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ABSTRACT Optical flow techniques are often used to estimate velocity fields to represent motion in successive video images.
Usually the method is mathematically ill-posed, because the single scalar equation representing the conservation of local
intensity contains more than one unknown velocity component. Instead of regularizing the problem using optimization
techniques, we formulate a well-posed problem for the gerbil hemicochlea preparation by introducing an in-plane
incompressibility constraint, and then show that local brightness is also conserved. We solve the resulting system using
a Lagrangian description of the conservation equations. With this approach, the displacement of isointensity contours on
sequential images determines the normal component of velocity of an area element, while the tangential component is
computed from the local constant area constraint. We have validated our method using pairs of images generated from our
calculations of the vibrational deformation in a cross section of the organ of Corti and tectorial membrane in the mammalian
cochlea, and quantified the superior performance of our method when complex artificial motion is applied to a noisy image
obtained from the hemicochlea preparation. The micromechanics of the organ of Corti and the tectorial membrane is then
analyzed by our new method.

INTRODUCTION

The relative motions of cochlear structures remain unclear

despite advances in imaging the vibrational patterns in the

cochlea. Recently Hu et al. (1999) applied an optical flow

technique to analyze low frequency motion in the hemi-

cochlea preparation, in which the gerbil cochlea is sectioned

into two halves along the midmodiolar plane. They used the

gradient-based algorithm of Lucas and Kanade (1981) to

compute the velocity fields that represent the motion in

successive video images. The gradient-based methods

estimate two-dimensional velocity fields by using spatio-

temporal derivatives of the image intensity field. These

methods are based on a gradient constraint equation that is

derived from the assumption that local structures conserve

their intensity when they move. However, this equation

alone is not sufficient to unambiguously compute the two

components of a velocity vector. Usually the problem is

regularized by adding another constraint and using opti-

mization techniques. Barron et al. (1994) reviewed and

quantitatively evaluated different implementations of the

method. The algorithm used by Hu et al. (1999) attempts to

find the least square best fit for a two-dimensional velocity

vector that is assumed to be constant in a small neighborhood

(5 3 5 pixels) surrounding the field point. Large regions of

the image are not assigned velocity vector because the

method has built-in confidence measures that determine the

velocity vector only when both the intensity gradients are

large enough and the isointensity contours are curved

enough. The method is therefore an edge detection algorithm

that works best with well-defined curved edges. Here we

formulate a mathematically well-posed problem by in-

troducing an in-plane incompressibility constraint. We then

show that brightness as well as intensity is conserved. Al-

though an incompressibility constraint has been previously

proposed as part of an optimization scheme (Li et al., 2000;

Zhou et al., 1995), our Lagrangian solution method, which

relies on optimization to a much smaller extent, is novel for

optical flow. We validate the Lagrangian method using pairs

of synthetic images generated from our calculations of the

vibrational deformation in a cross section of the tectorial

membrane (TM) and the organ of Corti (OC) in the mam-

malian cochlea. We also test that method using real images

from the hemicochlea preparation with computer-generated

artificial displacements, and then apply the Lagrangian

method to images obtained from the hemicochlea prepara-

tion to analyze the vibrational patterns of the cellular

structures of the cochlea.

LAGRANGIAN FORMULATION AND
SOLUTION METHOD

The central assumption in optical flow analysis is that the

local intensity of moving deformable image elements do not

change with time. This implies the following intensity

gradient constraint equation (Barron et al., 1994):

@I

@t
1 u

@I

@x
1 v

@I

@y
¼ 0; (1)

where I(x, y, t) is the image intensity at location (x, y) and at

time t, and u and v are velocity components in x and y
directions, respectively. It is impossible to uniquely recover

velocity from Eq. 1 alone because there are two unknowns

(u and v) in the equation. Therefore, an additional constraint
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has to be introduced. Instead of assuming that u and v are

constants in a neighborhood of (x,y) as did Hu et al. (1999),

we introduce an in-plane incompressibility constraint

@u

@x
1

@v

@y
¼ 0; (2)

which implies that infinitesimal elements conserve area as

they move. In fact, we neglect the term @w/@z in Eq. 2, where
w is the out-of-plane component of velocity, and z is the out-
of-plane coordinate. It seems to be agreed that w� (u, v) for
tissue motion both in the intact cochlea and the hemicochlea.

This has been verified by three-dimensional measurements

of organ of Corti motion in response to acoustic stimulation

in a temporal bone preparation of the guinea pig cochlea

(Hemmert et al., 2000). For fluid motion the situation is more

complex. Axial fluid flow has been seen experimentally in

the tunnel of Corti (Karavitaki and Mountain, 2003), and

in the spiral sulcus in finite element simulations (Cai and

Chadwick, 2003). However, in the open hemicochlea, fluid

cannot develop an axial pressure gradient (Richter et al.,

1998). This argues against significant out-of-plane fluid

motion in the hemicochlea even though such motions cannot

yet be quantified. In any case, we apply Eq. 2 to both tissue

and fluid, because water itself is essentially incompressible

and cannot flow across cell membranes at acoustic fre-

quencies. Acellular structures such as the tectorial membrane

are also essentially incompressible.

The basic idea of the Lagrangian formulation is to follow

the same material points in a region of image area as the

region moves and deforms. In fact Eqs. 1 and 2 imply that

BðA; tÞ ¼
Z Z

AðtÞ
I dA ¼ const; (3)

i.e., the total brightness B(A, t) inside a region having area

A(t) remains constant as the element moves and deforms. To

prove this we follow the arguments of Karamcheti (1966).

Consider a closed curve C enclosing a local image area A at

time t. Let C9 and A9 denote the closed curve and enclosed

area at time t 1 dt. Also let a9 denote the area outside of C
and inside of C9, while a denotes the area inside of C and

outside of C9 (Fig. 1). Using the usual definition of a

derivative we have

dB

dt
¼ lim

dt!0
½BðA9; t1 dtÞ � BðA; tÞ�=dt; (4)

but notice from Fig. 1 that B(A9, t 1 dt) ¼ B(A, t 1 dt) 1
B(a9, t 1 dt) � B(a, t 1 dt). The first term B(A, t 1 dt) ¼
B(A, t) 1 dt@B(A, t)/@t 1 . . . , with A fixed, while the last

two terms represent the net outflow of I during the time dt
through the closed curve C fixed at time t, i.e.,

dt

I
C

Iv � n dC;

where n is the unit normal to the curve C. Therefore

dB

dt
¼ @

@t

ZZ
Afixed

I dA1

I
Cfixed

Iv � n dC

¼
ZZ

Afixed

@I

@t
dA1

ZZ
Afixed

= � ðIvÞdA

¼
ZZ

Afixed

@I

@t
1 v � =I1 I= � v

� �
dA: (5)

The first two terms of the integrand vanish by Eq. 1

whereas the last vanishes by Eq. 2. It therefore follows that

the brightness of a moving incompressible region remains

constant in time. Notice that if the motion is not in-

compressible then the brightness of a moving region changes

with time. Now consider a special case of Eq. 5 when the

closed curve C is a curvilinear quadrilateral comprised of two

arcs ds and ds*, respectively on neighboring isointensity con-
tours I(x, y, t) ¼ c, I(x, y, t) ¼ c* ¼ c 1 dc, and two nor-

mals dnr and dnl, (Fig. 2). The brightness of this element of

area at time t is B(t) ¼ cdsdnr 1 higher order terms in ds, dn,
and dc. Now let us compute the brightness of the same

element at time t1 dt : Bðt1 dtÞ ¼ cds9dn9r 1 higher order

FIGURE 1 Construction used to show brightness of a moving element is

conserved. A closed curve C enclosing an image area A at time t deforms to

another closed curve C9, which encloses an image area A9 at time t 1 dt.

Note that a9 denotes the area outside of C and inside of C9, whereas a denotes

the area inside of C and outside of C9.

FIGURE 2 Area element bounded by two neighboring isointensity

contours. Solid contours are in image frame 1; dashed contours are in

frame 2.
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terms in ds9, dn9, and dc. Because we are tracking the same

element of area bounded by the same isointensity contours,

the conservation of brightness Eq. 5 reduces simply to

conservation of area: dsdnr ¼ ds9dn9r; where the prime

designates length evaluated at time t 1 dt. Let nc and nc*
respectively denote the normal displacements of the

isointensity curves c and c* in the time interval dt. The
mean normal velocity vn of the element is then

vn ¼
1

2

nc 1 nc
�

dt
; (6)

which is to be evaluated at the centroid of the element. To

calculate the mean tangential velocity vs of the element

we first determine the tangential elongation of the element

ds9 � ds using dsdnr ¼ ds9dn9r

ds9� ds ¼ ds
dnr

dn9r
� 1

� �
: (7)

Notice from Fig. 2 that dn9r ¼ dnr 1 nc� � nc: The rate of

elongation of the element can be expressed as the difference

between the tangential velocities vr and vl of the right and left
ends of the element. Therefore

vr � vl ¼
ds

dt

dnr

dn9r
� 1

� �
; (8)

where the mean tangential velocity vs (also to be evaluated at
the centroid of the element) is

vs ¼
1

2
ðvr 1 vlÞ: (9)

Substitution of Eq. 8 into Eq. 9 gives

vs ¼ vl 1
1

2

@s

@t

dnr

dn9r
� 1

� �
: (10)

Equation 10 must be used recursively, i.e., one must start

with an element where vl (or vr) is known and then move

right (or left) to the adjacent element and use: vl of the

adjacent element must equal vr of the previous element, etc.

Thus, this scheme allows the tangential velocity component

to be calculated everywhere between two neighboring

isointensity contours provided the tangential motion is

known at one location inside the two contours.

COMPUTATIONAL METHOD

We use MATLAB Image Processing Toolbox (Mathworks,

Natick, MA) to implement our Lagrangian algorithm. A key

problem is to estimate the motion at one location between

two neighboring isointensity contours. For this we use a

rotated correlation along a limited portion of the isointensity

contour rather than the traditional cross-correlation. In Fig. 3,

the middle curve (C0) has the average intensity value of the

two neighboring isointensity contours C1 and C2 having

respectively intensity values I1 and I2: I0 ¼ 0.5�(I1 1 I2).

Point P0 will move along the isointensity contour ðC90Þ
having the intensity value I0 in frame 2. Because the motion

in the hemicochlea is typically less than a pixel, we only need

check the points of a limited portion of C90, which are nearest
to P0, and we use MATLAB subroutine (imresize) to resize

the operating blocks of the two images using bicubic

interpolations. Thus we do not need to calculate the cross-

correlation values of a larger rectangular matching area

surrounding P0 in frame 2. However, complex rotational

motion may be present in the cochlea. To allow for that, we

rotate the correlation template and take the maximum

correlation value as the matching number for each estimating

point in frame 2 along the limited portion of the C90 (Fig. 3).
Finally, the best point is chosen as the point having the

maximum matching number. Note that the correlation value

for a given point in frame 2 is calculated as the weighted sum

of neighboring pixels as the template from frame 1 is moved

along the limited portion of the C90: We found that applying

a traditional cross-correlation method to the entire image is

very time consuming and error prone. We limit the cor-

relation calculation in a small neighborhood (4 3 4 pixels)

surrounding the estimated point and resize the image block

nine times using the bicubic interpolation method. We take

a 93 9 correlation template from the resized image block of

frame 1 and rotate the matching area in frame 2 to involve the

arbitrary complex rotation motion in the cochlea. We try to

choose initial points where the direction of motion might be

known, e.g. near the probe. If the computed correlation value

is less than 0.999 we reject the estimation and choose another

point. Once we get the motion of an initial point between two

FIGURE 3 Rotated-correlation method along a limited portion of the

isointensity contours. C1 and C2 have the intensity values I1 and I2
respectively. C0 is the middle curve having the average intensity value of C1

and C2. The correlation template in frame 1 is rotated to match the points

along isointensity contour C90 in frame 2, which has the same intensity value

as C0 in frame 1. The displacement of C90 relative to C0 has been

exaggerated for clarity.
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neighboring isointensity contours we can estimate the

velocity field everywhere along the isointensity contour

using Eqs. 6 and 10. The algorithm seems to be quite robust

with respect to which initial points are selected. Forward and

backward computation from the two ends of isointensity

contours give similar results. The difference in intensity

values of two neighboring isointensity contours is taken as dI
¼ 0.01 on a normalized intensity range of 0 ; 1. dI
determines the height (H) of the area elements (2; 4 pixels).

The length of the elements is taken to be about L ¼ 1.5H (3

; 6 pixels).

Note that when treating the video images from the

hemicochlea preparation, the isointensity contours can be

very noisy. To avoid noisy contours we first smooth the

images with a Gaussian filter of size 9 3 9 pixels with a

standard deviation s ¼ 3 pixels.

VALIDATION OF THE LAGRANGIAN METHOD

To qualitatively validate our method, we prepared two image

frames from our calculations of the vibrational deformation

in a cross section of the organ of Corti and tectorial

membrane in the mammalian cochlea (Cai and Chadwick,

2003) as follows: frame 1 is obtained by defining intensity

values at the node points of the finite element mesh I1(xi, yi)
¼ ci. Each node point is considered as a moving particle that

retains its intensity value when it moves. Thus we get frame

2, one-tenth of a cycle later, by applying the calculated

displacement field (Ui and Vi) to every node point (I2(xi1Ui,

yi 1 Vi) ¼ ci). These intensity values at node points are

interpolated to a rectangular grid and normalized to be

between 0 and 1 to get two gray level images. For simplicity

we let ci ¼ xi to get a purely horizontal gradient image for

frame 1. The optical flow between these two image frames

satisfies the intensity conservation and incompressibility

conditions because the motion was constrained to be

incompressible in the finite element model. Fig. 4 (top)
shows the known velocity field of our finite element model

(Cai and Chadwick, 2003). The optical flow results using the

Lagrangian approach are shown in Fig. 4 (bottom). They
qualitatively agree quite well with the known velocity field in

Fig. 4 (top). We also calculated optical flow fields using

vertical and curved gradient images and obtain similar

results. The Lucas and Kanade algorithm does poorly on

these synthetic images because of the paucity of edges.

The above synthetic images are devoid of noise. To

quantitatively validate our method for real images that are

not noise free, we apply complex computer-generated ar-

tificial displacements to a real image from the hemicochlea

preparation (Fig. 5 top). Fig. 5 (bottom) shows the com-

parison of calculated optical flow field (blue arrows) with the
known computer-generated motion (red arrows). The known
displacements are interpolated from rectangular grids to the

mesh grids along the isointensity contours in the Lagrangian

method.

Barron et al. (1994) evaluated nine optical flow algorithms

and concluded that the algorithm based on Lucas and Kanade

(1981) had the best performance. Table 1 shows the per-

formance comparison of our Lagrangian method with Lucas

and Kanade algorithm. In terms of average absolute angular

error (AAAE), average magnitude of vector difference

(AMoVD) and average error normal to gradient (AENtG),

our Lagrangian method has better performance than the

Lucas and Kanade algorithm. Furthermore our Lagrangian

method maintains better performance when the motion

becomes smaller: the AAAE of Lucas and Kanade algorithm

increases when the motion becomes smaller. In Table 1,

FIGURE 4 (top) Known velocity field calculated from the vibrational

deformation in a cross section of the organ of Corti (OC) and tectorial

membrane (TM). The black line inside the organ of Corti (OC) are the

boundary segments of the discrete cellular structures. (bottom) Optical flow

field computed from two successive synthetic images using Lagrangian

approach. Green lines are streamlines. Local velocity is tangent to these

streamlines. The size and direction of the arrows indicate motion amplitude

and direction respectively.

TABLE 1 Performance comparison of Lagrangian method

with Lucas and Kanade algorithm

LK(S) Lag(S) LK(L) Lag(L)

AAAE (8) 21.3 7.3 14.9 7.9

AMoVD (pixels) 0.47 0.086 0.57 0.15

AENtG (pixels) 0.34 0.05 0.39 0.12

AAAE ! Average absolute angular error.

AMoVD ! Average magnitude of vector difference.

AENtG ! Average error normal to gradient (sensitivity to ‘‘aperture

problem’’).
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FIGURE 5 (top) Computer-generated motion field of a real image from the hemicochlear preparation. (bottom) Comparison of calculated optical flow field

(blue arrows) with computer-generated artificial displacements (red arrows). The known motion fields are interpolated from rectangular grids to the mesh grids

along the isointensity contours in the Lagrangian method, to generate a top-on-top plot. The yellow and red scale bars are for the image and the displacement

arrows, respectively.
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LK(S) and LK(L) denote Lucas and Kanade algorithm

applied to small and large motion, respectively, whereas

Lag(S) and Lag(L) denote our Lagrangian method applying

to small and large motion, respectively. Here small motion

implies the maximum displacement is less than one pixel

(0.75 pixel), whereas large motion implies that the maximum

displacement is larger than one pixel (1.5 pixel). Our

Lagrangian method provides reliable results (AAAE\ 108)

for motions in the range 0.05–7.5 pixels.

APPLICATION OF THE LAGRANGIAN METHOD
TO THE HEMICOCHLEA

We applied our Lagrangian method to two pairs of video

images from the hemicochlea preparation. The method of

producing a hemicochlea and obtaining video images is

described elsewhere (Richter and Dallos, 2001). Here we

briefly describe the method. A hemicochlea is produced from

a gerbil cochlea. After killing the animal, the bullae are

removed and the cochleae are exposed. Next, one of the

cochleae is mounted in a vibratome, and the cochlea is cut

along its midmodiolar plane. One of the resulting halves

(hemicochlea) is used for experiments. After mounting the

cochlea on the stage of a microscope, pictures of the

preparation are taken with a charge-coupled device camera,

while a mechanical stimulus is applied to the tissue via

a piezo-driven paddle placed below the basilar membrane in

the fluids of scala tympani. Vibrations of the paddle are

coupled via the fluids to the basilar membrane and 18

‘‘snapshots’’ of the preparation are taken during one cycle of

the vibration. Because the frequencies of the vibration are

higher than the video frequency (30 Hz), strobed illumina-

tion of the hemicochlea preparation was used to acquire the

images.

Light emitting diodes (LEDs) were placed under the

microscope’s condenser, such that oblique illumination of

the hemicochlea preparation was achieved. The use of LEDs

allowed us also to strobe the light during data acquisition.

Times to switch the diodes on and off were determined with

custom written software (Hu, 1998) in conjunction with an

electronic counter. In other words, the temporal relation of

the light pulses from the LEDs relative to the mechanical

stimulation of the preparation was kept steady for a number

of cycles. During this time the shutter of the video camera

was kept open. After a selected number of cycles a gating

signal was sent to the video camera, the shutter was closed

and the frozen video frame was transferred to the computer.

Thereafter, the phase of the light pulse was increased by 208

and the integration and transfer process was repeated for this

phase. Thus, 18 frames were captured during one stimulus

cycle.

The duration of the light pulse was adjusted to 1/100 of the

mechanical vibration period. Consequently, the integration

time to capture the image decreases with increasing fre-

quency. Therefore, the number of cycles used to capture one

frame was adjusted between 30 and 300 cycles.

Limitations for the strobing system arise from the

switching times of the electronic circuits and the LEDs.

FIGURE 6 Two neighboring

isointensity contours and area

elements in the image of the

hemicochlea preparation. Solid

contours are in image frame 1;

dashed contours are in frame 2.
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Run-of-the-mill transistor-transistor logic components have

switching time of 20 ns, which translate to 10 MHz.

Moreover, the LEDs have a nominal operating frequency of

50 MHz. Consequently, these values pose no difficulty to

acquire frequencies in the range of 20 Hz–60 kHz, the

hearing range of the gerbils.

Fig. 6 illustrates the segmentation of isointensity contours

and the single element whose motion is estimated as part of

the Lagrangian method on a smoothed hemicochlea image.

Fig. 7 shows the computed optical flow field for a hemi-

cochlea stimulated at 1800 Hz from which we can analyze

the detailed deformations within the tectorial membrane and

FIGURE 7 Optical flow field computed from two video images of the hemicochlea preparation excited at 1800 Hz by a piezo-driven probe (P). The yellow

and red scale bars are for the image and the displacement arrows, respectively. Abbreviations are IHC: inner hair cell, OHC: outer hair cell, TM: tectorial

membrane, OC: organ of Corti, RL: reticular lamina, BM: basilar membrane, TC: tunnel of Corti, IS: inner sulcus, FT: foot plate of the inner pillar cell.

Motion Analysis in the Hemicochlea 1935

Biophysical Journal 85(3) 1929–1937



the organ of Corti. A shear motion exists between the lower

surface of the TM and reticular lamina (RL), which is crucial

for the bending of the stereocilia of the outer hair cells

(OHCs). The TM-RL shear motion is essentially induced by

the radial movement of the RL. When the probe (P) moves

upwards, the basilar membrane also moves upwards, and

the tunnel of Corti (TC) rotates about the foot plate (FP) of

the inner pillar cell, causing a counterclockwise rotation

of the inner hair cells (IHCs), which could play a role in the

bending of their stereocilia.

Fig. 8 shows the computed velocity field for a hemi-

cochlea stimulated at 1 kHz. From the zoom view of the

tectorial membrane-reticular lamina gap region on the right,

we see once again that there is a relative shear displacement

between the lower surface of the TM and RL (the top of

the organ of Corti). The Lucas and Kanade algorithm

produces far less velocity vectors on similar images (Hu

et al., 1999).

DISCUSSION

Existing optical flow techniques can be classified as

gradient-based (differential) methods (Horn and Schunck,

1981; Lucas and Kanade, 1981; Nagel, 1983; Uras et al.,

1988), template-based (region matching) methods (Anandan,

1989; Singh, 1990), energy-based method (Heeger, 1987)

and phase-based methods (Waxman et al., 1988; Fleet and

Jepson, 1990). Barron et al. (1994) evaluated these methods

and concluded that the Lucas and Kanade algorithm has

the best performance. More recently (Miller et al., 1999),

Lagrangian deformable template methods with continuum

mechanical constraints have been developed for landmark

and image matching. These methods differ from the present

work in that they rely more extensively on optimization, and

they have not been applied to optical flow. In this paper, we

develop a new, fast, and efficient geometry-based approach

for estimation of incompressible optical flow. Our Lagrang-

ian method has a better performance than the Lucas and

Kanade (LK) algorithm when it is applied to the image

sequences from hemicochlea preparation, where motions are

complex and extremely small (less than a pixel). In our

approach, we take the incompressible nature of the motion

into consideration and avoid the calculation of the

spatiotemporal derivatives of the images, which are often

nearly singular in large regions of the images. Furthermore

our method also avoids both the well-known ‘‘aperture

problem’’ (Marr, 1982) and the need for high-contrast edges.

Consequently, more arrows can be calculated in the image

field than using previous methods.

Because of the difficulty of visualization within the

cochlear duct, our knowledge about the detailed deforma-

tions within the OC and at the TM-RL gap is incomplete. Hu

et al. (1999) essentially calculated the motion arrows at the

edges of structures and limited to very low frequencies (1–2

FIGURE 8 Optical flow field recovered from two video images of the hemicochlea preparation excited at 1 kHz by a piezo-driven probe (P). The zoom view

of the TM-RL gap region shows that there is a shear movement between the tectorial membrane (TM) and the reticular lamina (RL), the top of the organ of

Corti (OC). The black and red scale bars are for the image and the displacement arrows, respectively. Other abbreviations are: IHC: inner hair cell; OHC: outer

hair cell; BM: basilar membrane; TC: tunnel of Corti.
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Hz). Similar to the observations of Hu et al. (1999), our

optical flow results show that the organ of Corti transforms

basilar membrane vibration into a shearing stimulus at the

apices of outer hair cells. The relative shear movement is

mainly induced by the radial motion of the reticular lamina,

with a little contribution from the TM. Ulfendahl et al.

(1995) found similar results. However, this doesn’t support

the idea of TM radial resonance, the ‘‘second filter’’

proposed originally by Zwislocki and Kletsky (1979) and

Allen (1980) and observed experimentally by Gummer et al.

(1996) and Hemmert et al. (2000). Furthermore, the

deformations within the OC and TM are very complex,

and we find a significant radial motion of the inner hair cell

body, which is caused by the rotation of the tunnel of Corti

about the lower end of the inner pillar cell.

The authors thank E. K. Dimitriadis, K. H. Iwasa, and B. Shoelson for their

helpful comments.

Claus-Peter Richter was supported by the National Science Foundation

(IBN-0077 476).

REFERENCES

Allen, J. B. 1980. Cochlear micromechanics: a physical model of
transduction. J. Acoust. Soc. Am. 686:1660–1670.

Anandan, P. 1989. A computational framework and an algorithm for the
measurement of visual motion. Int. J. Comp. Vision. 2:283–310.

Barron, J. L., D. J. Fleet, and S. S. Beauchemin. 1994. Performance of
optical flow techniques. Int. J. Comp. Vision. 12:43–77.

Cai, H., and R. S. Chadwick. 2003. Radial structure of traveling waves in
the inner ear. SIAM J. Appl. Math. 634:1105–1120.

Fleet, D. J., and A. D. Jepson. 1990. Computation of component image
velocity from local phase information. Int. J. Comp. Vision. 5:77–104.

Gummer, A. W., W. Hemmert, and H. Zenner. 1996. Resonant tectorial
membrane motion in the inner ear: its crucial role in frequency tuning.
Proc. Natl. Acad. Sci. USA. 93:8727–8732.

Heeger, D. J. 1987. Model for the extraction of image flow. J. Opt. Soc. Am.
A4:1455–1471.

Hemmert, W., H. P. Zenner, and A. W. Gummer. 2000. Three-dimensional
motion of the organ of Corti. Biophys. J. 78:2285–2297.

Horn, B. K. P., and B. G. Schunck. 1981. Determining optical flow. Artif.
Intell. 17:185–204.

Hu, X. 1998. A computer vision study on cochlear micromechanics.
Dissertation. Northwestern University, Evanston, IL.

Hu, X., B. N. Evans, and P. Dallos. 1999. Direct visualization of organ of
Corti kinematics in a hemicochlea. J. Neurophysiol. 82:2798–2807.

Karamcheti, K. 1966. Principles of Ideal-Fluid Aerodynamics. John Wiley
& Sons, New York.

Karavitaki, K. D., and D. C. Mountain. 2003. Is the cochlea amplifier a fluid
pump? In Biophysics of the Cochlea: From Molecules to Models. A. W.
Gummer, editor. World Scientific, Singapore. 310–311.

Li, H., J. Liu, and W. Gu. 2000. A new and fast approach for DPIV using
an incompressible affine flow model. Machine vision and applications.
11:252–256.

Lucas, B. D., and T. Kanade. 1981. An iterative image registration
technique with an application to stereo vision. Proc. DARPA IU
Workshop. 121–130.

Marr, D. 1982. Vision. W. H. Freeman and Co., New York. 165–167.

Miller, M. I., S. C. Joshi, and G. E. Christensen. 1999. Large deformation
fluid diffemorphisms for landmark and image matching. In Brain
Warping. A. Toga, editor. Academic Press, San Diego. 115–132.

Nagel, H.-H. 1987. Displacement vectors derived from second-order
intensity variations in image sequences. CGIP. 21:85–117.

Richter, C. P., B. N. Evans, R. Edge, and P. Dallos. 1998. Basilar
membrane vibration in the gerbil hemicochlea. J. Neurophysiol. 79:
2255–2264.

Richter, C. P., and P. Dallos. 2001. Physiological and Psychophysical
Bases of Auditory Function. Shaker Publishing, Maastricht. 44–49.

Singh, A. 1992. An estimation-theoretic frame work for imageflow
computation. Proc. IEEE ICCV, Osaka. 168–177.

Ulfendahl, M., S. M. Khanna, and C. Heneghan. 1995. Shearing motion in
the hearing organ measured by confocal laser heterodyne interferometry.
Neuroreport. 6:1157–1160.

Uras, S., F. Girosi, A. Verri, and V. Torre. 1988. A computational approach
to motion perception. Biol. Cybern. 60:79–97.

Waxman, A. M., J. Wu, and F. Bergholm. 1988. Convected activation
profiles and receptive fields for real time measurement of short range
visual motion. Proc. IEEE CVPR, Ann Arbor. 717–723.

Zhou, Z., C. E. Synolakis, and R. M. Leahy. 1995. Calculation of 3D
internal displacement fields from 3D X-ray computer tomographic
images. Proc. R. Soc. Lond. A. 449:537–554.

Zwislocki, J. J., and E. J. Kletsky. 1979. Tectorial membrane: a possible
effect on frequency analysis in the cochlea. Science. 204:639–641.

Motion Analysis in the Hemicochlea 1937

Biophysical Journal 85(3) 1929–1937


