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The Photon Counting Histogram in Fluorescence Fluctuation
Spectroscopy with Non-Ideal Photodetectors

Lindsey N. Hillesheim and Joachim D. Müller
School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota

ABSTRACT Fluorescence fluctuation spectroscopy utilizes the signal fluctuations of single molecules for studying biological
processes. Information about the biological system is extracted from the raw data by statistical methods such as used in
fluctuation correlation spectroscopy or photon counting histogram (PCH) analysis. Since detectors are never ideal, it is crucial to
understand the influence of photodetectors on signal statistics to correctly interpret the experimental data. Here we focus on the
effects of afterpulsing and detector dead-time on PCH statistics. We determine the dead-time and afterpulse probability for our
detectors experimentally and show that afterpulsing can be neglected for most experiments. Dead-time effects on the PCH are
concentration-dependent and become significant when more than one molecule is present in the excitation volume. We develop
a new PCH theory that includes dead-time effects and verify it experimentally. Additionally, we derive a simple analytical
expression that accurately predicts the effect of dead-time on the molecular brightness. Corrections for non-ideal detector
effects extend the useful concentration range of PCH experiments and are crucial for the interpretation of titration and dilution
experiments.

INTRODUCTION

Fluorescence fluctuation spectroscopy (FFS) exploits fluo-

rescence fluctuations to study various physical and bi-

ological systems at the single molecule level. FFS has

become a powerful tool for studying proteins and other

biomolecules because information about dynamic processes

and heterogeneity are determined from signal fluctuations

with single molecule sensitivity (Berland et al., 1995; Qian

and Elson, 1991; Webb, 2001). The technique has been used

to study oligomerization of proteins (Berland et al., 1996;

Palmer and Thompson, 1989; Wisemann and Squier, 2001),

translational diffusion (Hink et al., 1999; Koppel et al., 1976;

Rigler et al., 1993), flow (Foquet et al., 2002; Gosch et al.,

2000; Magde et al., 1978), transport processes (Elson, 2001;

Terada et al., 2000), and chemical reactions (Bonnet et al.,

1998; Icenogle and Elson, 1983; Schwille et al., 1997) both

in vitro and in vivo. FFS encompasses both fluctuation

correlation spectroscopy (FCS) and the photon counting

histogram (PCH) approach to analyzing signal fluctuations.

FCS analyzes the temporal behavior of the fluctuations using

the autocorrelation function, whereas PCH captures the

amplitude distribution of the fluctuations.

The resolution of a mixture of species is an important

biological application of FFS. The autocorrelation function

relies on differences in the diffusion coefficient to resolve

mixtures. The PCH is given by the histogram of photon

counts and captures the distribution of molecular brightness

values (Chen et al., 1999). It resolves mixtures of species by

differences in brightness. While both methods can resolve

multiple species, the autocorrelation function is, in practice,

of limited use in resolving the association of proteins,

particularly monomer-dimer assembly, because the differ-

ence in the diffusion time between a monomer and dimmer is

too small (Meseth et al., 1999). However, PCH can resolve

a monomer-dimer mixture since the dimer has twice the

molecular brightness as the monomer (Müller et al., 2000).

The theory of PCH described in the literature has

considered the case of ideal photo-detection (Chen et al.,

1999; Kask et al., 1999). Unfortunately, photodetectors are

never ideal and are typically plagued with at least two

effects: dead-time and afterpulses. Dead-time is a fixed

period of time after the registration of a photon during which

the detector cannot accept another photon (Fig. 1 A).
Afterpulses are spurious pulses following genuine output

pulses (Fig. 1 B). The mechanisms of afterpulse generation

depend on detector type (Höbel and Ricka, 1994). With

respect to dead-time, detectors can exhibit nonparalyzable or

paralyzable behavior. In paralyzable detectors, a photon

reaching the detector during the dead-time leads to an

elongation of the dead-time period. A photon reaching the

detector during the dead-time in a nonparalyzable detector

does not cause the dead-time period to be extended. We

specifically consider the case of actively-quenched ava-

lanche photodiodes (APD), because this detector is widely

used in FFS experiments. Actively quenched APDs exhibit

nonparalyzable behavior and constant dead-time with

a typical duration of 50 ns (Sergio Cova, private commu-

nication).

The qualitative influence of these two non-ideal detector

effects on the photon count distribution is easy to understand.

Since each detected photon is followed by a period in which

the detector is ‘‘blind,’’ at high count rates many photons are

lost in the dead-time. Thus, dead-time affects the PCH more

strongly at high count rates, and causes the distribution to

narrow since channels corresponding to higher counts will be
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preferentially affected compared to lower channels (Fig. 1C).
Here we use channel to refer to the number of photons

detected in a sampling period. For example, the zeroth

channel corresponds to zero photons detected during the

sampling period. The overall effect of afterpulses, on the

other hand, is to broaden the distribution. With each real

pulse, there is a certain probability that an afterpulse follows.

Channels corresponding to a high number of counts are more

likely to contain afterpulses than channels with low counts

(Fig 1 C). Dead-time and afterpulses have no affect on the

zeroth channel of the PCH.

PCH experiments completely rely on photon count

statistics and the non-ideal behavior of detectors modifies

those signal statistics. This article investigates the effects of

dead-time and afterpulses on PCH experiments. We found

that the effect of afterpulses on PCH analysis is typically of

no concern for most applications. However, dead-time

introduces significant errors in PCH analysis at surprisingly

low concentrations—even when only a few molecules are

present in the observation volume. Thus, neglecting detector

dead-time would severely limit the practical use of the PCH

technique.

We therefore develop a new theory of PCH that

analytically incorporates dead-time affects and significantly

extends the concentration range accessible to PCH analy-

sis. We first derive an expression for PCH in the presence

of dead-time and find a simple analytical expression that

determines the relative error in molecular brightness due to

dead-time. The dead-time and afterpulse probability of our

system is characterized and these parameters are subse-

quently used to model dead-time and afterpulse effects on the

PCH for a range of concentrations and molecular brightness

values. We will show that afterpulse effects can be safely

ignored in almost all circumstances. We present experimen-

tal data and demonstrate that dead-time effects are accurately

modeled by our theory. The modified PCH theory allows us

to accurately study biological systems over a wide concen-

tration range. It also opens the possibility to perform a global

analysis of PCH experiments taken at many different condi-

tions, since the photon count statistics are accurately described

by our modified theory.

THEORY

Both PCH analysis and autocorrelation analysis return the

number of molecules in the excitation volume. But PCH

analysis also returns the molecular brightness e of the

fluorescent species. Molecular brightness is the fluorescence

intensity produced by a single particle in the observation

volume and depends on the physical properties of the

fluorophore and the experimental setup. It is usually defined

as the photon counts per molecule per sampling period

(cpm). It may also be normalized according to the sampling

period and given as counts per molecule per second (cpsm).

The PCH yields the brightness in cpm, so we will use that

convention in this article. We are particularly concerned

with how the narrowing or broadening of the PCH due to

dead-time and afterpulses changes the apparent molecular

brightness and number of molecules, as it is these parameters

which we use to make inferences about the biological system

in question.

PCH analysis

A brief note on terminology and notation will be helpful at

the outset. In this article, we use the terms photon count

distribution and photon counting histogram (PCH). The first

is a generic theoretical description that applies to any photon

counting experiment and is denoted by p(k) or p9(k). The
second term refers to photon count distributions particular to

FFS experiments. The experimental PCH will be denoted

p(k), whereas the theoretical PCH will be denoted either

P(k;e,�NN) or P9(k;e,�NN,d). The unprimed quantities refer to

FIGURE 1 Non-ideal detector effects such as dead-time (A) and after-

pulses (B) and their affect on the PCH (C). When a photon is counted by the

detector, a dead-time of duration td is initiated and any further photons

reaching the detector during that time are lost. Afterpulses are spurious

pulses that are generated with a probability pa by the detection of a real

event. Dead-time decreases the counts in the higher channels leading to

a narrowing of the PCH (circles) as compared to the ideal PCH (squares).
Afterpulses increase counts in the higher channels causing the PCH to

broaden (triangles). Simulated data shown.
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those measured by an ideal detector (e.g., e). Primed

quantities refer to those measured by detectors with dead-

time (e.g., e9). Quantities denoted with an asterisk refer to

those obtained from detectors with afterpulsing (e.g., e*).
The average number of molecules in the observation volume

is given by �NN.
The photon count distribution p(k) of any fluctuating light

source incident on an ideal detector is given by Mandel’s

formula (Mandel, 1958),

pðkÞ ¼
ð‘

0

Poiðk;hIIDÞpðIDÞdID ¼ Poiðk;hIIDÞh i; (1)

where Poi(k,hki) is the Poisson distribution with expectation

value hki and k is the number of photon counts in a time

interval. The average photons counts hki is given by the

proportionality factor hI, which incorporates the detection

efficiency and sampling time interval, and the intensity at

the detector ID (hki ¼ hI ID). The angular brackets denote the
average of the Poissonian shot noise contribution over the

intensity distribution p(ID). We arrive at the PCH function

that describes fluorescence fluctuation experiments by

evaluating Eq. 1 with the corresponding intensity probability

function p(ID). The distribution p(ID) depends on the specific
illumination profile of the excitation volume. The exact

derivation of the PCH function P(k) for a number of

different point spread functions (PSFs) has been described

previously (Chen et al., 1999; Müller et al., 2000, 2001),

PðkÞ ¼ Poiðk;hIIDÞh i
PSF: (2)

Typical point spread functions for FFS experiments are

Gaussian-Lorentzian or 3-dimensional Gaussian. The PCH

for a single species as measured by an ideal detector is

described by two parameters: the molecular brightness e in
cpm and the average number of molecules in the excitation

volume �NN, and is denoted by P(k;e,�NN). The average number

of photon counts is then just the product of the molecular

brightness and the average number of molecules inside the

PSF volume, hki ¼ e�NN. For multiple species, the PCH is

a convolution of the individual species PCHs (Chen et al.,

1999; Müller et al., 2000, 2001).

The discussion of the photon counting distribution so far

has assumed that photon detectors are ideal. In reality, this

assumption is violated and the non-idealities of the detector

should be accounted for in the theoretical description of the

photon count distribution whenever necessary. The effect of

dead-time on the photon count distribution for a nonparalyz-

able detector has been addressed in the literature (Bedard,

1967; O’Donnell, 1986). See Teich and Vannucci (1978) for

a discussion of the effect of dead-time on the photon count

distribution for paralyzable detectors. The effect of dead-

time on the data depends on the sampling time interval and is

described by the parameter d ¼ td/Ts ¼ td fs, where td is the
dead-time, Ts the sampling time interval, and fs the sampling

frequency. Typically, sampling time intervals are between 50

ms and 100 ns. Dead-time takes up a larger proportion of the

time interval at high sampling frequencies and thus should

affect data taken at those frequencies more strongly than data

taken at lower frequencies.

A fluctuating light source measured by a detector with

dead-time leads to a photon count distribution p9(k) given by
Bedard (1967),

p9ðkÞ ¼ gðk;hIIDð1�ðk�1ÞdÞÞ�gðk11;hIIDð1� kdÞÞh i;
(3)

where g(k,x) is the incomplete g-function,

gðk;xÞ ¼
Ð x

0
tk�1e�t dt

ðk�1Þ! : (4)

Equation 3 is valid for a nonparalyzable photodetector

that is active at the beginning of each sampling period. One

could in principle evaluate Eq. 3 with the proper probability

distribution function p(ID) to arrive at the PCH function in

the presence of detector dead-time. However, it is easier to

transform the equation and express the new PCH function

that includes dead-time effects as a mathematical series of

ideal PCH functions. We first rewrite the incomplete gamma

function as a series of Poisson distributions (Abramowitz

and Stegun, 1964):

gðk;xÞ ¼ 1� +
k�1

j¼0

x
j

j!
e
�x ¼ 1� +

k�1

j¼0

Poið j;xÞ: (5)

Then, inserting Eq. 5 into Eq. 3 yields

p9ðkÞ ¼+
k

j¼0

Poið j;hIIDð1� kdÞÞh i

� +
k�1

j¼0

Poið j;hIIDð1�ðk�1ÞdÞÞh i: (6)

We see from Eqs. 1 and 6 that the photon count distribution

in the presence of dead-time is expressed as a sum over ideal

distributions with reduced mean values. Thus, by inserting

the definition of the PCH function (see Eq. 2) into Eq. 6, we

arrive at an expression of the dead-time modified PCH

P9(k;e,�NN,d),

P9ðk;e; �NN;dÞ ¼+
k

j¼0

Pð j;eð1� kdÞ; �NNÞ

� +
k�1

j¼0

Pð j;eð1�ðk� 1ÞdÞ; �NNÞ; (7)

where P( j;e,�NN) are ideal PCH functions with modified mean

values. This analytical correction, which is exact, was in-

corporated into our PCH algorithm as part of our global fit-

ting model.

Moment analysis

Upon inspection, Eq. 7 does not yield any insight into the

magnitude of the effect of dead-time on the PCH.
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Specifically, it does not yield, directly, an analytical

correction for the molecular brightness. Probability distri-

butions are characterized by their moments and these re-

present another useful way to describe fluctuations (Chen

et al., 2000; Qian and Elson, 1990a). We turned to moments

to find a way to quantify the effect of dead-time on the

molecular brightness. Additionally, moment analysis has the

advantage of being computationally easier and faster than

a fit to the theoretical PCH.

The two most important moments are the first ordinary

moment, which provides the mean of the distribution, and

the second central moment, which yields the variance of the

distribution. Another useful quantity, which incorporates

these two moments, is the normalized variance of the photon

count distribution G(0) (Chen et al., 2000):

Gð0Þ ¼ Dk
2

� �
� kh i

kh i2
: (8)

G(0) is also by definition the time zero value of the

autocorrelation function. Its value is inversely proportional

to the average number of molecules in the excitation volume

(Thompson, 1991),

Gð0Þ ¼ g2

�NN
: (9)

The shape factor g2 depends on the geometry of the PSF and

a general expression is given by (Thompson, 1991),

gn ¼

Ð
V

Ið*rÞ
Ið0Þ

� �n

d
3*
r

Ð
V

Ið*rÞ
Ið0Þd

3*
r

; (10)

where Ið*rÞ describes the intensity beam profile. For

a Gaussian-Lorentzian PSF, which describes the beam

profile of our two-photon excitation setup, g2 ¼ 3/4p2.

Mandel’s Q factor is used to characterize photon count

distributions (Mandel, 1979). It is given by

Q¼ Dk
2

� �
� kh i
kh i : (11)

For a Poisson distribution Q ¼ 0 because the variance is

equal to the mean. Sub-Poissonian distributions in which the

variance is less than the mean are characterized by Q\ 0,

while Q[ 0 corresponds to a super-Poissonian distribution

(i.e., hDk2i[ hki). Comparing Eqs. 8, 9, and 11, we see that

Q ¼ hki 3 G(0) ¼ g2e. We also see that fluctuations cor-

respond to a positive Q and thus lead to super-Poissonian

behavior. Note that e refers to the molecular brightness as

measured by an ideal detector.

We first derive an expression for the effect of dead-time on

Q and use that to estimate our error in the molecular

brightness. Since Q ¼ g2e in the absence of dead-time and

afterpulses, we can define Q9, which includes dead-time

effects, similarly as

Q9¼ Dk
2

� �
9� kh i9
kh i9 ¼ g2e9; (12)

where e9 is the dead-time-affected brightness, hki9 denotes
the dead-time modified first moment, and hDk2i9 ¼ hk2i9 �
hki92 is the dead-time modified variance. The Q parameter is

a measure of the width of the photon count distribution,

and since dead-time narrows the photon count distribution,

Q9\Q.
The dead-time-effected photon count distribution in Eq. 3

can be expanded as a power series in d in terms of the

unaffected distribution p(k) (O’Donnell, 1986):

p9ðkÞ ¼ pðkÞ1d½kðk11Þpðk11Þ� kðk�1ÞpðkÞ�1Oðd2Þ:
(13)

It is important to note that the expansion is valid only when d

3 hki � 1. Using the Taylor expansion above, we calculated

the dead-time-affected first and second moments in terms of

d and the ideal FFS parameters e and �NN (see Appendix). From

the expressions for first two moments we derived an

expression, to first order in d, for the relative error in Q
due to dead-time,

DQ

Q

� �
dead�time

¼ Q9�Q

Q

ffi d �2�NN

g2

�2�3e�NN1e g2�
2g3

g2

� �� �
; (14)

where g3 ¼ 35/24p4 for a Gaussian-Lorentzian PSF. Note

that the relative error in Q due to dead-time is equal to the

relative error in e due to dead-time,

Q9�Q

Q
¼ e9� e

e
¼ De

e

� �
dead�time

: (14a)

The dead-time-affected mean of the photon counts is given

by

kh i9¼ e�NN 1� deðg21
�NNÞ½ �: (15)

Effect of afterpulsing on the PCH and its moments

The theoretical description developed thus far has only

included the effects of dead-time on the PCH and its

moments. A correction algorithm for the effect of afterpulses

on the photon count distribution has been developed

(Campbell, 1992). We inverted the algorithm to generate

afterpulse-modified histograms from ideal histograms. It was

assumed that a real event generates only one afterpulse with

a probability pa and that an afterpulse does not generate more

afterpulses. For single afterpulses, the afterpulse-affected

photon count distribution p*(k) is given by

p
�ðkÞ ¼ f +

k

j¼roundðk=2Þ
pð jÞPð j;k� jÞ; (16)

where p( j) is the photon count distribution in the absence of

afterpulsing, and P( j,k–j) the probability of k–j afterpulses
after j events. P( j,k–j) is given by the binomial distribution,

The PCH in FFS with Non-Ideal Photodetectors 1951
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P j;k� jð Þ ¼ j!

ð2j� kÞ!ðk� jÞ!p
k�j

a ð1�paÞ2j�k
: (17)

The factor f is used to normalize the distribution p*(k), so
that+‘

k¼0
p�ðkÞ ¼ 1. Since the afterpulse probability is small

( pa � 1), Eq. 16 can be expanded as a power series in terms

of pa and afterpulse-affected moments can be derived in the

same manner as the dead-time-affected moments are derived.

Keeping only terms of order O( pa), the first moment with

afterpulses hki* is given by

kh i�¼ kh i1pa kh i: (18)

And the relative error in Q due to afterpulses is

DQ

Q

� �
afterpulse

¼Q
� �Q

Q
ffi pa 11

2

g2e

� �
: (19)

As with dead-time, the relative error inQ due to afterpulses is

equal to the relative error in e due to afterpulses:

Q
� �Q

Q
¼ e� � e

e
¼ De

e

� �
afterpulse

: (19a)

MATERIALS AND METHODS

Instrumentation

The instrumentation for two-photon fluorescence fluctuation experiments

consisted of a two-photon excitation source and a Zeiss Axiovert 200

microscope (Thornwood, NY). A mode-locked Ti:sapphire laser (Tsunami,

Spectra-Physics, Mountain View, CA) pumped by intracavity doubled

Nd:YVO4 laser (Millennia Vs, Spectra-Physics, Mountain View, CA)

served as the two-photon excitation source. The dilution experiments were

performed using a 633 C-Apochromat water immersion objective (NA ¼
1.2). The measurement of td and pa was carried out using a 103 Achroplan

air objective (NA ¼ 0.25). An excitation wavelength of 780 nm was used in

all measurements. Under our experimental conditions, no photobleaching

was detected for any of the samples measured. Photon counts were detected

with an avalanche photodiode (APD) (SPCM-AQ-14, PerkinElmer, Dumb-

erry, Québec). The output of the APD, which produces TTL pulses, was

directly connected to a data acquisition card (ISS, Champagne, IL). The

sampling frequency was 50 kHz for all measurements. The recorded photon

counts were stored and later analyzed with programs written for IDL version

5.4 (Research Systems, Boulder, CO).

Sample preparation

Alexa 488 and fluorescein were purchased from Molecular Probes (Eugene,

OR). Alexa 488 was dissolved in dH2O and fluorescein in a pH 8 solution of

50 mM potassium phosphate. The dye concentration of the stock solutions

(1–5 mM) was determined by optical absorption measurements using the

extinction coefficient provided by Molecular Probes. Alexa 488 was diluted

into dH2O to a concentration of ;100 nM and subsequently diluted by

factors of two successively until a concentration of ;0.1 nM was reached.

The stock solution of fluorescein (5 mM) was used directly. Background

counts were ;200 cps.

Data analysis

The histogram of the experimental data is calculated from the recorded

photon counts and then normalized to obtain the experimental probability

distribution of photon counts p(k). To fit the experimental PCH to the PCH

model, we must weigh each element of the PCH with its standard deviation

sk. The probability of observing k counts n times out of M trials is given by

the Binomial distribution function, so the standard deviation is given by

sk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MpðkÞð1� pðkÞÞ

p
: The theoretical PCH, denoted P(k;e,�NN) is then

calculated and the reduced x2 determined by

x
2 ¼

+
kmax

k¼kmin

M
pðkÞ�Pðk;e; �NNÞ

sk

� �2

kmax� kmin�d
: (20)

The experimental photon counts range from a minimum value kmin, which is

typically zero, to a maximum number kmax. The number of fitting parameters

is given by d. Because a typical data set contains on the order of M ¼ 106

data points, the resulting binomial distribution is well approximated by

a normal distribution. Thus, the quality of the model can be estimated by the

reduced x2 and by the normalized residuals rðkÞ ¼ M pðkÞ �Pðk; e; �NNÞ½ �=f
skg from the fit.

RESULTS & DISCUSSION

Measurement of td and pa

To determine the quantitative affect of dead-time and after-

pulses on our system, we first measured the dead-time td and

afterpulse probability pa. A useful way to gauge these

parameters is utilizing Mandel’s Q parameter. If a constant

light source is incident on an ideal detector, we obtain

a Poisson probability distribution and thus Q¼ 0. Dead-time

of the detector narrows the photon count distribution and

leads to sub-Poissonian behavior (Q[ 0). Afterpulses bro-

aden the photon count distribution and lead to a super-

Poisson probability distribution (Q [ 0). But in a real

experiment, intensity fluctuations, dead-time, and afterpulses

are simultaneously present, so Q depends on the relative

strengths of the individual effects. Mathematically, the

effects of dead-time and afterpulses on the photon count

distribution of constant light source is given by the following

expression (Finn et al., 1988):

Q¼ 2pa�2 kh ifstd ¼ 2pa�2Itd; (21)

where I ¼ hki 3 fs is the photon count rate in counts per

second (cps) and Q is given by Eq. 11. A plot of Q vs. count

rate will be linear with a slope of �2td and a y-intercept of
2pa.
To approximate the conditions of a constant light source

on our instrument, we measure at a high fluorophore

concentration. The intensity fluctuations, which are caused

by individual molecules leaving and entering the observation

volume by diffusion, are negligible under these conditions.

An ideal detector is then only limited by shot noise and

would measure a Poisson distribution. A detector with dead-

time and afterpulses is described by Eq. 21. We measured

a concentrated solution of fluorescein (5 mM) and varied the

intensity by changing the excitation power. The data was fit

to Eq. 21, and a dead-time td ¼ 48.2 6 0.7 ns and an

afterpulse probability pa ¼ 0.0016 6 0.0001 were obtained

(Fig. 2). According to the manufacturer, the dead-time of the
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APD is 49.4 ns and the typical afterpulse probability for that

model of APD is 0.003.

Evaluation of dead-time and afterpulsing
effects on PCH

As a starting point, we performed calculations to see if and

how a d-value of 0.0025, corresponding to td ¼ 50 ns and

fs ¼ 50 kHz (a typical sampling frequency for our experi-

ments), affects the PCH. More specifically, we wanted to

know whether a dead-time-affected histogram could still be

fit with the ideal PCH model and whether it would affect the

e- and �NN-values returned by the fit. In the calculation, we

generated several ideal PCHs (e ¼ 0.1–10.0 cpm, �NN¼ 0.01–

10.00) and then used Eq. 7 to calculate a dead-time-affected

PCH for each ideal PCH. When the ideal model was used to

fit the modified histograms, we found that at low concen-

trations, the e-values were unaffected, whereas at high

concentrations the e-values decreased. When the brightness

decreased, the number of molecules increased. As an ex-

ample, for an ideal PCH with e¼ 1 cpm and �NN¼ 3 (hki ¼ 3),

the corresponding dead-time-affected PCH showed only

a slight narrowing of the distribution, but when fit to the ideal

model, the modified PCH yielded e ¼ 0.777 cpm and �NN¼
3.829 (hki ¼ 2.977). These results are summarized in Table

1. Although the average number of counts hardly changed,

there was a significant change in the fit values of the

molecular brightness and the number of molecules. More-

over, we found that the deviation in molecular brightness

increases as the concentration increases, so in a dilution or

titration experiment, the relative error in brightness due to

dead-time (De/e)dead-time is not constant throughout the

experiment.

Since we were generating the data, reduced x2-values

were zero for all ideal histograms and very close to zero for

fits of the dead-time modified histograms to the ideal PCH

model. This implies that, experimentally, the ideal PCH

model describes dead-time modified PCHs within experi-

mental error. However, the molecular brightness and number

of molecules returned from such a fit are wrong. The reason

for this lies in how the PCH captures intensity fluctuations. A

bright molecule passing through the excitation volume

produces stronger intensity fluctuations than a dimmer

molecule. The bright molecule’s PCH is therefore broader

than the PCH produced by its dimmer counterpart. Dead-

time narrows the distribution and thus mimics the effect of

a dimmer species. However, the average counts decrease

only slightly in the presence of dead-time, so to obtain the

correct mean counts per time interval, a higher number of

molecules is needed to offset the decrease in brightness.

Another way to understand this effect is to look at the

moments of the PCH. The first moment gives the mean value

of the distribution which changes only slightly in the

presence of dead-time. The second and higher moments are

required to adequately describe the tail of the distribution,

and since the tail is affected more strongly by dead-time, it is

these moments that suffer large deviations from ideal. Recall

that Q is proportional to the brightness, and that Q involves

the second as well as the first moment. Since the second

moment is affected more strongly by dead-time than the first,

we would expect that the brightness would also show larger

deviations from ideal than the average counts would.

We have thus far only considered the effects of dead-time

on the PCH and neglected afterpulsing. Since our afterpulse

probability is quite low, we expected that afterpulses would

have little or no effect on the PCH. Following a similar

procedure as the dead-time modeling, we generated ideal and

afterpulse-modified PCHs for a variety of e- and �NN-values
using Eq. 16 with pa set to 0.0016 and fit them using the ideal

model. We found that the effect of afterpulses on PCH

parameters is opposite that of dead-time, namely, molecular

brightness increases and the average number of molecules

decreases. More importantly, the relative error in the

brightness due to afterpulsing (De/e)afterpulse depended only

on the brightness and not on the average number of

molecules. The size of that error increases as brightness

TABLE 1 Dead-time effects on the PCH parameters

d e (cpm) �NN hki (counts/Ts)

0 1.0 3.0 3.0

0.0025 0.777 (#22%) 3.829 ("28%) 2.977 (#0.8%)

Two histograms with the same brightness and number of molecules (e ¼ 1.0

cpm and �NN ¼ 3:0), one with no dead-time and another with relatively small

dead-time, were generated and fit to a PCH model that assumes an ideal

detector. The results of the fit of the ideal histogram (d ¼ 0) are shown in

the first line. The same parameters used to generate the histogram are

returned by the fit. When the dead-time-affected histogram (d ¼ 0.0025) is

fit to the ideal PCH model, the molecular brightness returned is significantly

reduced whereas the concentration has increased. Since the changes in

brightness and concentration offset each other, only a small decrease in the

average counts in a sampling period is observed.FIGURE 2 A plot of Mandel’s Q parameter for a constant light source, in

this case a highly concentrated fluorescein sample, as a function of the

photon count rate and a fit to Eq. 21. The slope is a measure of the dead-time

of the system and the y-intercept is related to the afterpulse probability. The

dead-time and afterpulse probability for our system were 48.2 6 0.7 ns and

0.0016 6 0.0001 ns, respectively.
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decreases, and for our system, afterpulsing introduces an

error of 10% when e\ 0.4 cpm. Therefore, in a dilution or

titration experiment, afterpulsing introduces a small constant

error that cannot be distinguished from other sources of

experimental uncertainty. We rarely measure in this region

because signal statistics, which depend on the brightness, are

poor.

The cumulative effects of dead-time and afterpulsing for

our system were calculated from Eqs. 14 and 19 and are

shown in Fig. 3. The contour plot, which shows the relative

error De/e as a function of e and �NN, suggests we are correct to
neglect afterpulse effects for most of our experiments and

that dead-time corrections need to be made for concen-

trations where �NN > 1. If afterpulses are neglected entirely,

the contours are flat except at high concentrations where

there is a slight dip (Fig. 3 A). Dead-time effects depend on

the number of molecules in the excitation volume much

more strongly than on the molecular brightness of the

molecules. Corrections for non-ideal detector effects extend

the useful concentration range for PCH experiments. If

we did not make corrections for dead-time, we would be

restricted to concentrations corresponding to an average of

less than 1 molecule in the observation volume, where the

relative error in the brightness due to dead-time is less than

10% (Fig. 3 B) when the sampling frequency is 50 kHz. At

higher sampling frequencies, dead-time corrections would be

necessary at even lower concentrations, whereas at lower

sampling frequencies the concentration limit would be

higher. The choice of sampling frequency depends on the

diffusion coefficient of the molecule of interest. While

lowering the sampling frequency will reduce the d-value, it

may also introduce undersampling effects if the diffusion

coefficient is too high. For most in vitro experiments,

a sampling frequency \20 kHz will introduce significant

undersampling effects. At this sampling frequency and with

a dead-time of 50 ns, the concentration limit at which dead-

time corrections are necessary occurs when �NN[3.

In the preceding discussion, we treated dead-time and

afterpulsing as statistically independent effects (i.e., De/e ¼
(De/e)dead-time 1 (De/e)afterpulse). However, each afterpulse

generates dead-time in the detector, and thus treating both

effects as independent is an approximation. Afterpulses

occur with a probability pa and the leading order of correction
of afterpulsing to PCH is of order O( pa). Similarly, dead-

time effects give rise to corrections with leading order O(d).
The corrections due to the interdependency of afterpulses

and dead-time is of order O( pad). Since both pa and d are

small numbers the correction is of higher order and we

neglect it, as we are only interested in first-order effects. A

higher order correction of dead-time and afterpulses on PCH

requires the explicit treatment of the entanglement of both

effects. In addition, such higher-order corrections require

a more sophisticated model for describing afterpulses. In our

model, we assumed that a real event could cause one

afterpulse and no further afterpulses are generated. This is

a reasonable assumption since the probability to produce two

afterpulses from a real event would be on the order O( pa
2) or

10�6. Thus, our approximation of treating dead-time and

afterpulses as statistically independent is justified based on

the limitations of the model used to describe afterpulsing.

Experimental test of theory

The theory predicts that in the presence of dead-time, a fit of

the experimental PCH to the ideal model would yield

a molecular brightness that would be less than that obtained

without dead-time and that the effect on the molecular

brightness would be stronger at higher count rates. To test

this prediction, we performed a dilution experiment so that

FIGURE 3 Contour plots showing the relative error in the molecular

brightness due to dead-time only (A) and both dead-time and afterpulses (B)
as a function of e and �NN. Dashed lines denote negative contours and solid

lines denote positive contours. The contours were generated using a dead-

time of 50 ns, sampling frequency of 50 kHz, and afterpulse probability of

0.0016. For low concentrations of �NN\ 1 little or no corrections are required

for non-ideal detector effects as long as e[ 0.4 cpm. Dead-time introduces

a relative error of greater than 10% when �NN [ 1 and must be corrected

for. Afterpulses can safely be ignored for our system as their effects are

restricted to low e- and �NN-values where we do not typically measure, due to

poor signal statistics.
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the brightness was held constant as the concentration, and

thus the photon count rate, was varied. Diluting the sample

should have no effect on the brightness; it simply reduces the

number of molecules in the volume. We started with ;100

nM Alexa 488 and sequentially reduced the concentration by

factors of two. The experimental histograms from each

dilution step were fit to the ideal PCH model and to the PCH

model with dead-time. Our results are shown in Fig. 4. Using

the ideal PCH model to fit the experimental histograms, we

saw that dead-time effects showed up more strongly as the

count rate increased as indicated by the measured brightness

curve. As in the simulation, we also observed that e de-

creased and �NN increased when the experimental PCH was fit

to a PCH model that assumed an ideal detector. All such fits

returned reduced x2-values between 0.58 and 2.85. More

importantly, by including the effects of dead-time in our

fitting model we obtained e-values that were constant over

the course of the dilution. The reduced x2-values of the fits of

the experimental PCHs to the modified PCH model were

between 0.86 and 2.87. Notice also that the average counts

were nearly the same regardless of which model was used for

fitting. We also performed a global fit in which the histo-

grams of the dilutions were linked together by requiring that

all histograms have the same brightness and the same d-

value. From the global fit, we obtained d¼ 0.00256 0.0002

which corresponds to td ¼ 50 6 4 ns (x2 ¼ 2.21). All data

sets were corrected for background counts by including

a second species fixed to the brightness value obtained from

a PCH fit to a solvent-only sample.

PCH analysis requires a nonlinear least squares fit and

therefore does not lend itself to the fast, diagnostic data

analysis often used when taking measurements. Moment

analysis, on the other hand, provides a useful way to gauge

data and it should produce results equivalent to those

obtained from PCH analysis. From the Taylor expansion of

the dead-time-affected PCH, we obtained an expression (Eq.

14) that predicts the relative error in molecular brightness

when dead-time effects are not taken into account. A

comparison of the relative error in e from the experimental

dilution data in Fig. 4 and that predicted from Eq. 14 is

shown in Fig. 5. The Taylor expansion describes the ex-

perimental data very well. It is important to note that to use

Eq. 14 to approximate (De/e)dead-time, one has to have prior

knowledge of what the ideal brightness e and average counts
hki are, which in turn requires that PCH analysis be per-

formed. To recover the ideal brightness without using PCH

analysis, Eq. 14 can be inverted and solved quadratically for

e as a function of hki and e9 as

e2dðg2

2�2g3Þ1e g2�dg2ð213 kh iÞ½ �� ð2d kh i1g2e9Þ ¼ 0:

(22)

However, we measure hki9 and e9 and not hki and e. Eq. 16
can also be inverted and solved quadratically for hki as

a function of hki9 as

kh i2d� kh ið1�deg2Þ1 kh i9¼ 0: (23)

Equations. 22 and 23 are coupled and so we solve them in an

iterative process. Since the average counts decrease only

slightly in the presence of dead-time, we first use Eq. 22 to

find an e-value by making the approximation hki9 � hki.
Using this e-value, we then find a new approximation for hki
using Eq. 23. This new value of hki is then reinserted into Eq.
22 to find the ideal brightness. This procedure can be

repeated iteratively until the e-values converge, although

usually only a few iterations are necessary. Fig. 6 compares

data corrected for dead-time using PCH analysis and

data corrected using the moment analysis just described.

Only two iterations were required to obtain the excellent

agreement shown.

FIGURE 4 The molecular brightness as a function of photon count rate

in a dilution experiment. Alexa 488 was diluted in dH2O sequentially by

factors of two from a concentration of;100 nM. In such an experiment, the

brightness should remain constant although the number of molecules

changes. When the experimental histograms are fit to an ideal PCH model

the brightness decreases dramatically at high concentrations (squares).

When the histograms are fit to a modified PCHmodel that incorporates dead-

time effects, the brightness is constant over the entire concentration range

(triangles). The dashed line indicates the brightness obtained in a global fit

to the modified model of all of the experimental histograms simultaneously

(e ¼ 4.18 6 0.02 cpm).

FIGURE 5 The relative error in the molecular brightness as a function of

concentration for the dilution experiment in Fig. 4. The relative error was

calculated by comparing the e-value obtained from a fit of the experimental

histogram to the ideal PCH model to that obtained from a global fit to the

modified PCH model. Overlaid on the experimental data is the prediction of

De/e from the Taylor expansion (Eq. 14), which describes our data very well.
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The moment corrections were developed with the as-

sumption that d 3 hki � 1. Our modeling and data suggest

that when d 3 hki ; 0.05 the dead-time-affected moments

calculated from the Taylor expansion differ by greater than

10% from the actual moments of the dead-time-affected

distribution. However, with the corrections, we can measure

up to as many as 10 molecules in the observation volume

reliably, and even 100 molecules depending on the

sampling frequency and brightness of the fluorophore .

Another way to look at the limit given above is in terms of

the intensity I. The limit then becomes I 3 td ; 0.05. For

a dead-time of 50 ns, we see that Eq. 14 will begin to break

down when the count rate is on the order of 1 Mcps, which is

close to the limit of most photon counting experiments.

Although including second and higher order terms of d in the

Taylor expansion would improve the model, the first-order

expression is sufficient to cover the range of useful

fluctuation experiments. The correction algorithm developed

for PCH theory itself is exact and not subject to the

assumption noted above; thus, the dead-time-corrected PCH

model should work for all e- and �NN-values.
The correction for dead-time effects is necessary for an

exact and quantitative analysis of titration and dilution

experiments. These experiments are important for studying

biological systems. For example, consider a protein that

assembles to form a homodimer. If there are ;3 monomers,

with e ¼ 1 cpm, for example, in the excitation volume and

one dimer, the monomers’ brightness is reduced by ;20%,

whereas the dimer’s brightness is unaffected. The level of

oligomerization is determined from the ratio of the bright-

nesses of the different species. In this case, we should obtain

a ratio of two indicating a dimer, but instead we would obtain

a ratio of 2.5, making it very difficult to interpret the level of

oligomerization. Worse, if we were to measure at lower and

higher concentrations of monomer, we would obtain ratios

closer to two and three respectively, thus perhaps leading us

to surmise that the oligomerization of the protein is

concentration-dependent when, in fact, it is not. We have

successfully used our model to measure protein-protein

interactions in living cells over a wide concentration range.

Including dead-time effects in our theory was crucial for

analyzing the in vivo experiments. We will report these

results in a future publication.

As part of this project, we also developed a global fitting

routine in which multiple histograms can be fit and common

parameters, such as the e- and d-values in dilution experi-

ments, can be linked together. Global analysis is a very

powerful tool because it is much more sensitive in resolving

species than analyzing individual histograms. PCH analysis

resolves mixtures directly from a single histogram provided

the signal statistics of the data is sufficient (Müller et al.,

2000). However, in many experimental situations a single

PCH measurement is not sufficient in separating species. In

particular, the presence of a dim minority species in a bright

majority species is very difficult to detect by PCH analysis of

a single histogram. For example, consider a FFS dilution

experiment of a monomer-dimer mixture in which only

a small fraction of the total number of molecules is mo-

nomer. Since we change the concentration, the equilibrium

between the monomer and dimer forms shift. Analyzing the

histograms individually will not resolve the presence of

a monomer species in the mixture. However, if we perform

a global analysis of the histograms and require that the

brightness of each species remains constant, we would be

able to resolve the mixture provided that no small systematic

errors are present. We demonstrated that PCH analysis

without corrections for dead-time leads to relative errors

in the molecular brightness that exceed 10% if more than

one molecule is present in the observation volume. This

concentration-dependent error affects each histogram in

a dilution or titration experiment to a different degree. Thus,

the ideal PCH model is not suitable for global analysis. Only

with the development of the dead-time-corrected PCH model

are we able to exploit the advantages of global analysis.

CONCLUSIONS

FFS experiments rely on statistics for extracting information

from experiments. Non-ideal detector effects, which are an

unavoidable part of every experimental measurement, alter

the signal statistics. Here we characterized the effects of

afterpulsing and dead-time on PCH analysis. We specifically

considered the case of actively quenched APD detectors,

which are commonly used for FFS experiments. While it is

typically safe to ignore afterpulsing, dead-time influences

PCH data at surprisingly low concentrations. We have

derived a quantitative expression for the relative error in the

molecular brightness and verified it experimentally. More

importantly, we arrived at an exact solution for dead-time

correction and incorporated this into our global fitting model.

This improved model describes our data within experimental

FIGURE 6 A comparison of the dead-time-corrected molecular bright-

ness obtained from PCH (squares) and moment analysis (triangles). This is

the same dilution series as shown in Figs. 4 and 5, but with an additional

neutral density filter inserted in the emission path which reduces the

brightness. The results of moment and PCH analysis agree well with one

another. The dashed line indicates the brightness obtained in a global fit of

all the experimental histograms simultaneously (e ¼ 1.38 6 0.01 cpm).
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error. By accounting for dead-time effects, we significantly

extended the useful concentration range for FFS experiments

utilizing PCH analysis.

Titration and dilution experiments are extremely useful

ways of understanding biological systems. However, these

types of experiments are especially prone to erroneous

inferences about the behavior of the sample from the data

due to non-ideal detector effects. Analysis with the ideal

PCH model fits the experimental data; however, the

brightness returned is reduced, whereas the number of

molecules is too high. Dead-time effects are primarily de-

pendent on concentration so some concentrations are only

slightly affected, whereas others are severely so. Failure to

recognize this problem will lead to an incorrect interpretation

of PCH experiments and thus accounting for the dead-time

effect in PCH is crucial for understanding biological titration

and dilution experiments.

APPENDIX A

Probability distributions are described by several different types of

moments, including ordinary moments, central moments, factorial moments,

and cumulants. A discussion of these moments, their relation to each other,

and the probability distribution can be found in Saleh (1978). We begin first

with the ordinary moments of the PCH. The moments of an ideal histogram

are given by

k
mh i ¼ +

‘

k¼0

k
m
pðkÞ: (A1)

The dead-time-affected moments are given by

kmh i9¼ +
‘

k¼0

kmp9ðkÞ: (A2)

Evaluating Eq. A2 after expressing the distribution p9(k) in a Taylor

expansion (Eq. 13) determines the moments of the photon count distribution

in the presence of dead-time.

The first moment of the photon count distribution in the presence of

dead-time is

kh i9¼ +
‘

k¼0

kp9ðkÞ ¼ +
‘

k¼0

kpðkÞ1d+
‘

k¼0

k
2ðk11Þpðk11Þ

�d+
‘

k¼0

k
2ðk�1ÞpðkÞ ¼ kh i�dð k

2
� �

� kh iÞ; (A3)

where in the second term we have made the substitution ~kk ¼ k 1 1 and

evaluated the following expression,

d+
‘

~kk¼1

ð~kk�1Þ2~kkpð~kkÞ ¼ d +
‘

~kk¼0

ð~kk� 1Þ2~kkpð~kkÞ� ð~kk�1Þ2~kkpð~kkÞ
����
~kk¼0

" #

¼ d ð~kk�1Þ2~kk
� �

: (A4)

Following the same procedure, we determined the second moment of the

photon count distribution in the presence of dead-time effects,

k2
� �

9¼ k2
� �

�d kh i�3 k2
� �

12 k3
� �	 


: (A5)

These expressions yield the dead-time-affected moments in terms of the

ideal moments. However, we need expressions for the dead-time-affected

moments in terms of the parameters e and �NN. To transform Eqs. A3 and A5,

we need to express the ideal ordinary moments of the photon counts in terms

of intensity cumulants, which in turn, are functions of e and �NN (Qian and

Elson, 1990a,b). First, the intensity cumulants are related to the central and

ordinary moments of the intensity distribution. The first three cumulants are

given below,

k1 ¼ Ih i ¼ g1eN

k2 ¼ DI
2

� �
¼ I

2
� �

� Ih i2¼ g2e
2
N

k3 ¼ DI
3

� �
¼ I

3
� �

�3 I
2

� �
Ih i12 Ih i3¼ g3e

3
N; (A6)

where gn is defined in Eq. 10. Next the intensity moments must be related to

the photon count moments. In fact, the ordinary moments of the intensity

distribution are given by the factorial moments of the photon count

distribution (van Kampen, 1981),

Ih i ¼ kh i
I2
� �

¼ kðk�1Þh i ¼ k2
� �

� kh i
I
3

� �
¼ kðk�1Þðk�2Þh i ¼ k

3
� �

�3 k
2

� �
12 kh i; (A7)

Combining Eqs. A6 and A7, we express the ordinary ideal moments of the

photon count distribution in terms of the intensity cumulants and thus in

terms of e and �NN,

kh i ¼ k1 ¼ e�NN

k
2

� �
¼ k21k

2

11k1 ¼ e�NN 11eð�NN1g2Þ½ �
k
3

� �
¼ k31k11k

3

113ðk21k2k11k
2

1Þ
¼ e�NN 113eð�NN1g2Þ1e2ð�NN2

13g2
�NN1g3Þ

� �
: (A8)

We have inserted g1¼ 1 into Eq. A8 and in the expressions that follow.With

the relationships in Eq. A8, we can now express the dead-time-affected

moments in Eqs. A3 and A5 in terms of molecular brightness e and the

number of molecules �NN,

kh i9¼ e�NNð1�deðg21
�NNÞÞ

k
2

� �
9¼ e�NN 11e g21

�NN�3dðg21
�NNÞ½f

�2deð�NN2
13�NNg21g3Þ�g: (A9)

The derivation of Eq. 15 from Eqs. A8 and A9 is now straightforward.

Inserting Eqs. A8 and A9 into Eqs. 11 and 12 respectively leads to an

expression of the relative error in Q:

DQ

Q

� �
dead�time

¼
d �2�NN

g2

�2�3e�NN1e g2�
2g3

g2

� �� �
� d

2 e2 �NN
g2

ð�NN1g2Þ
2

� �
1�deð�NN1g2Þ

:

(A10)

A Taylor expansion of Eq. A10 to order O(d) yields Eq. 14.
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