detailed
analysis led to the identification of key residues in the
relaxation process—residues that have direct through-bond
interaction with the S atom in Met80—Tyr67, the heme, and
of course, Met80 itself, or those groups within a short
distance of the C-D bond, Phe82, and water molecule. These
results demonstrate that our modeling of the relaxation
dynamics of selected vibrational modes may be analyzed
using a combination of molecular dynamics calculations,
semiclassical theory for timescales, and normal mode anal-
ysis for energy pathways.

An important conclusion of this work is that our results
suggest that the semiclassical quantum corrections to the
estimates of T fall within a factor of 3. This close agreement
was also noted previously by Skinner and co-workers in their
analysis of vibrational relaxation of photolyzed CO in the
heme pocket of myoglobin (Skinner and Park, 2001). They
found that quantum corrections led to a variation in estimates
of T, by a factor of 2—4, consistent with our results in this
study. In contrast, applications of such theories to liquid state
systems has often led to substantial differences between
various semiclassical estimates (Skinner et al., 2001; Egorov
et al., 1999). These results suggest that vibrational relaxation
of selected modes in proteins are well-suited for analysis by
semiclassical theories. This success may be due to the re-
sponse of the protein bath which is well-approximated as
harmonic on the timescales of interest. It is also possible that
the consistency in these predictions is due to the fact that the
broad density of vibrational states of the protein guarantees
that there will be a bath vibrational mode, in close proximity,
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to serve as a principal doorway mode and accept a majority
of energy from the relaxing oscillator.
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