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Two-State Folding over a Weak Free-Energy Barrier
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ABSTRACT We present a Monte Carlo study of a model protein with 54 amino acids that folds directly to its native three-helix-
bundle state without forming any well-defined intermediate state. The free-energy barrier separating the native and unfolded
states of this protein is found to be weak, even at the folding temperature. Nevertheless, we find that melting curves to a good
approximation can be described in terms of a simple two-state system, and that the relaxation behavior is close to single
exponential. The motion along individual reaction coordinates is roughly diffusive on timescales beyond the reconfiguration time
for a single helix. A simple estimate based on diffusion in a square-well potential predicts the relaxation time within a factor
of two.

INTRODUCTION

In a landmark paper in 1991, Jackson and Fersht (1991)

demonstrated that chymotrypsin inhibitor twofolds without

significantly populating any metastable intermediate state.

Since then, it has become clear that this protein is far from

unique; the same behavior has been observed for many small

single-domain proteins (Jackson, 1998). It is tempting to

interpret the apparent two-state behavior of these proteins in

terms of a simple free-energy landscape with two minima

separated by a single barrier, where the minima represent the

native and unfolded states, respectively. If the barrier is high,

this picture provides an explanation of why the folding

kinetics are single exponential, and why the folding thermo-

dynamics show two-state character.

However, it is well known that the free-energy barrier, DF,
is not high for all these proteins. In fact, assuming the folding

time tf to be given by tf ¼ t0 exp(DF/kT) with t0 ; 1 ms
(Hagen et al., 1996), it is easy to find examples of proteins

with DF values of a few kT (Jackson, 1998; k is Boltzmann’s

constant and T the temperature). It should also be mentioned

that Garcia-Mira et al. (2002) recently found a protein that

appears to fold without crossing any free-energy barrier.

Suppose the native and unfolded states coexist at the

folding temperature and that there is no well-defined

intermediate state, but that a clear free-energy barrier is

missing. What type of folding behavior should one then

expect? In particular, would such a protein, due to the lack of

a clear free-energy barrier, show easily detectable deviations

from two-state thermodynamics and single-exponential

kinetics? Here we investigate this question based on Monte

Carlo simulations of a designed three-helix-bundle protein

(Irbäck et al., 2000, 2001; Favrin et al., 2002).

Our study consists of three parts. First, we investigate

whether or not melting curves for this model protein show

two-state character. Second, we ask whether the relaxation

behavior is single exponential or not, based on ensemble

kinetics at the folding temperature. Third, inspired by

energy-landscape theory (recently reviewed by Plotkin and

Onuchic (2002a,b)), we try to interpret the folding dynamics

of this system in terms of simple diffusive motion in a low-

dimensional free-energy landscape.

MODEL AND METHODS

The model

Simulating atomic models for protein folding remains a challenge, although

progress is currently being made in this area (Kussell et al., 2002; Shen and

Freed, 2002; Zhou and Berne, 2002; Shea et al., 2002; Zagrovic et al., 2002;

Clementi et al., 2003; Irbäck et al., 2003). Here, for computational effi-

ciency, we consider a reduced model with 5–6 atoms per amino acid (Irbäck

et al., 2000), in which the side chains are replaced by large Cb atoms. Using

this model, we study a designed three-helix-bundle protein with 54 amino

acids.

The model has the Ramachandran torsion angles fi, ci as its degrees of

freedom, and is sequence-based with three amino acid types: hydrophobic

(H), polar (P), and glycine (G). The sequence studied consists of three

identical H/ P segments with 16 amino acids each (PPHPPHHPPHPPHHPP),

separated by two short GGG segments (Guo and Thirumalai, 1996; Takada

et al., 1999). The H/ P segment is such that it can make an a-helix with all the

hydrophobic amino acids on the same side.

The interaction potential

E ¼ Eloc 1Eev 1Ehb 1Ehp (1)

is composed of four terms. The local potential Eloc has a standard form with

threefold symmetry,

Eloc ¼
ef

2
+
i

ð11 cos 3fiÞ1
ec

2
+
i

ð11 cos 3ciÞ: (2)

The excluded-volume term Eev is given by a hard-sphere potential of the

form

Eev ¼ eev +
i\j

9
sij

rij

� �12

; (3)

where the sum runs over all possible atom pairs except those consisting of

two hydrophobic Cb. The parameter sij is given by sij ¼ si 1 sj 1 Dsij,

where Dsij ¼ 0.625 �AA for CbC9, CbN, and CbO pairs that are connected by

a sequence of three covalent bonds, and Dsij ¼ 0 �AA otherwise. The

introduction of the parameter Dsij can be thought of as a change of the local

potential.
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Address reprint requests to A. Irbäck, Tel.:146-46-2223493; Fax:146-46-

2229686; E-mail: anders@thep.lu.se.

� 2003 by the Biophysical Society

0006-3495/03/09/1457/09 $2.00



The hydrogen-bond term Ehb has the form

Ehb ¼ ehb +
ij

uðrijÞvðaij;bijÞ; (4)

where the functions u(r) and v(a, b) are given by

uðrÞ ¼ 5
shb

r

� �12

� 6
shb

r

� �10

(5)

vða;bÞ ¼ cos
2
a cos

2
b a;b[908

0 otherwise
:

�
(6)

The sum in Eq. 4 runs over all possible HO pairs, and rij denotes the HO

distance, aij the NHO angle, and bij the HOC9 angle. The last term of the

potential, the hydrophobicity term Ehp, is given by

Ehp ¼ ehp +
i\j

shp

rij

� �12

� 2
shp

rij

� �6
" #

; (7)

where the sum runs over all pairs of hydrophobic Cb.

To speed up the calculations, a cutoff radius rc is used, which is taken to

be 4.5�AA for Eev and Ehb, and 8�AA for Ehp. Numerical values of all energy and

geometry parameters can be found elsewhere (Irbäck et al., 2000).

The thermodynamic behavior of this three-helix-bundle protein has been

studied before (Irbäck et al., 2000, 2001). These studies demonstrated that

this model protein has the following properties:

It does form a stable three-helix bundle, except for a twofold topological

degeneracy. These two topologically distinct states both contain three

right-handed helices. They differ in how the helices are arranged. If

we let the first two helices form a U, then the third helix is in front of

the U in one case (FU), and behind the U in the other case (BU). The

reason that the model is unable to discriminate between these two

states is that their contact maps are effectively very similar (Wallin

et al., 2003).

It makes more stable helices than the corresponding one- and two-helix

sequences, which is in accord with the experimental fact that tertiary

interactions generally are needed for secondary structure to become

stable.

It undergoes a first-order-like folding transition directly from an

expanded state to the three-helix-bundle state, without any detectable

intermediate state. At the folding temperature Tf, there is a pro-

nounced peak in the specific heat.

Here we analyze the folding dynamics of this protein in more detail,

through an extended study of both thermodynamics and kinetics.

As a measure of structural similarity with the native state, we monitor

a parameter Q that we call nativeness (the same as in our earlier studies

(Irbäck et al., 2000, 2001; Favrin et al., 2002)). To calculate Q, we use

representative conformations for the FU and BU topologies, respectively,

obtained by energy minimization. For a given conformation, we compute the

root-mean-square deviations dFU and dBU from these two representative

conformations (calculated over all backbone atoms). The nativeness Q is

then obtained as

Q ¼ max expð�d
2

FU=ð10�AAÞ
2Þ; exp �d

2

BU=ð10�AAÞ
2

� �� 	
; (8)

which makes Q a dimensionless number between 0 and 1.

Energies are quoted in units of kTf, with the folding temperature Tf
defined as the specific heat maximum. In the dimensionless energy unit used

in our previous study (Irbäck et al., 2000), this temperature is given by kTf ¼
0.6585 6 0.0006.

Monte Carlo methods

To simulate the thermodynamic behavior of this model, we use simulated

tempering (Lyubartsev et al., 1992; Marinari and Parisi, 1992; Irbäck and

Potthast, 1995), in which the temperature is a dynamic variable. This method

is chosen to speed up the calculations at low temperatures. Our simulations

are started from random configurations. The temperatures studied range

from 0.95 Tf to 1.37 Tf.
The temperature update is a standard Metropolis step. In conformation

space we use two different elementary moves: first, the pivot move in which

a single torsion angle is turned; and second, a semilocal method (Favrin et al.,

2001) that works with seven or eight adjacent torsion angles, which are

turned in a coordinated manner. The nonlocal pivot move is included in our

calculations to accelerate the evolution of the system at high temperatures.

Our kinetic simulations are also Monte Carlo based, and only meant to

mimic the time evolution of the system in a qualitative sense. They differ

from our thermodynamic simulations in two ways: first, the temperature is

held constant; and second, the nonlocal pivot update is not used, but only the

semilocal method (Favrin et al., 2001). This restriction is needed to avoid

large unphysical deformations of the chain.

Statistical errors on thermodynamic results are obtained by jackknife

analysis (Miller, 1974) of results from ten or more independent runs, each

containing several folding/unfolding events. All errors quoted are 1s errors.

Statistical errors on relaxation times are difficult to determine due to

uncertainties about where the large-time behavior sets in and are therefore

omitted. We estimate that the uncertainties on our calculated relaxation times

are ;10%. The statistical errors on the results obtained by numerical

solution of the diffusion equation are, however, significantly smaller than

this.

All fits of data discussed below are carried out by using a Levenberg-

Marquardt procedure (Press et al., 1992).

Analysis

Melting curves for proteins are often described in terms of a two-state

picture. In the two-state approximation, the average of a quantity X at

temperature T is given by

XðTÞ ¼ Xu 1XnKðTÞ
11KðTÞ ; (9)

where K(T) ¼ Pn(T)/Pu(T), Pn(T) and Pu(T) being the populations of the

native and unfolded states, respectively. Likewise, Xn and Xu denote the

respective values of X in the native and unfolded states. The effective

equilibrium constant K(T) is to leading order given by K(T) ¼ exp[(1/kT �
1/kTm)DE], where Tm is the midpoint temperature and DE the energy

difference between the two states. With this K(T), a fit to Eq. 9 has four

parameters: DE, Tm, and the two baselines Xu and Xn.

A simple but powerful method for quantitative analysis of the folding

dynamics is obtained by assuming the motion along different reaction

coordinates to be diffusive (Bryngelson et al., 1995; Socci et al., 1996). The

folding process is then modeled as one-dimensional Brownian motion in an

external potential given by the free energy F(r) ¼ �kT ln Peq(r), where

Peq(r) denotes the equilibrium distribution of r. Thus, it is assumed that the

probability distribution of r at time t, P(r, t), obeys Smoluchowski’s dif-

fusion equation

@Pðr; tÞ
@t

¼ @

@r
DðrÞ @Pðr; tÞ

@r
1

Pðr; tÞ
kT

@FðrÞ
@r

� �
 �
; (10)

where D(r) is the diffusion coefficient.

This picture is not expected to hold on short timescales, due to the

projection onto a single coordinate r, but may still be useful provided that the

diffusive behavior sets in on a timescale that is small compared to the

relaxation time. By estimating D(r) and F(r), it is then possible to predict the

relaxation time from Eq. 10. Such an analysis has been successfully carried

through for a lattice protein (Socci et al., 1996).

The relaxation behavior predicted by Eq. 10 is well understood when F(r)

has the shape of a double well with a clear barrier. In this situation, the
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relaxation is single exponential with a rate constant given by Kramers’ well-

known result (Kramers, 1940). However, this result cannot be applied to our

model, in which the free-energy barrier is small or absent, depending on

which reaction coordinate is used. Therefore, we perform a detailed study of

Eq. 10 for some relevant choices of D(r) and F(r), using analytical as well as

numerical methods.

RESULTS

Thermodynamics

In our thermodynamic analysis, we study the five different

quantities listed in Table 1. The first question we ask is to

what extent the temperature dependence of these quantities

can be described in terms of a first-order two-state system

(see Eq. 9).

Fits of our data to this equation show that the simple two-

state picture is not perfect ( x2 per degree of freedom, dof, of

;10), but this can be detected only because the statistical

errors are very small at high temperatures (\0.1%). In fact, if

we assign artificial statistical errors of 1% to our data points,

an error size that is not uncommon for experimental data,

then the fits become perfect with a x2/dof close to unity. Fig.

1 shows the temperature dependence of the hydrogen-bond

energy Ehb and the radius of gyration Rg, along with our two-

state fits.

Table 1 gives a summary of our two-state fits. In

particular, we see that the fitted values of both the energy

change DE and the midpoint temperature Tm are similar for

the different quantities. It is also worth noting that the Tm
values fall close to the folding temperature Tf, defined as the

maximum of the specific heat. The difference between the

highest and lowest values of Tm is less than 1%. There is

a somewhat larger spread in DE, but this parameter has

a larger statistical error.

So, the melting curves show two-state character, and the

fitted parameters DE and Tm are similar for different

quantities. From this it may be tempting to conclude that

the thermodynamic behavior of this protein can be fully

understood in terms of a two-state system. The two-state

picture is, nevertheless, an oversimplification, as can be seen

from the shapes of the free-energy profiles F(E) and F(Q).
Fig. 2 shows these profiles at T ¼ Tf. First of all, these

profiles show that the native and unfolded states coexist at

T ¼ Tf, so the folding transition is first order like. However,

there is no clear free-energy barrier separating the two states;

F(Q) exhibits a very weak barrier, \1 kT, whereas F(E)
shows no barrier at all. In fact, F(E) has the shape of a square
well rather than a double well.

Phase transition terminology is, by necessity, ambiguous

for a finite system like this, but if states with markedly

different E or Q coexist it does make sense to call the

transition first order like, even if a free-energy barrier is

missing. At a second-order phase transition, the free-energy

profile is wide, but the minimum remains unique.

Kinetics

Our kinetic study is performed at T ¼ Tf. Using Monte Carlo

dynamics (see Model and Methods), we study the relaxation

of ensemble averages of various quantities. For this purpose,

we performed a set of 3000 folding simulations, starting

from equilibrium conformations at temperature T0 � 1.06Tf.
At this temperature, the chain is extended and has a relatively

low secondary-structure content (see Fig. 1).

In the absence of a clear free-energy barrier (see Fig. 2), it

is not obvious whether or not the relaxation should be single

exponential. To get an idea of what to expect for a system

like this, we consider the relaxation of the energy E in

a potential F(E) that has the form of a perfect square well at

T ¼ Tf. For this idealized F(E) and a constant diffusion

coefficient D(E), it is possible to solve Eq. 10 analytically for
relaxation at an arbitrary temperature T. This solution is

given in Appendix A, for the initial condition that P(E, t¼ 0)

is the equilibrium distribution at temperature T0. Using this

result, the deviation from single-exponential behavior can be

mapped out as a function of T0 and T, as is illustrated in Fig.

3. The size of the deviation depends on both T0 and T, but
is found to be small for a wide range of (T0,T) values. This
clearly demonstrates that the existence of a free-energy

barrier is not a prerequisite to observe single-exponential

relaxation.

Let us now turn to the results of our simulations. Fig. 4

shows the relaxation of the average energy E and the average

nativeness Q in Monte Carlo (MC) time. In both cases, the

large-time data can be fitted to a single exponential, which

gives relaxation times of t � 1.7 3 107 and t � 1.8 3 107

for E and Q, respectively, in units of elementary MC steps.

The corresponding fits for the radius of gyration and the

hydrogen-bond energy (data not shown) give relaxation

times of t � 2.13 107 and t � 1.83 107, respectively. The

fit for the radius of gyration has a larger uncertainty than the

others, because the data points have larger errors in this case.

The differences between our four fitted t values are small

and most probably due to limited statistics for the large-time

behavior. Averaging over the four different variables, we

TABLE 1 Parameters DE and Tm

DE/kTf Tm/Tf

E 40.1 6 3.3 1.0050 6 0.0020

Ehb 41.0 6 2.6 1.0024 6 0.0017

Ehp 45.4 6 3.3 1.0056 6 0.0017

Rg 45.7 6 3.8 1.0099 6 0.0018

Q 53.6 6 2.1 0.9989 6 0.0008

Parameters DE and Tm obtained by fitting results from our thermodynamic

simulations to the two-state expression in Eq. 9. This is done individually

for each of the quantities in the first column; the energy E, the hydrogen-

bond energy Ehb, the hydrophobicity energy Ehp, the radius of gyration Rg

(calculated over all backbone atoms), and the nativeness Q (see Eq. 8). The

fits are performed using seven data points in the temperature interval 0.95Tf
# T # 1.11Tf.
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obtain a relaxation time of t � 1.8 3 107 MC steps for this

protein. The fact that the relaxation times for the hydrogen-

bond energy and the radius of gyration are approximately the

same shows that helix formation and chain collapse proceed

in parallel for this protein. This finding is in nice agreement

with recent experimental results for small helical proteins

(Krantz et al., 2002).

For Q, it is necessary to go to very short times to see any

significant deviation from a single exponential (see Fig. 4).

For E, we find that the single-exponential behavior sets in at

roughly t/3, which means that the deviation from this

behavior is larger than in the analytical calculation above. On

the other hand, for comparisons with experimental data, we

expect the behavior of Q to be more relevant than that of E.
The simulations confirm that the relaxation can be ap-

proximately single exponential even if there is no clear free-

energy barrier.

To translate the relaxation time for this protein into

physical units, we compare with the reconfiguration time

for the corresponding one-helix segment. To that end, we

performed a kinetic simulation of this 16-amino acid seg-

ment at the same temperature, T ¼ Tf. This temperature is

above the midpoint temperature for the one-helix segment,

which is 0.95Tf (Irbäck et al., 2000). So, the isolated one-

helix segment is unstable at T¼ Tf, but makes frequent visits

to helical states with low hydrogen-bond energy, Ehb. To

obtain the reconfiguration time, we fitted the large-time be-

havior of the autocorrelation function for Ehb,

ChbðtÞ ¼ EhbðtÞEhbð0Þh i � Ehbð0Þh i2; (11)

to an exponential. The exponential autocorrelation time,

which can be viewed as a reconfiguration time, turned out to

be th � 1.0 3 106 MC steps. This is roughly a factor of 20

shorter than the relaxation time t for the full three-helix

bundle. Assuming the reconfiguration time for an individual

helix to be ;0.2 ms (Williams et al., 1996; Thompson et al.,

1997), we obtain relaxation and folding times of ;4 ms and

;8 ms, respectively, for the three-helix bundle. This is fast

but not inconceivable for a small helical protein (Jackson,

1998). In fact, the B domain of staphylococcal protein A is

a three-helix-bundle protein that has been found to fold in

\10 ms, at 378C (Myers and Oas, 2001).

Relaxation-time predictions

We now turn to the question of whether the observed

relaxation time can be predicted based on the diffusion

equation, Eq. 10. For that purpose, we need to know not only

the free energy F(r), but also the diffusion coefficient D(r).

FIGURE 1 Temperature dependence

of (a) the hydrogen-bond energy Ehb

and (b) the radius of gyration Rg. The

lines are fits to Eq. 9.

FIGURE 2 Free-energy profiles at T

¼ Tf for (a) the energy E and (b) the
nativeness Q (dark bands). The light-

gray bands show free energies Fb for

block averages (see Eq. 12), using a

block size of tb ¼ 106 MC steps. Each

band is centered around the expected

value and shows statistical 1s errors.
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Socci et al. (1996) successfully performed this analysis for

a lattice protein that exhibited a relatively clear free-energy

barrier. Their estimate of D(r) involved an autocorrelation

time for the unfolded state. The absence of a clear barrier

separating the native and unfolded states makes it necessary

to take a different approach in our case.

The one-dimensional diffusion picture is not expected to

hold on short timescales, but only after coarse graining in

time. A computationally convenient way to implement this

coarse graining in time is to study block averages b(t) defined
by

bðtÞ ¼ 1

tb
+

t#s\t1tb

rðsÞt ¼ 0; tb; 2tb; . . . (12)

where tb is the block size and r is the reaction coordinate

considered. The diffusion coefficient can then be estimated

using Db(r) ¼ h(db)2i/2tb, where the numerator is the mean-

square difference between two consecutive block averages,

given that the first of them has the value r.
In our calculations, we use a block size of tb ¼ 106 MC

steps, corresponding to the reconfiguration time th for an

individual helix. We do not expect the dynamics to be

diffusive on timescales shorter than this, due to steric traps

that can occur in the formation of a helix. In order for the

dynamics to be diffusive, the timescale should be such that

the system can escape from these traps.

Using this block size, we first make rough estimates of the

relaxation times forE andQ based on the result inAppendixA

for a square-well potential and a constant diffusion co-

efficient. These estimates are given by tpred;0 ¼ Dr2sw=Dbp
2;

where Drsw is the width of the potential and Db is the average

diffusion coefficient. (Eq. 15 in Appendix A can be applied to

other observables than E if T ¼ Tm. The predicted relaxation

time tpred,0 is given by t1). Our estimates of Drsw and Db can

be found in Table 2, along with the resulting predictions

tpred,0. We find that these simple predictions agree with the

observed relaxation times t within a factor of two.

We also did the same calculation for smaller block sizes,

tb ¼ 100, 101, . . . , 105 MC steps. This gave tpred,0 values

smaller or much smaller than the observed t, signaling

nondiffusive dynamics. This confirms that for b(t) to show

diffusive dynamics, tb should not be smaller than the

reconfiguration time for an individual helix.

Having seen the quite good results obtained by this simple

calculation, we now turn to a more detailed analysis,

illustrated in Fig. 5 a. The block size is the same as before,

tb¼ 106 MC steps, but the space dependence of the diffusion

coefficient Db(r) is now taken into account, and the potential,

Fb(r), reflects the actual distribution of block averages. The

potential Fb(r), shown in Fig. 2, is not identical to that for the
unblocked variables. At a first-order-like transition, we

expect free-energy minima to become more pronounced

when going to the block variables, provided that the block

size tb is small compared with the relaxation time, because

FIGURE 3 Level diagram showing the deviation (in %) from a single

exponential for diffusion in energy in a square well, based on the exact

solution inAppendixA.The system relaxes at temperatureT, starting from the

equilibriumdistribution at temperatureT0. p is defined as p¼ (hEi –En)/DEsw,

where hEi is the average energy at temperature T, and En andDEsw denote the

lower edge and the width, respectively, of the square well. p can be viewed as

a measure of the unfolded population at temperature T, and is 0.5 if T ¼ Tf.

p0 is the the corresponding quantity at temperature T0. As a measure of the

deviation from a single exponential, we take dmax/dE(t0), where dmax is the

maximum deviation from a fitted exponential and dE(t0) ¼ E(t0) – hEi, E(t0)
being the mean at the smallest time included in the fit, t0. Data at times shorter

than 1% of the relaxation time were excluded from the fit.

FIGURE 4 Relaxation behavior of the

three-helix-bundle protein at the folding

temperature Tf, starting from the equi-

librium ensemble at T0 � 1.06Tf. (a)

dE(t) ¼ E(t) � hEi against simulation

time t, where E(t) is the average E after t

MC steps (3000 runs) and hEi denotes

the equilibrium average (at Tf). (b) Same

plot for the nativeness Q.
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when forming the block variables one effectively integrates

out fluctuations about the respective states. The results in

Fig. 2 do show this tendency, although the effect is not very

strong. Fig. 5 b shows the diffusion coefficient Db(E), which
is largest at intermediate values between the native and

unfolded states. The behavior of Db(Q) (not shown) is the

same in this respect. Hence, there is no sign of a kinetic

bottleneck to folding for this protein.

Given Db(r) and Fb(r), we solve Eq. 10 for P(r, t) by using
the finite-difference scheme in Appendix B. The initial

distribution P(r, t ¼ 0) is taken to be the same as in the

kinetic simulations. We find that the mean of P(r, t) shows
single-exponential relaxation to a good approximation. An

exponential fit of these data gives us a new prediction, tpred,

for the relaxation time.

From Table 2 it can be seen that the prediction obtained

through this more elaborate calculation, tpred, is not better

than the previous one, tpred,0, at least not in Q, despite that

there exists a weak barrier in this coordinate (see Fig. 2 b).
This means that the barrier in Q is too weak to be important

for the relaxation rate. If the underlying diffusion picture, Eq.

10, had been perfect, tpred would have been equal to t, as

obtained from the kinetic simulations. Our results show that

this is not the case. At least in Q, there are significant

deviations from the behavior predicted by this equation.

If more accurate relaxation time predictions are needed,

there are different ways to proceed. One possible way is to

simply increase the block size. However, for the calculation

to be useful, the block size must remain small compared to

the relaxation time. A more interesting possibility is to refine

the simple diffusion picture defined by Eq. 10, in which, in

particular, non-Markovian effects are ignored. Such effects

may indeed affect folding times (Plotkin and Wolynes, 1998;

Plotkin and Onuchic, 2002b). Yet another possibility is to

use a combination of a few different variables, perhaps E and

Q, instead of a single reaction coordinate (Du et al., 1998;

Socci et al., 1998; Plotkin and Onuchic, 2002b). With

a multidimensional representation of the folding process,

non-Markovian effects could become smaller.

SUMMARY AND DISCUSSION

We have analyzed the thermodynamics and kinetics of

a designed three-helix-bundle protein, based on Monte Carlo

calculations. We found that this model protein shows two-

state behavior, in the sense that melting curves to a good

approximation can be described by a simple two-state system

and that the relaxation behavior is close to single ex-

ponential. A simple two-state picture is, nevertheless, an over-

simplification, as the free-energy barrier separating the native

and unfolded states is weak (K1kT). The weakness of the

barrier implies that a fitted two-state parameter such as DE
has no clear physical meaning, despite that the two-state fit

looks good.

Reduced (Kolinski et al., 1998; Takada et al., 1999; Zhou

and Karplus, 1999; Shea et al., 1999; Berriz and Shakh-

novich, 2001) and all-atom (Guo et al., 1997; Duan and

Kollman, 1998; Shen and Freed, 2002; Kussell et al., 2002;

Zagrovic et al., 2002; Linhananta and Zhou, 2003) models

for small helical proteins have been studied by many other

groups. Most of these studies relied on so-called G�o-type
(G�o and Abe, 1981) potentials. It should therefore be pointed
out that our model is sequence based.

Using an extended version of this model that includes all

atoms, we recently found similar results for two peptides,

an a-helix and a b-hairpin (Irbäck et al., 2003). Here the

calculated melting curves could be directly compared with

experimental data, and a reasonable quantitative agreement

was found.

The smallness of the free-energy barrier prompted us to

perform an analytical study of diffusion in a square-well

TABLE 2 Predictions for tpred,0 and tpred

Drsw Db tpred,0 tpred t

E: 140kTf (9.3 6 0.2) 3 10�5(kTf)
2 2.1 3 107 1.9 3 107 1.7 3 107

Q: 1.0 (1.00 6 0.02) 3 10�8 1.0 3 107 0.8 3 107 1.8 3 107

The predictions tpred,0 and tpred (see text) along with the observed

relaxation time t, as obtained from the data in Fig. 4, for the energy E and

the nativeness Q. Drsw is the width of the square-well potential and Db is the

average diffusion coefficient.

FIGURE 5 (a) Numerical solution of

Eq. 10 with the energy as reaction

coordinate. The distribution P(E, t) is

shown for t ¼ 0, t/3, t and 2t (solid

lines), where t is the relaxation time.

The dashed line is the equilibrium

distribution. The diffusion coefficient

Db(E) and the potential Fb(E) (light gray
band in Fig. 2 a) were both determined

from numerical simulations, using

a block size of tb ¼ 106 MC steps

(see Eq. 12). (b) The space dependence
of the diffusion coefficient Db(E). The

band is centered around the expected

value and shows the statistical 1s error.
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potential. Here we studied the relaxation behavior at

temperature T, starting from the equilibrium distribution at

temperature T0, for arbitrary T and T0. We found that this

system shows a relaxation behavior that is close to single

exponential for a wide range of T0, T values, despite the

absence of a free-energy barrier. We also made relaxation-

time predictions based on this square-well approximation.

Here we took the diffusion coefficient to be constant. It

was determined assuming the dynamics to be diffusive on

timescales beyond the reconfiguration time for an individual

helix. The predictions obtained this way were found to agree

within a factor of two with observed relaxation times, as

obtained from the kinetic simulations. So, this calculation,

based on the two simplifying assumptions that the potential

is a square well and that the diffusion coefficient is constant,

gave quite good results. A more detailed calculation, in

which these two additional assumptions were removed, did

not give better results. This shows that the underlying dif-

fusion picture leaves room for improvement.

Our kinetic study focused on the behavior at the folding

temperature Tf, where the native and unfolded states,

although not separated by a clear barrier, are very different,

which makes the folding mechanism transparent. In par-

ticular, we found that helix formation and chain collapse could

not be separated, which is in accord with experimental data

by Krantz et al. (2002). The difference between the native

and unfolded states is much smaller at the lowest temperature

we studied, 0.95Tf, because the unfolded state is much more

nativelike here. Mayor et al. (2003) recently reported ex-

perimental results on a three-helix-bundle protein, the

engrailed homeodomain (Clarke et al., 1994), including

a characterization of its unfolded state. In particular, the

unfolded state was found to have a high helix content. This

study was performed at a temperature below 0.95Tf. It would
be very interesting to see what the unfolded state of this

protein looks like near Tf. In our model, there is a significant

decrease in helix content of the unfolded state as the

temperature increases from 0.95Tf to Tf.
It is instructive to compare our results with those of Zhou

and Karplus (1999), who discussed two folding scenarios for

helical proteins, based on a G�o-type Ca model. In their first

scenario, folding is fast, without any obligatory intermediate,

and helix formation occurs before chain collapse. In the

second scenario, folding is slow with an obligatory inter-

mediate on the folding pathway, and helix formation and

chain collapse occur simultaneously. The behavior we find

does not match any of these two scenarios. In our case, helix

formation and chain collapse occur in parallel but folding is

nevertheless fast and without any well-defined intermediate

state.

APPENDIX A: DIFFUSION IN A SQUARE WELL

Here we discuss Eq. 10 in the situation when the reaction coordinate r is the
energy E, and the potential F(E) is a square well of width DEsw at T ¼ Tf.

This means that the equilibrium distribution is given by Peq(E) } exp(�dbE)

if E is in the square well and Peq(E)¼ 0 otherwise, where db¼ 1/kT� 1/kTf.

Eq. 10 then becomes

@PðE; tÞ
@t

¼ @

@E
D

@PðE; tÞ
@E

1 dbPðE; tÞ
� �
 �

: (13)

For simplicity, the diffusion coefficient is assumed to be constant,D(E)¼D.

The initial distribution P(E, t ¼ 0) is taken to be the equilibrium distribution

at some temperature T0, and we put db0 ¼ 1/kT0 � 1/kTf.
By separation of variables, it is possible to solve Eq. 13 with this initial

condition analytically for arbitrary values of the initial and final temperatures

T0 and T, respectively. In particular, this solution gives us the relaxation

behavior of the average energy. The average energy at time t, E(t), can be

expressed in the form

EðtÞ ¼ Eh i1 +
‘

k¼1

Ake
�t=tk ; (14)

where hEi denotes the equilibrium average at temperature T. A straightfor-

ward calculation shows that the decay constants in this equation are given by

1=tk ¼
D

DE
2

sw

p
2
k
2
1

1

4
db

2
DE

2

sw

� �
(15)

and the expansion coefficients by

Ak ¼ BkDEsw

3
p

2
k
2
db� db0ð ÞDEsw

p
2
k
2
1 ðdb0 � 1

2
dbÞ2DE2

sw

� �
p

2
k
2
1 1

4
db

2
DE

2

sw

� �2 ; (16)
where

Bk ¼
4db0DEsw

sinh 1

2
db0DEsw

3
cosh 1

2
ðdb0 � 1

2
dbÞDEsw

� �
cosh 1

4
dbDEsw if k odd

sinh 1

2
ðdb0 � 1

2
dbÞDEsw

� �
sinh 1

4
dbDEsw if k even

(

(17)

Finally, the equilibrium average is

Eh i ¼ En 1Eu

2
1

1

db
� DEsw

2
coth

1

2
dbDEsw; (18)

where En and Eu are the lower and upper edges of the square well,

respectively.

It is instructive to consider the behavior of this solution when

jdb� db0j � 1=DEsw: The expression for the expansion coefficients can

then be simplified to

Ak � BkDEsw

p
2
k
2ðdb� db0ÞDEsw

p
2
k
2
1 1

4
db

2
DE

2

sw

� �3 (19)

with

Bk �
4db0DEsw

sinh 1

2
db0DEsw

3
cosh

2 1

4
dbDEsw if k odd

sinh
2 1
4
dbDEsw if k even

�
(20)

Note that Ak scales as k2 if k � 1=2pjdbjDEsw, and as 1/k4 if

k � 1=2pjdbjDEsw. Note also that the last factor in Bk suppresses Ak for

even k if T is close to Tf. From these two facts it follows that jA1j is much

larger than the other jAkj if T is near Tf. This makes the deviation from

a single exponential small.

Two-State Folding 1463

Biophysical Journal 85(3) 1457–1465



APPENDIX B: NUMERICAL SOLUTION OF THE
DIFFUSION EQUATION

To solve Eq. 10 numerically for arbitrary D(r) and F(r), we choose a finite-
difference scheme of Crank-Nicolson type with good stability properties. To

obtain this scheme we first discretize r. Put rj ¼ jDr, Dj ¼ D(rj) and Fj ¼
F(rj), and let p(t) be the vector with components pj(t) ¼ P(rj, t).

Approximating the RHS of Eq. 10 with suitable finite differences, we obtain

dp
dt

¼ ApðtÞ; (21)

where A is a tridiagonal matrix given by

ðApðtÞÞj ¼
1

Dr
2 Dj11=2ðpj11ðtÞ � pjðtÞÞ
�

� Dj�1=2ðpjðtÞ � pj�1ðtÞÞ�

1
1

4kTDr
2 Dj11pj11ðtÞðFj12 � FjÞ
�

� Dj�1pj�1ðtÞðFj � Fj�2Þ� (22)

Let now pn ¼ p(tn), where tn ¼ nDt. By applying the trapezoidal rule for

integration to Eq. 21, we obtain

pn11 � pn ¼ Dt

2
ðApn

1Apn11Þ: (23)

This equation can be used to calculate how P(r, t) evolves with time. It can

be readily solved for pn11 because the matrix A is tridiagonal.
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