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ASTRO-FOLD: A Combinatorial and Global Optimization Framework for
Ab Initio Prediction of Three-Dimensional Structures of Proteins from
the Amino Acid Sequence

J. L. Klepeis and C. A. Floudas
Department of Chemical Engineering, Princeton University, Princeton, New Jersey

ABSTRACT The field of computational biology has been revolutionized by recent advances in genomics. The completion of
a number of genome projects, including that of the human genome, has paved the way toward a variety of challenges and
opportunities in bioinformatics and biological systems engineering. One of the first challenges has been the determination of the
structures of proteins encoded by the individual genes. This problem, which represents the progression from sequence to
structure (genomics to structural genomics), has been widely known as the structure-prediction-in-protein-folding problem. We
present the development and application of ASTRO-FOLD, a novel and complete approach for the ab initio prediction of protein
structures given only the amino acid sequences of the proteins. The approach exhibits many novel components and the merits
of its application are examined for a suite of protein systems, including a number of targets from several critical-assessment-of-
structure-prediction experiments.

INTRODUCTION

Structure prediction of proteins from their amino acid

sequences is regarded as a holy grail in the computational

chemistry, molecular, and structural biology communities.

The basic premise, according to the thermodynamic

hypothesis, is that the native structure of a protein in a given

environment corresponds to the global minimum free energy

of the system. Despite pioneering contributions and decades

of effort, the ab initio prediction of the folded structure of

a protein remains a very challenging problem. The challenge

is a result of the complex relationships between both the

accurate modeling and sufficient conformational sampling of

these protein systems.

To avoid the difficult task of full ab initio structure

prediction of proteins, database-driven methods have re-

ceived considerable attention. Database-driven methods

differ fundamentally from physics-based ab initio ap-

proaches in that they utilize knowledge-based information

from structural databases. For purposes of critical assessment

of structure prediction (i.e., CASP; CASP meetings held

at Asilomar, in California, every two years), existing ap-

proaches for protein structure prediction are commonly

classified as 1), comparative modeling; 2), fold recognition;

or 3), ab initio methods. Although these general classifica-

tions exist, the distinction for many protein structure

prediction approaches has become blurred. This is especially

true for the so-called ab initio approaches since several of

such denoted ab initio approaches actually rely on structural

and statistical databases. In addition, these methods typically

build upon or borrow concepts from other techniques, and

only a handful of approaches can truly be classified as ab

initio according to a full physiochemical denotation.

To understand this important distinction, it is useful to

examine the application of several approaches to the predic-

tion of a three-dimensional structure for a target sequence. A

complementary classification scheme, which parallels the

classification of prediction approaches, may involve the

following identification of targets as discussed at the recent

CASP5 meeting: 1), template refinement for methods in

which the homology and sequence alignments are not

difficult and the main goal becomes positioning of side

chains; 2), template modeling, which must handle difficulties

in both the detection of correct homology, alignment of

sequence, and generation of correct template; and 3), free

modeling, which is a general class for targets for which no

discernible template exists. The classification of targets in

this way facilitates the discussion of methods for determining

accurate protein structures.

Database information is used most directly in the ap-

plication of traditional comparative modeling methods for

template refinement. Generally, classic comparative model-

ing is applied when the similarity between the target and

parent structures is extensive and the problem becomes the

refinement of an easily (relatively) identifiable template.

Comparative modeling methods identify database templates

by employing BLAST or PSI-BLAST searches against

sequence databases (Altschul et al., 1997). When the

homology between the parent and target sequences is high,

the sequence-structure alignments can be derived directly

from the PSI-BLAST results (with possibly some manual

adjustments around insertion and deletion regions). Other

multiple sequence alignment methods can also be used to

examine the confidence of the sequence structure alignments

(Notredame et al., 2000; Thompson et al., 1994). It is

interesting to note that the fundamental problems of template
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refinement, such as loop closure and side-chain refinement,

remain a challenge (Fiser et al., 2000; Tosatto et al., 2002;

Xiang et al., 2002). However, many comparative modeling

and fold recognition methods neglect these details and

employ well-known algorithms for model generation (Sali

and Blundell, 1993) and side-chain rebuilding (Bower et al.,

1997). Classic methods for comparative modeling remain

largely unchanged and have been applied with success to

template refinement targets at multiple rounds of the CASP

competition (Venclovas, 2001). An extensive review of

comparative modeling can be found elsewhere (Moult et al.,

2001).

As the name suggests, fold recognition approaches

attempt to address the difficulties with remote detection

of the correct fold for a target sequence. Such template

modeling is necessary when the structural template of a

protein in the database has very subtle or no obvious se-

quence relation to the target protein. The ability to effectively

apply a fold recognition technique relies on the fact that

structure is more evolutionary conserved than sequence.

However, for distantly related proteins, the amount of similar

structure may be relatively small. Thus, successful prediction

of the target structure hinges not only on the alignment of

regions of similar structure but also on the prediction

of dissimilar regions. By extending this template modeling

philosophy it may be possible to identify a composite struc-

ture from the fragments of different templates, which can

then be used in combination to approximate the target struc-

ture. Of course this is where the distinction between fold

recognition and so-called ab initio methods becomes vague

because, for targets requiring template modeling, virtually all

ab initio methods utilize information from sequence and

structural databases. For the limit in which the correct fold of

the target protein is a new fold, fold recognition methods are

often complemented with or replaced by certain statistical

techniques and thereby evolve into an ab initio counterpart.

The first step in locating remote low sequence identity

structural homologs from the protein structure databases

usually involves a check for evolutionary-related sequences

using methods such as PSI-BLAST (Altschul et al., 1997).

Multiple profiles from sequences with the same fold can be

used to compute local and global alignments with a position-

specific scoring matrix. The use of such sequence profiles

aims at identifying the most evolutionarily distant homologs.

However, sequence considerations alone will fail to link

possible structural homologs with no common sequence

patterning. Threading, an extension of the classic fold

recognition approaches, attempts to identify such linkages by

focusing on the possibility of shared structural motifs in the

absence of detectable sequence homology.

The utilization of structural information is a significant

feature of many fold recognition approaches. One particu-

lar strategy involves the inclusion of secondary structure

predictions into fold recognition algorithms. An important

observation supporting this technique is that pairwise

secondary structure similarity can exceed 80% for certain

pairs of sequences exhibiting\10% sequence similarity. Of

course, the success of these types of approaches then also

relies on the accuracy of secondary structure prediction for

the target sequence. Given that recent methods for secondary

structure prediction have reached 75% accuracy (although

not comparably nor consistently for helix and strand

predictions; see Cuff et al., 1998; Jones, 1999b; Rost and

Sander, 1994), the use of predicted secondary structure for

template modeling has become a significant component of

successful fold recognition approaches. The form of this

information can be as a string identifying the three-state

prediction of the target sequence (DiFrancesco et al., 1997;

Koretke et al., 1999), or as a map of the segments of

a-helical and b-strands (Russell et al., 1996). Initial methods

have relied on single secondary structure predictions for the

target sequence; however, the finding that the combination of

different predictions can create an exactly matched target has

led to the development of methods for template alignment

and modeling based on composite secondary structure

predictions (An and Friesner, 2002).

Regardless of the incorporation of composite structural

information for template alignment and modeling in fold

recognition approaches, there remain problems with de-

fining boundaries and insertions for the predicted models.

For example, two proteins can share quite similar secondary

structure motifs but differ dramatically in their overall three-

dimensional structure. This is especially problematic when

composite models are built, and is in part a consequence of

the difference in length of the aligned sequence segments.

In particular, a small sequence or segment may match very

well within an overall longer template sequence, although

the topology of the template may be very different and more

complex due to the larger size of the overall template

domain. This can be handled by penalizing sequence length

differences, but will only be effective when combined with

accurate domain parsing (Contreras-Moreira and Bates,

2002). A related problem is the correct identification of

sequence insertions, which may represent domain bound-

aries or topological differences in the target sequence.

Overall, the extent of success for fold recognition

approaches is characterized by several features that belie

some of the limitations of these techniques. As both the

LIVEBENCH and CASP5 results demonstrate, the most

successful predictions are often based on consensus

prediction servers (metaservers) that attempt to select the

best model according to the a ranking of independent fold

recognition methods (Lundstrom et al., 2001). Beyond that,

there are often concerted efforts and needs for human

intervention to manually adjust the results of the template

alignments and models generated by these database

methods. These observations hint at the limits under which

the database-dependent approaches operate. Other analyses

of some of these methods can be found elsewhere (Moult

et al., 2001; Murzin, 2001).
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The blurry transition from fold recognition to ab initio

approaches using structural databases can be understood

by closer examination of the features of certain ab initio

approaches. By definition, when considering new folds, ab

initio approaches must not require the databases to possess

proteins with global structural similarity to the new fold

topology. Composite fold recognition approaches may also

identify new fold topologies, although the designs of fold

recognition techniques are better suited formatching of longer

sequence fragments with modest insertion modeling. In

practice, many ab initio approaches using databases represent

the confluence of insertion modeling on a larger scale with

fold recognition on a smaller scale. With this in mind, these

approaches build template models through the extraction of

fragments from general or tailored databases. This extraction

process may involve the use of fragments with sequence

similarity to fragments of the target sequence, or the use of

fragments with structural similarity (secondary structure) to

the predicted structure of fragments of the target sequence.

Fragment-based ab initio approaches have become

extremely popular methods for exploiting database in-

formation. For small fragments the dependences on local

conformational preferences are exploited, and the buildup of

fragments has been implemented through a Monte Carlo

procedure with a scoring function based on the Bayesian

probability of sequence and structure matches (Simons et al.,

1997, 1999). These ideas have been enhanced through the

incorporation of secondary structure predictions as well as

the addition of terms to favor the assembly of b-sheets

(Bonneau et al., 2001). Another novel method uses the

hierarchical application of multiple sequence alignment and

threading to produce template fragments from which starting

lattice models are built (Skolnick and Kihara, 2001; Skolnick

et al., 2001). In this case, the hierarchical component reflects

the obvious link between fold recognition and ab initio

modeling. Several other outstanding methods employ

predicted secondary structure, and thereby focus on the

assembly of these predefined elements of structure, which

are themselves obtained by predictions of methods based on

databases (Eyrich et al., 1999a,b; Xia et al., 2000). One such

method illustrates the utility of the deterministic aBB global

optimization method for prediction of tertiary structure

models (Eyrich et al., 1999a; Standley et al., 1999).

Discussion of these approaches also highlights another

point, which is that the examination of the importance of

certain features among ab initio methods using databases is

difficult because of the inherent variability with which these

methods depend on the database information (as related to

sequence and structure similarity to proteins in these data-

bases). On the other hand, the physics-based ab initio

approaches lend themselves to, and even demand for, iden-

tical application for all types of target sequences. It is only

under these conditions that the success and general appli-

cation of an ab initio approach can be accurately assessed.

From the physiochemical point of view, there is a clear

distinction between a true ab initio approach and an ab initio

approach relying on sequence and structural databases. In the

case of a true ab initio approach, the fundamental and driv-

ing principles for understanding protein folding rely upon

Anfinsen’s observation that the native tertiary structure of

a protein corresponds to the conformation which minimizes

the free energy of the system. This free energy of the protein

depends upon the different interactions within the protein

system—ionic interactions, nonbonded interactions, hydro-

gen bonding, hydrophobic interactions, steric and torsional

effects, protein-solvent interactions, and entropic effects.

Each energetic effect can be modeled mathematically, using

fundamental knowledge of electrostatics and physical chem-

istry. As a result, the free energy of a protein can be ex-

pressed as a function of the positions of the atoms making

up that protein. The native conformation of the protein then

corresponds to the set of atomic locations providing the

minimum possible value of the free energy function.

Mathematically, ab initio protein folding is treated as a global

optimization problem—a problem in which the goal is to

locate the values of a variable set (in this case, the locations

of the atoms in the protein) that describe the minimum

possible value of a certain function (in this case, the free

energy function).

A series of pioneering ab initio methods have been based

on the hierarchical prediction of protein structures using

detailed physics-based models (Liwo et al., 1998, 1999,

1997a,b; Pillardy et al., 2001). These approaches begin with

reduced models of an all-atom force field, and subsequent

conversion and refinement of the coarse model to an all-atom

model. Recent work has involved the inclusion of multibody

terms to improve the modeling of b-sheet formation. Unlike

the database-driven methods, these physical (ab initio)

models avoid the difficulties of coordinating insertions and

deletions, as well as the associated unreliabilities in template

alignment and side-chain positioning. One major advantage

is that ab initio methods tend to be generic in how the

physical processes of protein folding are modeled. This

generality allows for not only the application of an ab initio

approach to the structure prediction of any protein sequence,

but may also lead to the understanding of the pathways that

lead to the folded structure.

In this article a method true to the physiochemical

perspective of ab initio structure prediction is presented.

Underlying the structure prediction framework is the re-

conciliation of two competing views of protein folding.

First, the predominance of local interactions in the fast

formation of helical segments is used as a basis in detailed

free energy calculations for subsequences of the overall

target sequence. These calculations are used to identify

initiation and termination sites of helices. In the second stage

a model of hydrophobicity is employed in the simultaneous

identification of b-strands and prediction of a b-sheet

topology through the solution of a combinatorial optimiza-

tion problem to maximize hydrophobic contacts. After
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deriving constraints on the system based on the previous

stages and after additional calculations for loop segments,

an overall three-dimensional structure is predicted using

a combination of deterministic global optimization, stochas-

tic optimization, and torsion-angle dynamics. This approach,

known as ASTRO-FOLD, represents a combinatorial and

global optimization framework for the ab initio prediction of

three-dimensional structures of proteins. An overall sche-

matic of the approach is provided in Fig. 1. The next four

sections outline the stages of the overall approach, which are

then followed by two sections describing the results for

several benchmark systems including a variety of targets

from recent CASP experiments.

a-HELIX PREDICTION

As a first step in the ASTRO-FOLD prediction framework,

the principles of hierarchical folding are used to develop

a method for the prediction of a-helices in protein systems

(Klepeis and Floudas, 2002). The suitability of this method

for a-helix determination is based on observations that

nativelike segments of helical secondary structure form

rapidly. The ability for helices to fold rapidly suggests that

a-helix formation can occur during the earliest stages of

protein folding. Such a mechanism for the helix-coil transi-

tion is based on local interactions which induce nucleation

and propagation of the helix (Honig and Yang, 1995).

To isolate the prediction of a-helical elements to only

local interactions, the overall protein is typically segmented

into overlapping pentapeptide segments. In principle, longer

peptide segments could be employed. As a minimum,

a length of five residues is chosen because of the ability to

observe the nucleation of a three-residue helix core within

the fragment, which allows for the formation of a stabilizing

backbone hydrogen bond. For a protein with N residues, the

decomposition of the overall protein sequence into five

residue segments corresponds to the analyses of a total of

N-4 pentapeptides. For larger oligopeptides, such as hepta-

peptides or nonapeptides, the result would be either N-6
or N-8 subsequences, respectively. Theoretically, any frag-

ments less than the total length of the target sequence could

be simulated, although in practice the largest length should

be the longest observed length for contiguous helices.

The helical propensity for an individual oligopeptide is

determined through rigorous probability calculations using

detailed atomistic level modeling. In the current implemen-

tation, the atomistic level modeling is based on the ECEPP/3

semiempirical force-field model (Némethy et al., 1992). For

this force field, it is assumed that the covalent bond lengths

and bond angles are fixed at their equilibrium values, so that

the conformation is only a function of the independent

torsional angles of the system. The total force field energy,

Eforcefield, is calculated as the sum of electrostatic, non-

bonded, hydrogen-bonded, and torsional contributions. The

main energy contributions (electrostatic, nonbonded, hydro-

gen-bonded) are computed as the sum of terms for each atom

pair (i,j) whose interatomic distance is a function of at least

one dihedral angle.

With the amino-acid subsequences defined and the energy

model selected, the ability to predict the preferred (or native)

conformation for a given peptide translates into a global

optimization problem in which the goal is to identify the

global minimum free energy of the system. A wide variety of

methods exist for tackling this problem, although generic

guarantees for finding a global minimum energy conforma-

tion, even for pentapeptides, are not available. A deter-

ministically-based global optimization method has been

identified for solving these problems, although other

stochastic methods have also been shown to be efficient

(Floudas et al., 1998).

An additional consideration must be made when evaluat-

ing the entropic contributions for these systems. These

entropic effects are necessary for calculating free energies

(Klepeis and Floudas, 1999), which are the true gauges

of conformational stability at equilibrium. A number of

methods based on conformational sampling have been
FIGURE 1 Overall schematic of ASTRO-FOLD approach for three-

dimensional structure prediction of proteins.
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developed to approximate these effects. In this work, infor-

mation regarding metastable states of the system is used in

conjunction with the harmonic approximation to determine

the accessibility of a given metastable state (Klepeis and

Floudas, 1999). An attractive consequence of this approach

is the identification of a significant ensemble of low free

energy conformations, including the global minimum free

energy structure. Rather than rely on the prediction of a

single conformer (i.e., the global minimum free energy), the

ensemble can be used to calculate occupational probabilities

for representative conformational state of the system.

The analysis of the free energy of these oligopeptides

therefore requires efficient methods for locating not only the

global minimum energy structure but also large numbers of

low energy conformers. A variety of methods have been used

to find such stationary points on potential energy surfaces.

For example, periodic quenching during a Monte Carlo or

molecular dynamics trajectory can be used to identify local

minima (Stillinger and Weber, 1988). In this work two

algorithms are advocated for generating low energy en-

sembles for oligopeptide sequences. The first is based on

modifications of a deterministic branch-and-bound algo-

rithm, aBB (Adjiman et al., 1998a,b; Floudas, 2000; Klepeis

et al., 1998, 2002; Klepeis and Floudas, 1999). The second is

based on the principles of conformation space annealing

(CSA) (Lee et al., 2000, 1998, 1997; Lee and Scheraga,

1999; Ripoll et al., 1998), an efficient yet stochastic method

that does not provide the deterministic guarantees of the

aBB approach. The implementation of the CSA-based

method involves the combination of genetic algorithms and

simulated annealing protocols (Lee et al., 1997). The details

of these two approaches will be given in a later section.

Once an ensemble of low energy conformations (along

with the global minimum energy conformation) has been

identified for each oligopeptide, the free energy of each

unique conformer is evaluated at 298 K using the harmonic

approximation for entropic effects, and these free energy

values are used to calculate individual occupational

probabilities for each metastable state. Clustering of these

states is based on the classification of the backbone torsion

angles of the core residues. Specifically, the probabilities of

conformers exhibiting identical Zimmerman codes for the

core residues are summed and ranked to provide an ordered

list of conformational propensities. The first iteration of the

helix prediction approach is used to identify a-helical

clusters for neutral oligopeptides. When the probability of

the a-helical cluster (AAA for core residues of a helical

pentapeptide) is greater than ;85–90% for more than three

consecutive sets of core residues, the marked oligopeptides

are considered for further analysis.

For those subsequences including ionizable residues,

a-helix propensities are refined according to detailed elec-

trostatic and ionization energy calculations obtained

through the solution of the Poisson-Boltzmann equation.

Specifically, for the set of potential a-helical pentapeptides

containing ionizable residues, probabilities are recalculated

for a subset of conformers using a combination of the

vacuum free energy calculations at 298 K and polarization

and ionization free energies at pH 7. The final a-helix

propensity for each residue are assigned according to the

average AAA probability.

b-SHEET PREDICTION

Once the locations of a-helices have been predicted, the

remaining residues are further analyzed to simultaneously

identify and predict the location of b-strands and b-sheets.

The procedure relies on hydrophobic information and the

prediction of tertiary hydrophobic contacts to identify

parallel and antiparallel b-sheets (Klepeis and Floudas,

2003b), as well as the location of disulfide contacts. In

addition, the approach can identify a rank-ordered list of

competitive b-sheet arrangements.

The principal feature of the b-sheet prediction is the

modeling of the desolvation forces that govern hydrophobic

collapse. The importance of the hydrophobic collapse, rather

than just hydrogen bonding forces, in the formation of

b-sheets has received growing theoretical support. One

controversy regarding the validity of this hypothesis extends

from the debate over hierarchical folding. In the case of

hierarchical folding, it is believed that the b-sheet nucleates

at the hairpin turn and proceeds to form through a zippering

model that includes stabilization through hydrogen-bond

formation (Munoz et al., 1997). The alternative view pro-

motes a model in which b-sheet formation is driven by the

hydrophobic collapse and is independent of hydrogen-bond

formation. Recent simulations have demonstrated and sup-

ported the dominant role of hydrophobic forces in driving

b-sheet formation (Bryant et al., 2000; Dinner et al., 1999;

Pande and Rokhsar, 1999; Westerberg and Floudas, un-

published results).

The modeling of hydrophobic interactions between

b-strand residues is used to formulate several problems that

are globally optimized to produce a rank-ordered list of

b-sheet arrangements with decreasing hydrophobic interac-

tion energies. Each formulation produces an integer linear

programming (ILP) problem in which the hydrophobic

contact energy must be maximized.

The first formulation, a residue-to-residue contact prob-

lem, is based on iterative solution to effectively build an

optimal set of hydrophobic contacts. The set of hydrophobic

residues

H ¼ fLeu; Ile;Val; Phe;Met;Cys;Tyrg

in the target sequence is identified, and the relative positions

of these residues are used to define a position-dependent

parameter, P(i). Hydrophobicity parameters (Hi) are assigned

to each residue based on experimentally derived free energy

of transfer of amino acids from organic solvents to water

(Karplus, 1997; Lesser and Rose, 1990; Radzicka and
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Wolfenden, 1988). The interaction energy for a potential

hydrophobic contact is assumed to be additive, and the

possible formations of these contacts are represented by

binary variables, yij.
The objective function for the ILP formulation becomes

max+
i

+
j;PðiÞ12\Pð jÞ

ðHi 1Hj 1H
add

ij Þyij; (1)

where yij ¼
1 if i; j form contact

0 if i; j do not form contact 8 i\ j
:

�
(2)

For cystine-to-cystine contacts, an additional energy contri-

bution is based on the addition of the interaction energy for

all hydrophobic residues between the potential disulfide

bonding pair. The contribution is normalized based on the

length of the intervening segment.

Hadd

ij ¼
+

k;PðiÞ#PðkÞ#PðjÞ Hk

Pð jÞ � PðiÞ if fi; jg 2 fCysg
0 otherwise

:

8<
: (3)

A number of constraints are included in the formulation to

provide physically consistent arrangements.

+
i

+
j;PðiÞ17\Pð jÞ

yij $ 1: (4)

The above constraint requires that at least one contact must

form in which at least seven residues fall between residues i
and j.

+
j;PðiÞ12\Pð jÞ

yij 1 +
j;Pð jÞ12\PðiÞ

yji # Ni 8 i: (5)

Here Ni represents the total number of possible contacts for

hydrophobic residue i. Initially this value is set equal to 1 for
all residues so that each residue may participate in only one

contact.

The next set of constraints define the allowable b-sheet

configurations. For the case of antiparallel b-sheet forma-

tion, symmetric nonintersecting loops must be enforced. The

following constraints provide the necessary conditions for

antiparallel b-sheet formation:

yij 1 ykl # 1

8PðiÞ1Pð jÞ 6¼ PðkÞ1PðlÞ
yij OR ykl 62 fCys;Cysg: (6)

The set of conditions implies that the sum of the contact

position parameters must be equal and cannot be intersect-

ing. In addition, the constraint is not included if a potential

contact, either ij or kl, represents the formation of a disulfide

bridge. In this way, disulfide bridge contacts are allowed

to form nonsymmetric, intersecting loops. For the case of

parallel b-sheet formation, the contacts must involve

symmetric intersecting loops, which provides a similar set

of constraints.

Finally, when disulfide bridge formation is allowed, an

inequality constraint can be used to set the maximum

allowable number of cystine-to-cystine contacts, such that

the parameter NSS represents an upper bound on the possible

number of disulfide bridges.

The resulting ILP must be solved to global optimality to

identify the set of contacts which maximize the hydrophobic

interaction energy defined by the objective function. In

general, MILP formulations belong to the class of NP

complete problems (Floudas, 1995; Nemhausser and Wol-

sey, 1988), and available codes typically employ a branch-

and-bound technique to find the optimal integer solution

through the identification of a sequence of related LP

relaxations.

The optimal set of hydrophobic residue-to-residue con-

tacts is generated by solving the ILP formulation iteratively,

with the identification of disulfide bonding pairs being

included during the first iteration. For each subsequent

iteration, the global optimal solution can be identified along

with a rank-ordered list of possible antiparallel or parallel

b-sheet configurations.

Three alternative formulations rely on the identification of

potential b-strands, rather than just individual hydrophobic

residues. These potential b-strands can be used to solve

residue-to-residue contact or strand-to-strand contact ILP

problems, or a combination of the two. The benefit of these

approaches is the ability to identify the full b-sheet con-

figuration simultaneously. Except for those simple systems

that can be studied in detail using the residue-to-residue

contact formulation, the strand-to-strand formulations rep-

resent the preferred technique for b-sheet predictions.

First, a protocol to identify potential b-strands is applied

(Klepeis and Floudas, 2003b). This set of postulated strands

represents a superstructure since the protocol typically leads

to an overprediction of the true number of b-strands. In other

words, the solution of the hydrophobic contact formulation

may exclude certain postulated b-strands from the predicted

b-sheet topology. Once the potential strands have been

identified, each strand is assigned a position-dependent

parameter, Q(si). The parameter is equal to the strand

number by counting sequentially from the N-terminus to the

C-terminus of the sequence. Each strand is also described by

a start and end residue whose positions are denoted as

Pbeg(si) and Pend(si), respectively, and the number of

hydrophobic residues within the strand is defined by NH(si).
A hydrophobicity value is assigned to each strand (Ssi),
according to the average hydrophobicity of the hydrophobic

residues in that strand:

Ssi ¼
+

i;PbegðsiÞ#PðiÞ#P
endðsiÞ Hi

NHðsiÞ
: (7)

The objective function for the strand-to-strand ILP formu-

lation becomes that of maximizing the hydrophobicity by

identifying the activation of those binary wsi,sj variables
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representing a particular strand-to-strand contact. The

hydrophobicity gained by a particular contact is assumed

to be an additive combination of the Ssi and Ssj hydropho-
bicity values.

max+
si

+
sj;QðsiÞ\QðsjÞ

ðSsi 1 SsjÞwsi;sj; (8)

where wsi;sj ¼
1 if si; sj form contact

0 if si; sj do not form contact 8 si\sj
:

�

(9)

A number of constraints are included in the formulation to

provide physically realistic strand arrangements.

+
sj;QðsiÞ\QðsjÞ

wsi;sj 1 +
sj;QðsjÞ\QðsiÞ

wsj;si # NSsi 8 si: (10)

Here NSsi represents the total number of possible contacts for

strand si. In general, this value is set equal to 2 for all strands,
although the proximity of helices may require a reduction of

this value to 1. Another general constraint can be used to turn

off certain disallowed strand-to-strand contacts.

wsi;sj # DSsi;sj: (11)

A particular strand-to-strand contact is disallowed when the

DSsi,sj parameter is set to zero for that combination.

Additional sets of constraints can be used to impose

a maximum value on the number of consecutive strand-to-

strand matches and to disallow more than one strand-to-

strand match from one side of strand si. In addition, to

maintain physically meaningful configurations the formation

of b-sheet topologies with double intersecting strand-to-

strand contacts are also disallowed (Klepeis and Floudas,

2003b).

A second formulation uses these strand definitions to solve

the full b-sheet configuration problem. The objective

function is based on the residue-to-residue contact energies,

as given by Formulation 1. The set of constraints defined by

Eqs. 4 and 5 are included in the formulation, and the

constraints enforcing the formation of antisymmetric and

symmetric loops are relaxed to include only individual strand

pairings. The constraints included in the strand configuration

problem are also enforced in this formulation. Finally,

connections between strands and residue contacts are

provided by the following set of constraints.

yij # wsi;sj 8 PbegðsiÞ # PðiÞ # PendðsiÞ;
PbegðsjÞ # Pð jÞ # PendðsjÞ: (12)

These constraints link the yij and wsi,sj variables and can

be complemented by additional constraints that serve to

enhance the performance of the solver through tightening of

the feasible search space. The linked problem can be thought

of as a bilevel optimization problem in which the inner

problem represents the maximization of given strand-to-

strand contact registration, while these solutions are then

suitable for an outer optimization problem that maximizes

the hydrophobicity of the overall strand-to-strand arrange-

ment.

A third and final formulation combines the objective

functions from both the residue-to-residue and strand-to-

strand formulations. This allows both contact energies to

influence the prediction of the b-sheet configuration through

the following objective function:

max+
i

+
j;PðiÞ12\PðjÞ

ðHi 1Hj 1H
add

ij Þyij

1max+
si

+
sj;QðsiÞ\QðsjÞ

ðSsi 1 SsjÞwsi;sj: (13)

As this formulation combines both strand and residue contact

terms, the constraint set is identical to that of the previous

formulation. It is important to note that multiple global

solutions are also possible and that these b-sheet config-

urations may include both different strand-to-strand contacts

as well as identical strand-to-strand contacts with varying

strand-to-strand registrations. A full set of competitive

solutions can be identified using integer cut constraints and

iterative solution of the ILP formulations.

RESTRAINTS AND LOOP MODELING

Before progressing to the final stage of the ASTRO-FOLD

approach, which involves the prediction of the tertiary

structure of the full protein (Klepeis and Floudas, 2003a), the

structure prediction problem is formulated based on the

development of atomic distance and dihedral-angle restraints

derived from the a-helix and b-sheet prediction results. In its

final form, this formulation requires the use of constrained

nonlinear global optimization techniques. This problem is

solved through a combination of the deterministically-based

aBB global optimization approach, stochastic global

optimization, and molecular dynamics in torsion-angle space

(Klepeis and Floudas, 2003a).

First, dihedral-angle bounds are assigned according to the

predicted structure class, a-helical, b-strand, or unassigned,

for each residue. The corresponding bounds on the values

of the backbone torsion angles are given in Table 1. For

a-helices, Ca-Ca distances can be restrained between each

pair of i and i 1 4 residues, which anticipates the formation

of the a-helix hydrogen bond network. In a similar fashion,

Ca-Ca restraints can be developed for residues in opposing

strands of a b-sheet fold, so that hydrogen bond formation

between strands is enforced. The b-strand restraints include

both hydrophobic residues and intervening residues over the

full extent of the matching strands in the b-sheet. The

TABLE 1 Dihedral angle bounds, lower and upper, for

a-helix and b-strand residues

Conformer fL fU cL cU

a �90 �40 �60 �10

b �180 �80 80 180

unassigned �180 180 �180 180
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corresponding upper and lower distance limits are given in

Table 2.

Additional restraints can be generated through analysis of

the unassigned loop residues in the protein sequence. Loops,

those segments which connect elements of secondary

structure in the protein fold, are often exposed or surfacial

features of the protein structure. As a result, these segments

can be important for defining differences in binding and

activity characteristics for a fold family because functional

variability is often related to the structural differences in the

exposed regions.

Exploring the conformational space of a loop segment is

a difficult undertaking given the large structural variability

often observed in the loop regions of experimentally

determined protein structures. For example, it is not unusual

for loop fragments with the identical seven- or nine-residue

sequence to exhibit highly dissimilar structures. These

difficulties are compounded by the typically low sequence

identities among the loop segments, which makes the

application of comparative modeling techniques often in-

accurate.

In this work, the prediction of loop conformations is

treated in a manner similar to physics-based ab initio protein

structure prediction (Klepeis and Floudas, 2003a). The goal

of the approach is to aid in the ab initio treatment of the

overall protein folding problem using only minimal in-

formation regarding the structure of the residues that flank

the loop segment. Most importantly, an inherent assumption

common to existing loop models—that is, the requirement of

fixing the flanking and terminal loop residue positions—is

not imposed.

Loop modeling follows the identification of secondary

structure elements and b-sheet topology from the first two

stages of the ASTRO-FOLD approach (Klepeis and Floudas,

unpublished data). In the absence of threading such pre-

dictions onto a structural template, these results merely define

the sequence (and not structural) location of loop fragments

between two consecutive segments of secondary structure.

The applied optimization approaches aim at deriving

additional restraints, such as distance and torsional restraints,

through systematic analysis of detailed all-atom, free energy

simulations. The first method relies on the ability of local

conformational preferences to define loop conformations

and, in this spirit, a series of free energy calculations are

performed for the overlapping oligopeptides (including

portions of the flanking units) defining the loop segment.

Structural probabilities are built for the dihedral angle space

and used to define reduced bounds for subsequent simu-

lations of larger portions of the loop fragment. This

methodology culminates in a free energy simulation of the

entire loop fragment. A second approach begins by dissecting

the distance space over larger segments of the loop fragment

such that longer range loop interactions are included.

Distance domains are enforced via nonconvex constraints

in the torsion space and simulations are conducted for all

combinations of the dissected domains. Consolidation of the

simulation results is used to define appropriate distance

bounds to be imposed during a simulation of the overall loop

fragment. In their final stages, both approaches provide

energy-based predictions from models of the entire loop

segment, although the progression of each approach is based

on the emphasis of different structural descriptors.

These approaches play an important role in restraining and

focusing the conformational searches used in treating the

overall three-dimensional structure prediction problem. In

particular, these restraints take the form of reduced f- and

c-domains as well as internal interatomic distance restraints

for those residues connecting consecutive elements of second-

ary structure. The bounds are extracted from the set of low

free energy conformers identified for oligopeptides represent-

ing these loop residue segments.

TERTIARY STRUCTURE PREDICTION

Once appropriate bounds on dihedral angles and interatomic

distances have been determined, a combination of the

deterministically-based aBB global optimization algorithm,

stochastic global optimization, and molecular dynamics in

torsion-angle space is used to solve a constrained tertiary

structure prediction problem (Klepeis and Floudas, 2003a).

The basic formulation begins as

min
f

EforcefieldðfÞ

subject to f
L

i # fi # f
U

i ; i ¼ 1; . . . ;Nf:
(14)

Here the f represents the variables used to describe protein

conformations in the torsion-angle space, while fL and fU

indicate the lower and upper bounds on these variables

(which include both backbone and side-chain degrees of

freedom). The energy function, Eforcefield(f), is based on the

atomistic level ECEPP/3 force field. This detailed energy

modeling greatly increases the complexity of the objective

function, as does the transformation from Cartesian to

internal coordinates. However, one advantage of working

in dihedral angle space is the reduction in the dimensionality

of the independent variable set.

To solve the formulation given by Eq. 14 powerful global

optimization-based search techniques must be utilized.

Although many such methods have been developed, the

major limitation is that the majority of the methods depend

strongly on heuristics and initial point selection. To

circumvent such difficulties, deterministically-based global

optimization approaches can be employed. One such power-

TABLE 2 Ca-Ca distance bounds, lower and upper, for

a-helix and b-strand residues

Conformer dL dU

a 5.50 6.50

b 4.50 6.50
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ful method, the aBB global optimization approach (Adjiman

et al., 1996, 1997, 1998a,b; Androulakis et al., 1995), has

been extended to identifying global minimum energy

conformations of peptides. This particular branch-and-bound

method provides guarantees of convergence to the global

minimum of nonlinear optimization problems with twice-

differentiable functions (Floudas, 1997, 2000). The applica-

tion of the aBB to the minimization of potential energy

functions was first introduced for microclusters (Maranas and

Floudas, 1992, 1993), and small acyclic molecules (Maranas

and Floudas, 1994a,b). The aBB approach has also been

applied to general constrained optimization problems (Adji-

man et al., 1996, 1998a,b; Androulakis et al., 1995). In more

recent work, the algorithm has been shown to be successful

for isolated peptide systems using the ECEPP/3 potential

energymodel (Androulakis et al., 1997;Maranas et al., 1996),

and including several solvation models (Klepeis et al., 1998;

Klepeis and Floudas, 1999). aBB-based global optimization

techniques have also been applied to NMR-type structure

prediction problems (Eyrich et al., 1999a; Klepeis et al., 1999;

Standley et al., 1999).

The aBB global optimization approach effectively brack-

ets the global minimum by developing converging sequences

of lower and upper bounds. These bounds are refined by

iteratively partitioning the initial domain. Upper bounds on

the global minimum are obtained by local minimizations of

the original nonconvex problem. Lower bounds belong to

the set of solutions of the convex lower bounding problems,

which are constructed by augmenting the objective and

constraint functions through the addition of separable

quadratic terms. The lower bounding formulation can be

expressed in the following manner:

min
f

LforcefieldðfÞ

subject to f
L

i # fi # f
U

i ; i ¼ 1; . . . ;Nf:
(15)

In this formulation, variable bounds are specific to the

subdomain for which the lower bounding functions are

constructed. Lforcefield refers to the convex representation of

the objective function, as given by

Lforcefield ¼ Eforcefield 1 +
Nf

i¼1

afi
ðfL

i � fiÞðf
U

i � fiÞ: (16)

The a-parameters represent nonnegative parameters which

must be greater or equal to the negative one-half of the

minimum eigenvalue of the Hessian of Eforcefield over the

defined domain. Rigorous bounds on the a-parameters can

be obtained through a variety of approaches (Adjiman et al.,

1998a,b; Adjiman and Floudas, 1996; Hertz et al., 1999;

Maranas and Floudas, 1994a). The overall effect of these

terms is to overpower the nonconvexities of the original

terms by adding the value of 2a to the eigenvalues of the

Hessian of Eforcefield.

The same aBB principles can also be applied to more

general formulations involving nonlinear constraint sets.

Traditionally, restraints in the form of torsion-angle and inter-

atomic-distance bounds (as derived in the previous stages) are

formulated as unconstrained energy minimization problems.

The lower and upper bounds on the torsion angles and inter-

atomic distances are imposed through the use of weighted

penalty terms that are minimized to zero while subsequently

minimizing an overall energy objective. However, when

reformulating these restraints as independent nonlinear

constraints, both the Edihedral and Edistance penalty terms are

removed from the target function, leaving only Eforcefield:

min
f

EECEPP=3;

subject to E
distance

l ðfÞ # E
ref

l l ¼ 1; . . . ;NCON;

f
L

i # fi # f
U

i ; i ¼ 1; . . . ;Nf:

(17)

As before, i ¼ 1, . . . ,Nf corresponds to the set of dihedral

angles, fi, with fL
i and fU

i representing lower and upper

bounds on these dihedral angles. In general, the lower and

upper bounds for these variables reflect full rotation although

the reduced bounds (derived from the previous stage of the

ASTRO-FOLD approach) are equally suitable. Eref
l are

reference parameters for the NCON constraints. The set of

constraints are completely general, and can represent either

the full combination of distance restraints or smaller subsets

of the defined distance restraints. The maximum and average

violation for each structural element can be controlled

separately through the use of individual constraints, while an

overall constraint including all distance can also be enforced

to limit the violations over the entire structure.

These constraints, through reduction of the feasible search

space, help to correct any discrepancies in the energy model,

as well as focus the efforts of the global optimization

algorithm. However, the highly nonlinear form of the po-

tential energy function, coupled with the nonconvexities of

the constraints, substantially increases the difficulty in iden-

tifying low energy feasible points for the aBB approach.

To alleviate these difficulties a relatively fast torsion-angle

dynamics module is implemented as a preprocessing step

to the local minimization of the upper bounding problem.

As a result, the performance of the aBB approach is im-

proved significantly through the rapid determination of good

approximations to feasible low energy minima.

Once the ability to formulate and effectively solve the

upper and lower bounding problems has been established,

the next step is to modify these problems for the next

iteration. This is accomplished by successively partitioning

the initial domain into smaller subdomains. For the protein

conformation problems, it has been found that an effective

partitioning strategy involves bisecting the same variable

dimension across all nodes at a given level. To ensure

nondecreasing lower bounds, the hyper-rectangle to be bi-

sected is chosen by selecting the region which contains the

infimum of the minima of lower bounds. A nonincreasing

sequence for the upper bound is found by solving the

nonconvex problem locally and selecting it to be the
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minimum among all conformers in the upper bound list. If

the single minimum of Lforcefield for any hyper-rectangle is

greater than the current upper bound, the global minimum

cannot exist within this region and the entire subdomain can

be deleted from the list of searchable regions (fathoming

step). The computational requirement of the aBB algorithm

depends on the number of variables (global) on which

branching occurs.

The use of the aBB method is also amenable to the

integration of other stochastic or heuristic search techniques

for enhancing and improving the identification of low energy

conformations. In other words, the solution of the upper

bounding problem (i.e., the original nonconvex problem) is

not limited to the use of nonlinear local minimization

techniques. Such methods are known as hybrid global

optimization methods and the ultimate goal of these methods

is to combine the beneficial features of two or more

algorithms. In particular, novel classes of hybrid global

optimization methods, termed alternating hybrids, have been
recently introduced for application as a tool in treating the

protein structure prediction problems (Klepeis et al.,

2003a,b). These new optimization methods take the form

of hybrids between the deterministic global optimization

algorithm, the aBB (Adjiman et al., 1998a,b; Floudas, 2000;

Klepeis et al., 1998, 1999, 2002; Klepeis and Floudas, 1999),

and a stochastically-based method, conformational space

annealing (CSA) (Lee et al., 1997, 1998, 2000; Lee and

Scheraga, 1999; Ripoll et al., 1998). The aBB method, as

a theoretically proven global optimization approach, exhibits

consistency, as it guarantees convergence to the global

minimum for twice-continuously differentiable constrained

nonlinear programming problems, but can benefit from

enhanced computational efficiency. On the other hand, the

independent CSA algorithm is highly efficient, though the

method lacks theoretical guarantees of convergence. Fur-

thermore, both the aBB method and the CSA method are

found to identify ensembles of low-energy conformers, an

important feature for determining the true free energy

minimum of the system.

The CSA algorithm itself is a hybrid global optimization

algorithm that combines genetic and simulated annealing

algorithms (Kirkpatrick et al., 1983). The fundamental

precept of the CSA algorithm is to anneal within the

conformation space to converge upon the global minimum

energy conformer. Initially, the entire conformation space is

accessible, but as the algorithm proceeds the search region

collapses around the lowest energy conformers. The process

for reducing the search space is based on the concepts of

simulated annealing, while the search for low energy

conformers is influenced by the ideas of genetic algorithms.

To implement the CSA, the search begins with a bank of

Nbank conformers generated randomly throughout the

torsion-angle space. The separation between these con-

formers is quantified according to their pairwise deviation in

torsion-angle space,

Dij ¼ +
Nf

k¼1

jfk

i � f
k

j j; (18)

where Nf is the number of torsion angles in the protein, and

fk
i is the value of torsion angle k in conformer i. At the start

of the algorithm each conformer in the bank represents

a region of conformation space with radius Dcut,o and

centered on the point. The value of Dcut,o is calculated to be

the average deviation among all conformers:

Dcut;o ¼
1

2NbankðNbank � 1Þ +
Nbank

i¼1

+
Nbank

j¼1

Dij 8 i 6¼ j; (19)

where Dij is the deviation given by Eq. 18. The value of Dcut

is annealed according to an exponential schedule to reduce

Dcut,o to a small value after a set number of iterations.

As the value of Dcut is annealed the conformation space

is also searched according to a set of heuristics. These

heuristics involve the alteration of variable values in a seed

conformation according to random and crossover-based

criteria. The mutated conformers are subjected to local

minimization and then rejected or inserted into the current

bank of active conformers with the stipulation that the size of

the bank remains unchanged. Several scenarios are possible

following the local minimization of the mutated conformer.

In all cases, if the energy is above the highest energy

conformer in the bank, the conformer is rejected and requires

no further analysis. Otherwise, the value for Dij is calculated

for the combinations of the mutated conformers and those

conformers in the bank. If the value of Dij is greater than the

current value for Dcut for all conformers, then the conformers

are inserted in the bank and the highest energy conformer is

removed to maintain the size of the bank. If the conformer

falls within a defined region, then the conformer can be used

to redefine the region if the energy is lower than the

conformer already describing this region.

At each iteration a set number of mutations are performed

before further reducing the value of Dcut. Each set of

mutations is performed for one seed conformation taken

from the bank. The seed conformations are chosen so that

each conformer is not selected more than once until all

conformers in the bank have been selected at least once. This

process is repeated for a set number of iterations. In total,

four types of mutations are performed, including both

random and crossover-based substitutions using different

sets of independent and connected variables.

With regard to the aBB/CSA hybrids, the algorithm

alternates between large blocks of aBB iterations and large

blocks of CSA iterations. In other words, for the hybrid

global optimization approach, the aBB and CSA portions of

the algorithm are not integrated (that is, one iteration of aBB

is not followed by one iteration of CSA), but rather the two

sides of the hybrid take turns dominating the behavior of the

algorithm. First, the aBB branch-and-bound tree is set up,

and the aBB portion of the algorithm is run for Nbank

2128 Klepeis and Floudas

Biophysical Journal 85(4) 2119–2146



iterations. At each iteration, one of the local minima of the

potential energy function generated in solving the upper-

bounding problem is stored in a queue. Once Nbank iterations

are complete, the queue is emptied into the initial CSA bank.

At this point, the aBB algorithm shuts down temporarily,

and the CSA portion of the hybrid takes over. One

conformation is withdrawn at random from the CSA bank

to serve as the seed conformation, and the offspring

generated from this conformation are subjected to local

minimization and entered into the bank (if applicable). This

process is repeated for NCSA iterations (with restrictions on

the choice of a seed to ensure that every element in the bank

is chosen once as a seed before any element is chosen

a second time).

At this point, if the global optimum has not been located,

the CSA portion of the algorithm shuts down temporarily,

and control returns to the aBB portion. This proceeds

through Nadd more iterations to produce Nadd more local

minima. These minima are then added to the CSA bank, thus

increasing its size by Nadd. Control then returns to the CSA

portion of the algorithm, and the cycle repeats. Care is taken

to ensure that all of the new minima added to the CSA bank

are used as seed conformations at least once before any of the

conformers that were already in the bank are again selected

as seed conformations.

COMPUTATIONAL COMPLEXITY

The application of the ASTRO-FOLD approach to the struc-

ture prediction of medium-sized proteins is made possible

through the use of a distributed computing environment.

Since the prediction approach is hierarchical in nature, the

parallelized implementation is customized both to the type of

problem being solved and the algorithm being employed at

each stage of the approach.

First, the prediction of a-helices requires the decomposi-

tion of the full protein into smaller segments, and this

approach is amenable to parallelization due to the in-

dependent nature of the analyses for the overlapping sub-

sequences. The major computational expense for the a-helix

prediction stage involves the calculation of accurate solvation

and ionization energies for a subset of the overall oligopep-

tides (Klepeis and Floudas, 2002). The computational effort

depends strongly on the number of times the Poisson-

Boltzmann equation solver must be invoked, and is a function

of the number of ionizable groups. In all cases, a finite

difference solution to the Poisson-Boltzmann equation is im-

plemented through the DELPHI package (Gilson and Honig,

1988;Honig andNicholls, 1995). The calculation of solvation

energy, namely the polarization energy of the neutral system,

requires two calls to DELPHI, and is independent of the

number of titratable groups in the system. For each ionizable

group six additional DELPHI calls are required, which cor-

respond to four reaction field calculations and two permanent

dipole calculations. Two of the six calculations involve only

single residue conformations, rather than the full protein

system. When multiple titratable groups are present, four

additional DELPHI calls must be made for each pair of

ionizable groups. The computational effort in terms of

the number of required DELPHI calls varies according to 2

(N1 1)2, whereN is the number of ionizable groups (Klepeis

and Floudas, 2002). These calculations are performed in par-

allel using a variation on a ring-based architecture system; in

other words, processors communicate with nearest neighbors

without the need for a master processor. After evenly dividing

the static workload among all processors, load balancing

is achieved through nearest-neighbor communication be-

tween processors in the ring structure. Termination is detected

once the appropriate token has completed a full cycle through

all idle processors.

For a given oligopeptide, the set of DELPHI calls is

performed for an ensemble of the lowest free energy

conformers. In the typical case of 5000 oligopeptide con-

formers, the total CPU requirement is on the order of ;0.5

wallclock hour on a 128 parallel processor machine. How-

ever, the computational requirements are dependent on

the specific size and charge distribution of the system.

When considering systems with multiple titration sites, the

computational cost increases significantly. For a two-titrat-

able group oligopeptide,;1.5 wallclock hours are needed on

the same parallel machine, whereas ;3 wallclock hours are

required for a system with three ionizable groups. These

values can be used to estimate the total time to calculate free

energies for oligopeptides of larger protein systems. For the

in vacuo free energy calculations the total wallclock time

will always be ;6 h as long as the number of processors

exceeds the total number of oligopeptides, since each

oligopeptide can then be processed sequentially. When

considering the DELPHI calculations, although the number

of calculations varies linearly, the actual computational time

varies according to the number of residues with titratable

side chains and their occurrence in the set of oligopeptides.

For a 100-residue sequence with average composition, a total

of two wallclock days on a 128 parallel processor is needed

to complete the ab initio prediction of helices.

After the identification of helices using rigorous free

energy calculations, a combinatorial optimization problem is

solved as part of the second stage of the ASTRO-FOLD

approach. In particular, this second stage, which involves the

prediction of b-sheet configurations, necessitates the opti-

mization of several integer linear optimization, ILP, prob-

lems. In this work, a powerful software package, CPLEX

(CPLEX, 1997), is used to identify globally optimal ILP

solutions. The computational effort requires ;1–2 h on

a single processor, while simultaneously providing a rank-

ordered list of competitive b-sheet topologies.

The final and computationally most expensive part of the

ASTRO-FOLD approach is the solution of the constrained

tertiary structure problem to produce a complete prediction of

the three-dimensional structure of the target sequence. The
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nature of the alternating hybrid algorithm is also especially

suitable to parallelization. Because the aBB and CSA ele-

ments of the algorithm are essentially totally separate, several

plausible parallelization schemes present themselves, and

these have been tested elsewhere (Klepeis et al., 2003a). The

basic premise involves setting up two ‘‘master’’ nodes—an

aBB master and a CSA master node. The slave nodes are

then dedicated to one of these two masters—that is, a given

slave node would perform either only aBB iterations, or only

CSA iterations. Under this setup, while the CSA nodes are

carrying out generation of trail conformations and bank

updates, the aBB nodes could be working independently to

solve enough lower-bounding problems to prepare for the

next required update of the CSA bank. The parallel hybrid

algorithm provides an efficient method for tackling the full

structure prediction problem within the framework of the

aBB deterministic global optimization approach.

Several factors affect the computational requirements for

solving this constrained tertiary structure prediction prob-

lem. Most notable are the form of the energetic model, the

form of the constraint functions, and the number of global

variables for the system. For a system of ;100 residues, the

tertiary structure prediction phase, solved using the parallel

hybrid algorithm described above, requires three wall clock

days of CPU time on a 128 parallel processor distributed

computing environment.

COMPUTATIONAL STUDIES

The ASTRO-FOLD methodology has been validated for

several benchmark protein systems, as well as an ex post

facto analysis for several CASP3 and CASP4 targets. A

detailed analysis of blind CASP5 prediction results is

presented in the subsection below. In addition, a significantly

larger number of examples have been studied independently

for both the a-helix (Klepeis and Floudas, 2002) and b-sheet

(Klepeis and Floudas, 2003b) stages of the approach. Tables

3 and 4 provide a comparison of predicted and experimental

results for eight computational studies after complete

application of the ASTRO-FOLD approach.

In general, the results of the ASTRO-FOLD approach are

in excellent agreement with experiment for these systems

(\100 residues). When considering the number and location

of a-helices, the predictions are extremely accurate, with

only slight variation in the initiation and termination sites of

the individual helices. More impressive are the results for the

b-strand and b-sheet predictions, shown in Table 4, which

exhibit only small discrepancies for some of the larger

targets (T114, T105, and T52). The agreement is also

evidenced by the root mean square deviation (RMSD) values

shown in Table 5 which indicate the difference of backbone

atom placement between the experimental and predicted

three-dimensional structures. It is interesting to note that the

largest RMSDs are observed in the predicted structure of an

all-a-helical protein (R69) and an all-b-sheet protein. This

deviation is more pronounced for the a-helical system, as it

is 30% shorter in sequence than the all-b-sheet protein (T52),

which highlights the efficacy of the b-sheet prediction

approach that lies at the heart of the ASTRO-FOLD

methodology. It also suggests that a method for predicting

restraints on helical topologies may aid in the structure

prediction of predominantly a-helical targets.

To better understand these results and the underlying

predictions, two examples will be closely examined in the

sequel: 1), the CASP3 target T59; and 2), the CASP4 target

T114.

T59

T59 is a representative of the target sequences introduced

during the CASP3 experiment. The structure of the Sm D3

protein is consistent with the common core of typical Sm

proteins. This structure involves a short N-terminal helix and

a set of b-strands forming antiparallel b-sheets that fold upon

themselves to produce a barrel-like structure. The overall

topology resembles the common SH3 fold.

As a first step, helix predictions were made using free

energy calculations for the 71 overlapping pentapeptides.

For each pentapeptide, a series of free energy calculations

was performed to identify low energy conformational

ensembles. Energy modeling first included standard potential

energy components based on the ECEPP/3 force field, as

well as configurational entropic contributions using the

harmonic approximation. Refinement of a-helix probabili-

TABLE 3 Predicted and experimental values for location of helices

System NRES Predicted Experimental

1GB1 56 H1 (23–34) h1 (22–35)

BPTI 58 H1 (2–5) H2 (47–54) h1 (3–6) h2 (48–55)

3CI2 63 H1 (12–21) h1 (12–22)

R69 68 H1 (2–11) H2 (16–22) H3 (31–34) h1 (1–12) h2 (16–22) h3 (28–35)

H4 (48–50) H5 (56–61) h4 (45–50) h5 (56–61)

T59 75 H1 (6–11) h1 (6–13)

T114 87 none none

T105 95 H1 (23–28) H2 (48–53) H3 (60–66) h1 (26–29) h2 (48–54) h3 (62–65)

H4 (73–79) h4 (72–79)

T52 101 none none
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ties was based on detailed electrostatic and ionization energy

calculations obtained through the solution of the Poisson-

Boltzmann equation. For the set of possible a-helical penta-

peptides containing ionizable residues, probabilities were

recalculated for a subset of conformers using a combina-

tion of the free energy at 298 K and the polarization and

ionization free energy at pH 7. Finally, a-helical propensity

for each residue was assigned according to the average AAA
probability. The results are presented in Fig. 2. The prediction

of an a-helix corresponds to average AAA probabilities

[;85–90% for more than three consecutive residues. For

T59, a single a-helix is predicted between residues 6 and 11,

whereas the experimental findings place a helix between

residues 6 and 13.

With the helical segments identified, the second stage of

the ASTRO-FOLDmethodology is used for the prediction of

the b-sheet topology of T59 through application of the

residue-based and strand-based formulations. For T59, the

location of the postulated strands, shown in Table 6, almost

exactly mimics the b-strand arrangement in the experimental

structure. Eight individual strands are identified, and for

three pairs of strands, the juxtapositioning of the two strands

hint at the topology of the overall b-sheet topology. The

common element for these strands is the separation between

the two strands; that is, only two residues form the con-

nection between the b-strands. The combination of the in-

tervening residues clearly indicates the breakdown of the

strands; in these cases, NT, TT, and NN.
The solution of the strand-to-strand contact formulation

identifies multiple global optima, with one of the seven

globally optimal solutions corresponding to the true b-sheet

topology shown in Figs. 3 and 4. Table 7 shows the strand-

TABLE 4 Predicted and experimental values for location and topology of b-sheets

System Predicted strands Predicted matches Experimental matches

1GB1 S1 (1–7) S2 (16–21) S1–S2 S1–S4 S1–S2 S1–S4

S3 (42–45) S4 (50–55) S3–S4 S3–S4

BPTI S1 (17–23) S2 (29–35) S1–S2 S2–S3 S1–S2 S2–S3

S3 (44–46) C5–C55 C14–C38 C5–C55 C14–C38

C30–C51 C30–C51

3CI2 S1 (27–33) S2 (36–43) S1–S3 S3–S4 S1–S3 S3–S4

S3 (45–50) S4 (56–59) S2 not strand s1(3–4)–S4

R69 None None None

T59 S1 (16–20) S2 (26–28) S1–S2 S1–S8 S1–S2 S1–S8

S3 (31–33) S4 (39–43) S2–S5 S3–S4 S2–S5 S3–S4

S5 (46–51) S6 (54–58) S4–S7 S5–S6 S4–S7 S5–S6

S7 (61–63) S8 (68–73)

T114 S1 (12–15) S2 (23–26) S1–S2 S1–S4 S1–S2 S1–S4

S3 (31–37) S4 (39–42) S3–S7 S5–S6 S3–S7 S5–S6

S5 (48–54) S6 (61–70) S5–S7 C7–C25 S5–S7 C7–C25

S7 (77–86) s1(3–4)–S2 s2(71–73)–S4

T105 S1 (10–15) S2 (21–23) S1–S2 S1–S5 S1–S2 S1–S5

S3 (34–36) S4 (42–45) S2–S3 S3–S4 S2–S3 S3–S4

S5 (65–67) S6 (70–72) S5–S6

T52 S1 (8–14) S2 (17–23) S1–S2 S2–S3 S1–S2 S2–S3

S3 (31–33) S4 (39–41) S4–S5 S7–S8 S4–S5 S7–S8

S5 (47–50) S6 (54–59) S8–S9 S10–S11 S8–S9 S10–S11

S7 (62–64) S8 (68–73) C8–C22 C58–C73 C8–C22 C58–C73

S9 (79–85) S10 (90–94) S6 not strand

S11 (97–100)

TABLE 5 Summary of predicted and experimental values for number of helices, strands, b-sheets, and disulfide bridges

Predicted Experimental

System Helices Strands Sheets SS Helices Strands Sheets SS Overall backbone RMSD

1GB1 1 4 3 0 1 4 3 0 4.2

BPTI 2 3 2 4 2 3 2 4 4.1

3CI2 1 4 2 0 1 4 3 0 5.4

R69 5 0 0 0 5 0 0 0 6.2

T59 1 8 6 0 1 8 6 0 5.4

T114 0 7 5 1 0 9 7 1 4.5

T105 4 6 5 0 4 4 5 4 5.8

T52 0 11 6 2 0 10 6 2 6.9

The last column provides the backbone RMSD values between the predicted and experimental structures.
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to-strand contacts for all seven global optima. Several

common characteristics are evident. For example, strand

connections always form between strand 1 and strands 2 and

8. In addition, since the strand probabilities are additive, the

number of occurrences of each strand is the same for each

solution. Since these solutions can be used as a starting point

for further analysis, it should be noted that these common

characteristics between different solutions can be used as

a consistent set of restraints in the overall structure

prediction.

The depiction of the strand-to-strand contact diagram can

be used to visualize the overall topology of the T59 fold.

Specifically, the symmetry of the intersecting loop between

strands 2 and 7 represents the two b-ladders that comprise

each side of the overall b-barrel. The periodic absence of

connectivity between strands 2 and 3, strands 4 and 5, and

strands 6 and 7 further dictates the positioning of these

strands. In fact, the breakdown between these residues

represents the formation of the b-wedge, within the flanking

b-ladders. As referred to above, one possible configuration

requires the extension of the strands to form a single

extended region of b-structure from strands 2 to 3, strands

4 to 5, and strands 6 to 7. In this way, the symmetric

intersecting topology is reduced to a single b-ladder, which

represents the connection between the opposing sides of the

b-wedge. This topology is illustrated in Fig. 5.

The final stage of the approach is then applied to predict

the overall three-dimensional structure using the global

optimal topologies listed in Table 7. For the scenario that

matches the experimentally observed b-sheet topology,

a total of 30 upper and lower distance bounds are identified.

These interatomic distance constraints, along with the di-

hedral angle bounds, constrain the system according to the

predicted topology and secondary structure content. Using

the best overall energy as the single criterion, this structure,

with an ECEPP/3 energy of �395 kcal/mol, possesses only

FIGURE 2 Probability of a-helix formation for T59.

TABLE 6 Prediction of potential b-strands for small nuclear ribonucleoprotein Sm D3 (T59 from CASP 3)

1234567890 1234567890 1234567890 1234567890 1234567890

MSIGVPIKVL HEAEGHIVTC ETNTGEVYRG KLIEAEDNMN CQMSNITVTY
HTHT------ ---NTNHHBH NBTBTNHHNT NHHNBNTTHT HNHTTHBHBH
---------- ------OOOO OO----OOOO OO-OO----- OOOO-OOOO-
---------- -----XXXXX X----XXXX- XXXX----XX XXX--XXXXX

1234567890 1234567890 12345

RDGRVAQLEQ VYIRGCKIRF LILPD
NTTNHBNHNN HHHN---HNH HHHTT
----OOOO-O OOO------O OO---
X-XXXXX--- XXXX---XXX XXX--

The first row provides the single letter code for the amino acid sequence. The second row provides the classification, of H, B, T, and N residues. The third

row provides the location of the experimentally determined strands as depicted by contiguous blocks of O characters. A contiguous block of X characters

shows the predicted b-strands in the fourth row.
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a 5.4 Å deviation from the experimentally determined struc-

ture. A comparative plot of these two structures is given in

Fig. 6.

T114

T114 was released as a protein target for the CASP4

competition. The protein, an antifungal protein AFP-1 of

Streptomyces tendae, is relatively small with a sequence

length of only 87 amino acids. Using NMR techniques the

structure of T114 was determined to possess a G-crystallin-

like fold (Campos-Olivas et al., 2001), and although the

classic crystallin sequence and structure motifs are absent

from the structure of T114, the two folds are likely to be

evolutionarily related. Shortly after the CASP4 competition,

the killer-toxin-like protein SKLP was published and

exhibited a similar structure and function.

As a target in the CASP4 competition the T114 system

caused some difficulties for various structure prediction

methods. Because of its structural relationships with existing

proteins, the T114 target was classified as a fold recognition

target without sequence homology. Overall, the structure

of the protein exhibits a complex two layer b-sandwich

topology, with some rare structural features; it is exactly

these b-type proteins which consistently elude accurate

structure prediction. T114 therefore represents a well-suited

target to test the ASTRO-FOLD methodology and its novel

techniques for the prediction of b-sheet topologies.

Helix prediction results indicated the absence of any

contiguous helical segments. For this reason, the next stage

began immediately with the application of the protocol for

potential b-strand identification over the entire sequence of

T114. The protocol identifies eight distinct strands, as shown

in Table 8. In this study, the set of postulated b-strands is

missing two additional strands observed in the experimental

structure: 1), a short strand between residues 3 and 4; and 2),

a three-residue strand between residues 71 and 73. It

interesting to note that the PSIPRED method for secondary

structure prediction not only misses these two strands, but

also incorrectly joins the third and fourth strands in addition

to predicting a helix over part of the last strand.

Using the set of postulated b-strands, the combined

residue-to-residue and strand-to-strand contact formulation

is applied to jointly determine b-sheet connectivity, residue-

to-residue contacts and possible disulfide bridge formation.

The global optimum solution provides a disulfide bridge

contact between the cystine residues at positions 7 and 25, as

well as a b-sheet topology in which all postulated b-strands

participate. All strand-to-strand contacts are predicted to be

in antiparallel registration, and the overall configuration

represents a nonsequential topology, as illustrated in Fig. 7.

Although this global optimum provides strong agreement

with experiment since all predicted strand-to-strand contacts

are present in the experimental structure, there is a general

underprediction in the number of b-sheet contacts. This is

evidenced by a mapping of the predicted strands onto a three-

dimensional cartoon representation of the experimental

structure as shown in Fig. 8. In particular, the missing

strands between residues 3 and 4, and 71 and 73, represent

edge strands in the b-sheet architecture of the experimental

structure.

The derivation of restraints resulted in a set of 40 residues

for which the backbone torsion-angle variables are con-

strained to extended b-sheet-like conformations. These 40

TABLE 7 Strand-to-strand contacts for multiple global

optima of T59

Optimum 1 2 3 4 5 6 7

Match 1 1-2 1-2 1-2 1-2 1-2 1-2 1-2

Match 2 1-8 1-8 1-8 1-8 1-8 1-8 1-8

Match 3 2-5 2-6 2-4 2-4 2-4 2-4 2-5

Match 4 3-4 3-4 3-7 3-6 3-5 3-5 3-4

Match 5 5-6 4-5 4-5 4-5 4-6 4-7 4-6

Match 6 4-7 5-7 5-6 5-7 5-7 5-6 5-7

FIGURE 5 Contact diagram for strand contact formulation with modified

b-strand prediction for protein Sm D3 (T59).

FIGURE 3 Contact diagram for global optimum of strand contact

formulation for protein Sm D3 (T59).

FIGURE 4 Qualitative mapping of predicted b-strand to experimental

structure of T59.
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residues denote the locations of the seven predicted

b-strands. The five predicted b-sheet contacts provided a

set of 34 distances for which lower and upper bound con-

straints were imposed. Additional lower and upper bounds

on the Sg interatomic distance were enforced for the predicted

disulfide bridge between residues 7 and 25. After solving

the constrained global optimization formulation, the lowest

energy structure for T114 provided an ECEPP/3 energy of

�530 kcal/mol and possessed a 4.5 Å deviation from the

experimental structure, as shown in Fig. 9. These results are

promising in light of both the sparse set of constraints as well

as the general difficulty with which accurate b-protein

predictions are made.

CASP5

In this section a comprehensive review is presented on the

results from 11 of our blind predictions in the CASP5

experiment, for which experimental results were later made

available. As our first participation in the CASP experiment,

the target selection was based both on the size of the targets

and the resources available for predictions. In general, we

focused on targets smaller than 150 residues in length, and

our sample is biased toward the earlier released targets since

more time was typically available for these systems. Our

target selection did not include evaluations of the sequence

or structural homology of a given target sequence, as our

goal was to examine the performance of the approach in

a unbiased manner. For this reason, knowledge of ‘‘new-

fold’’ classifications, which may have enhanced the per-

formance of the ASTRO-FOLD approach in comparison to

other database-driven approaches, was not exploited. The

targets discussed here are listed in Table 9. The selection is

skewed, unintentionally and unknowingly, toward compar-

ative modeling and fold recognition targets, which reflects

the general statistics of the overall set of the CASP5 targets.

After application of the helix prediction stage, helices

were present in all but one target sequence, as shown in

Table 10. For this one sequence, T153, the experimental

structure is characterized by only one short helix from

residues 66–71. In other systems, the number of predicted

helices varied from two to as many as five helices. For only

one case, T160, the predictions overestimated the location of

helices by predicting a small helix between residues 82–87.

For two systems, T150 and T157, the helix predictions were

almost in exact agreement with experiment. The most

consistent inaccuracy with the approach was the tendency to

underpredict small helical turns, which was the case for six

separate target systems. Fortunately, these regions represent

a very small number of amino acids, and even the

classifications of these regions are somewhat ambiguous

TABLE 8 Prediction of potential b-strands for T114

1234567890 1234567890 1234567890 1234567890 1234567890

MINRTDCNEN SYLEIHNNEG RDTLCFANAG TMPVAIYGVN WVESGNNVVT
HHTNBTHTNT THHNHNTTNT NTBHHHBTBT BHTHBHHTHT HHNTTTTHHB
--OO------ -OOOOO---- -OOOOOO--- -O---OO--- OOOO----OO
------S--- -XXXXX---- -XXSXX---- XXXXXXX-XX XX-----XXX

1234567890 1234567890 1234567890 1234567

LQFQRNLSDP RLETITLQKW GSWNPGHIHE ILSIRIY
HNHNNTHTTT NHNBHBHNNH TTHTTTNHNN HHTHNHH
OOOO------ -OOOOOO--- OOO------O OOOOOO-
XXXX------ XXXXXXXXXX ------XXXX XXXXXX-

The first row provides the single letter code for the amino acid sequence. The second row provides the classification ofH, B, T, andN residues. A contiguous

block of O and X characters shows the experimental and predicted b-strands in the third and fourth rows, respectively.

FIGURE 6 Comparison of predicted lowest energy tertiary structure

(black) of T59 and experimentally determined structure (gray). All images

generated with the RASMOL molecular visualization package (Sayle and

Milner-White, 1995).

FIGURE 7 Contact diagram for global optimum strand-to-strand pre-

diction for T114.
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(in this case, the FSSP classification system was used to

define individual residues as helix, strand, or coil). In only

two cases, T139 and T170, were larger helical segments

underpredicted. Both targets were classified as all-a-helical,

relatively hard protein systems. In addition, as evidenced by

the plot in Fig. 10, the probabilities in the region of

underprediction for T170 (between residues 47–52 in Fig.

10), were not far below the cutoff value for helix prediction.

However, since the goal of this stage is to determine the

strongest helix nucleation sites, the underprediction of

helical segments can be remedied in the final stage of the

tertiary structure prediction.

Table 11 summarizes the b-strand predictions obtained

from the second stage of the ASTRO-FOLD approach (and

subsequently used in the final stage of the approach to

identify the lowest energy configuration). The predictions

are in excellent agreement with the experimental observa-

tions, as evidenced by the seven target sequences for which

there is an essential one-to-one correspondence between the

predicted strand locations and the experimental observations.

These successful predictions include many mixed a- and

b-protein systems. In addition, for two systems, namely

T130 and T160, the only discrepancy between prediction

and experiment is the underprediction of one b-strand. For

another relatively large system, T153, the prediction misses

one strand and mispredicts the location of a strand, with both

errors occurring in close proximity. In addition, for this

system, the b-strand prediction protocol identifies a long

b-strand as two smaller separate strands. This is due to the

lack of continuity of the hydrophobic patterning in this region

of the target sequence. Finally, the prediction for one of the

smaller systems, T170, erroneously identifies two b-strands

within an all-helical protein. These secondary structure

prediction results are summarized graphically in Fig. 11.

Quantitative evaluation of secondary structure prediction

accuracy is a nontrivial task. Traditionally, a Q3 measure has

been used to give an overall number of residues predicted

correctly; however, this evaluation can be misleading. A

measure that evaluates how secondary structure elements are

predicted instead of individual residues has been found to be

a better indicator of overall structure prediction accuracy.

One particular measure that has received considerable

attention is the segment overlap measure (SOV) (Rost

et al., 1994; Zemla et al., 1999). The SOV evaluation is

performed for overall three-state (helix, strand, and coil) and

for each single conformational state. For a single conforma-

tional state i, SOV is defined as:

SOVi ¼
1

Ni

+
Si

MinOVðSobs
; S

predÞ1DðSobs
; S

predÞ
MaxOVðSobs

; S
predÞ

LENðSobsÞ:

(20)

Here Sobs and Spred indicate the observed and predicted

secondary structure segments in state i, which can be helix,

strand, or coil. Len(Sobs) indicates the number of residues in

FIGURE 9 Comparison of predicted lowest energy tertiary structure

(black) of T114 and experimentally determined structure (gray). All images

generated with the RASMOL molecular visualization package (Sayle and

Milner-White, 1995).

TABLE 9 List of CASP5 targets

Target Start End NAA Class

T0137 1 133 133 CM

T0150 �1 96 97 CM

T0153 2 135 134 CM

T0160 �1 125 126 CM

T0188 1 107 107 CM

T0130 6 105 100 CM/FR

T0132 6 151 147 CM/FR

T0138 1 135 135 FR(H)

T0157 2 (101) 119 (138) 120 FR(H)

T0170 3 71 69 NF/FR

T0139 239 300 62 NF

The start and end residues for the experimental structure are given, along

with the overall number of amino acids (NAA) and the classification

according to CASP5 postanalysis. CM indicates a comparative modeling

target, CM/FR a comparative modeling/fold recognition target, FR(H)

a homologous fold recognition target, NF/FR a new fold/fold recognition

target, and NF a new fold target.FIGURE 8 Qualitative mapping of predicted b-strand to experimental

structure of T114.
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the segment Sobs. MinOV(Sobs; Spred) is the length of actual

overlap of Sobs and Spred, whereas MaxOV(Sobs; Spred) is the
total number of residues for which either of the segments has

a residue in state i. Finally, D(Sobs; Spred) is an integer value

defined as

DðSobs
; S

predÞ ¼ min

�
ðMaxOVðSobs

; S
predÞ

�MinOVðSobs; SpredÞÞ;MinOVðSobs; SpredÞ;

INT LEN
Sobs

2

� �� �
; INT LEN

Spred

2

� �� ��
:

(21)

The sum in Eq. 20 is taken over all pairs of segments in

which Sobs and Spred have at least one residue in state i in

common, and the value for Ni is equal to the sum of length of

all pairs of segments in which segments Sobs and Spred have at
least one residue in state i in common in addition to the

length of the segments Sobs that do not provide any segment

pair. The SOV measure for all three states is given by

SOV ¼ 1

N
+
i

+
Si

MinOVðSobs
; S

predÞ1DðSobs
; S

predÞ
MaxOVðSobs

; S
predÞ

LENðSobsÞ:

(22)

In this case the value for N is taken as the sum of Ni over all

three conformational states.

Quantitative evaluation of the predicted secondary

structure content is computed using the SOV measure, and

these results are presented in Table 12. In addition, the SOV

TABLE 10 Predicted and experimental values for location of helices

System Experimental Predicted

T130 H1(11–24) H2(59–71) H3(83–85) h1(6–24) h2(59–72) h3(83–95)

H4(89–96)

T132 H1(25–27) H2(36–55) H3(140–150) h1(34–53) h2(138–150)

T137 H1(2–4) H2(16–23) H3(27–35) h1(17–22) h2(40–45)

T138 H1(13–24) H2(37–45) H3(62–74) h1(14–23) h2(37–45) h3(63–71)

H4(95–99) H5(107–111) H6(113–128) h4(108–127)

T139 H1(239–246) H2(256–265) H3(267–275) h1(239–249) h2(258–263) h3(282–299)

H4(278–299)

T150 H1(3–13) H2(20–28) H3(43–56) h1(1–11) h2(21–27) h3(45–54)

H4(67–73) H5(93–95) h4(68–73) h5(92–95)

T153 H1(66–71) None

T157 H1(42–52) H2(73–87) H3(119–135) h1(42–50) h2(73–84) h3(119–135)

T160 H1(49–51) H2(102–107) H3(111–113) h1(82–87) h2(102–107)

T170 H1(14–28) H2(36–45) H3(47–52) h1(12–27) h2(36–40) h3(58–68)

H4(55–69)

T188 H1(12–14) H2(46–48) H3(56–62) h1(57–62) h2(76–83) h3(96–103)

H4(75–83) H5(96–104)

FIGURE 10 Probability of a-helix formation for

T170.
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analysis is used to compare the ASTRO-FOLD results to

those obtained using the PSIPRED method for secondary

structure prediction (McGuffin et al., 2000). PSIPRED

utilizes two feed-forward neural networks to perform an

analysis on output obtained from PSI-BLAST (Position

Specific Iterated - BLAST; Altschul et al., 1997). Cross-

validation of the method indicates that PSIPRED is capable

of achieving an average Q3 score of nearly 77%, which is the

highest result for any published secondary structure pre-

diction method. The PSIPRED predictions are based on

FIGURE 11 Comparison of predictions for

helix and b-strand locations with respect to the

experimental observations. For each target, the

top line represents the secondary structure

content of the experimentally determined

structure, whereas the second line identifies

the subsequent prediction results.

TABLE 11 Predicted and experimental values for location of b-strands

System Experimental Predicted

T130 S1(29–33) S2(47–52) S3(78–82) s1(28–33) s2(47–52) s3(74–81)

S4(99–102)

T132 S1(16–22) S2(59–64) S3(78–88) s1(16–24) s2(58–70) s3(78–88)

S4(92–102) S5(112–125) s4(93–104) s5(112–125)

T137 S1(6–14) S2(39–46) S3(49–55) s1(4–11) s2(40–45) s3(49–53)

S4(60–66) S5(71–74) S6(80–88) s4(62–67) s5(70–75) s6(80–87)

S7(91–97) S8(102–110) S9(113–120) s7(90–93) s8(100–110) s9(113–120)

S10(123–131) s10(123–129)

T138 S1(5–10) S2(29–34) S3(53–57) s1(2–11) s2(29–34) s3(51–57)

S4(79–82) S5(104–106) s4(75–82) s5(98–106)

T139 None None

T150 S1(15–18) S2(34–38) S3(60–63) s1(15–19) s2(33–38) s3(60–64)

S4(82–87) s4(80–86)

T153 S1(6–9) S2(26–30) S3(35–37) s1(3–10) s2(27–31) s3(35–38)

S4(42–52) S5(57–62) S6(73–75) s4(42–45) s5(49–53) s6(57–61)

S7(80–82) S8(89–96) S9(103–105) s7(67–71) s8(73–76) s9(89–97)

S10(110–118) s10(103–106) s11(111–122)

T157 S1(4–9) S2(14–21) S3(26–34) s1(4–10) s2(14–19) s3(30–34)

S4(56–63) S5(91–96) s4(56–61) s5(89–94)

T160 S1(9–11) S2(15–19) S3(26–33) s1(6–11) s2(16–19) s3(25–33)

S4(40–46) S5(52–55) S6(58–61) s4(39–45) s5(51–54) s6(66–74)

S7(66–73) S8(87–94) S9(115–117) s7(88–95) s8(113–115) s9(120–124)

S10(120–124)

T170 None s1(41–45) s2(51–56)

T188 S1(2–7) S2(26–33) S3(36–44) s1(1–7) s2(26–32) s3(37–43)

S4(67–69) S5(87–89) s4(66–71) s5(88–90)
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a standard three-state model to indicate the location of helix,

strand, and coil fragments for a given sequence. It is

important to note that PSIPRED can only predict the location

of secondary structure in the overall sequence. In contrast,

the presented ab initio approach predicts the location of

potential b-strands as well the configuration of the overall

b-sheet network.

In general, the SOV values for all targets are relatively

high, with most overall SOV values above 80% accuracy. In

addition, the results are somewhat unusual in the sense that

the b-strand predictions exhibit high accuracy, which reflects

the fact that these particular targets are well-represented in

the sequence and structural databases. Nevertheless, the

results for the ASTRO-FOLD ab initio predictions perform

well when compared to the PSIPRED database method. Out

of the 11 total targets, the ASTRO-FOLD method predicts

secondary structure content to a higher degree of accuracy

for five of the targets.

Although the ab initio secondary structure predictions

agree quite well with experimental observations, the true

benefit of the b-sheet prediction approach is the identifica-

tion of a three-dimensional topology for the connectivity of

the b-strands. These strand-to-strand matches are summa-

rized in Table 13. For five targets, the predicted strand-

to-strand contacts identically match those observed in the

corresponding experimental structures. In general, the

predicted secondary structure for these five targets also

exhibit relatively good correspondence when compared to

the order and location of the observed secondary structure

elements. This is indicated in Fig. 11 for the five targets:

T132, T138, T139, T150, and T188. However, when

compared to the quantitative evaluation provided by the

SOV measure, only predictions for targets T132 and T138

were assessed to be better than the PSIPRED predictions.

This emphasizes the importance of not only assessing

secondary structure prediction accuracy, but also the need for

identifying correct topological connections.

These results can be interpreted more exactly by

examining individual predictions. For example, when

considering overall secondary structure, the ASTRO-FOLD

predictions for both T157 and T160 provide excellent

agreement with experiment and the SOV evaluations are

better than those provided by the PSIPRED predictions. In

both cases, the predicted b-sheet topologies exhibit both

consistent and inconsistent characteristics when compared to

the experimental structures. For T157, these inaccuracies

correspond to both a switch in the b-strand matches and also

a difference in the antiparallel and parallel nature of one of

the matches. In contrast, for T160, there exists a shift in

the corresponding matches along the sequence, although the

antiparallel nature of the matches remains correct. In addi-

tion, the T160 b-sheet prediction misses a potential parallel

strand-to-strand contact. As will be shown, the T160 in-

consistencies do not seriously affect the final three-dimen-

sional structure prediction.

The final evaluation of structure prediction accuracy is

the assessment of the overall three-dimensional structure as

compared to the observed experimental structure. It should

be noted that for all comparisons, the ASTRO-FOLD-based

predictions represent the results for the lowest energy

structure. In fact, the ASTRO-FOLD method does not rely

on clustering of low energy structures nor additional

energetic or structural criteria, and the evaluations reflect

only the results of the single lowest energy structure.

Several evaluation measures exist, although the perfor-

mance of a given method may be judged differently depend-

ing on the choice of these evaluation criteria. This problem

becomes compounded when visual evaluations are used,

such as during the CASP experiments, and reflects the fact

that the prediction results are generally not good. In other

words, the generic structure prediction problem has not yet

been solved.

To correctly evaluate the structure prediction problem

several criteria must be used. In particular, one type of

evaluation may involve the assessment of the prediction of

the correct fold topology, including the b-sheet contacts as

presented in Table 12. A step toward a more quantitative

assessment of fold prediction accuracy is the evaluation of

TABLE 12 Overall and three-state SOV evaluations for both the ASTRO-FOLD predictions and those obtained from the PSIPRED

prediction server (McGuffin et al., 2000)

ASTRO-FOLD SOV PSIPRED SOV

Target All Helix Strand Coil All Helix Strand Coil

T0130 75.8 91.4 71.7 62.9 86.0 90.7 93.1 78.0

T0132 92.0 91.2 96.2 89.2 88.1 91.2 100.0 79.3

T0137 88.2 85.0 95.5 74.4 96.0 85.0 100.0 93.7

T0138 84.5 85.6 88.9 81.0 83.3 85.6 86.3 79.1

T0139 78.3 79.6 100.0 73.6 80.6 81.6 100.0 76.7

T0150 81.4 79.5 94.7 76.5 90.8 97.1 96.5 79.4

T0153 80.2 0.0 77.0 89.5 77.9 0.0 80.7 81.1

T0157 94.2 100.0 92.6 89.5 93.7 100.0 91.9 88.7

T0160 82.6 50.0 87.6 84.5 79.9 50.0 89.7 77.4

T0170 82.9 80.4 100.0 87.8 93.8 93.5 100.0 94.6

T0188 84.7 80.6 94.5 81.4 87.7 80.6 97.9 86.1
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contact maps which indicate the interatomic distances

between all Ca atoms in either the predicted or experimental

structures. The relative coverage on a contact map can be

used to evaluate accuracy in the topology of secondary

structure contacts not predicted through the b-sheet pre-

diction approach, such as those contacts between a-helices

and b-strands, or a-helices with other a-helices.

Fig. 12 depicts comparative contact maps for four CASP5

targets: T0130, T0138, T0150, and T0160. The individual

graphs were constructed by computing the interatomic

distances and then plotting the appropriate color-scaled

values for both the experimentally observed and ASTRO-

FOLD predicted structures in the upper left and lower right

triangles of the plot, respectively. The graphs are colored

such that the shading progresses from dark to light when

moving from short to long interatomic distances. Examina-

tion of the image for T130 reveals several significant pieces

of information regarding the three-dimensional structure of

the predicted and experimental structures. For example, the

presence of an antiparallel b-sheet between the first two

TABLE 13 Predicted and experimental values for b-sheet topology

Experimental Predicted

System Strand 1 Strand 2 Type Strand 1 Strand 2 Type Agree (Y/N)

T130 S1 S2 A s1 s2 A Y

S2 S3 P s2 s3 A N

S1 S4 A None N

T132 S1 S3 A s1 s3 A Y

S3 S4 A s3 s4 A Y

S4 S5 A s4 s5 A Y

S2 S5 A s2 s5 A Y

T137 S1 S2 A s1 s2 A Y

S3 S4 A s3 s4 A Y

S6 S7 A s6 s7 A Y

S7 S8 A s7 s8 A Y

S8 S9 A s8 s9 A Y

S9 S10 A s9 s10 A Y

S2 S3 A None N

None s4 s5 A N

S5 S6 A None N

S1 S10 A None N

T138 S1 S2 P s1 s2 P Y

S1 S3 P s1 s3 P Y

S3 S4 P s3 s4 P Y

S4 S5 P s4 s5 P Y

T139 None None Y

T150 S1 S4 A s1 s4 A Y

S2 S3 P s2 s3 P Y

S2 S4 A s2 s4 A Y

T153 S1 S4 A s1 s5 A Y

S2 S10 A s2 s11 A Y

S3 S9 A s3 s10 A Y

S4 S8 A s4 s9 A Y

S5 S10 A s6 s11 A Y

S5 S7 A s6 s8 A N

S6 S8 A s7 s9 A N

T157 S1 S2 A s1 s2 A Y

S4 S5 P s4 s5 P Y

S2 S3 A s2 s4 P N

S1 S4 P s1 s3 P N

T160 S1 S2/S3 A s1 s3 A Y

S3 S7 A s3 s6 A Y

S5 S7 A s5 s6 A Y

S4 S6 A s4 s5 A N

S8 S9 A s7 s9 A N

S2 S10 P None N

T170 None s1 s2 A N

T188 S1 S2 A s1 s2 A Y

S2 S3 A s2 s3 A Y

S1 S4 P s1 s4 P Y

S4 S5 P s4 s5 P Y
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b-strands in each structure is indicated by the dark line

perpendicular to the diagonal in this region of the contact

map (30–35 for strand 1 and 45–50 for strand 2). As

expected, the misprediction of an antiparallel rather than

parallel match between strands 2 and 3 in the predicted

b-sheet topology is also evident in this graph. This

antiparallel match corresponds to a dark line perpendicular

to the diagonal between residues 45–50 of strand 2 and

residues 75–80 of strand 3. In contrast, the same region for

the experimental structure features a dark line characteris-

tically parallel to the diagonal. However, the contact maps

also allow for assessment of topological features not

identified through the b-sheet prediction. In particular, for

T130, the experimental structure exhibits an antiparallel

contact between the first and second helices, as evidenced by

the dark line antiparallel to the diagonal between residues

10–20 and residues 60–70. In contrast, such a contact is

totally absent in the contact map for the predicted structure as

evidenced by the light region along the bottom line in this

portion of the contact map.

The comparative contact maps also offer information

about those systems in which the predicted b-sheet topol-

ogy matches experimental observations. For example, the

b-sheet topology for T138 is correctly predicted to contain

four parallel b-sheet matches. Comparison of the two

triangles for T138 in Fig. 12 identifies these consistencies

between the two structures, but also indicates a lack of short-

range interactions between the N- and C-termini in the

predicted structure. This observation is evidenced by the lack

of any dark regions in the lower-right-hand corner of the

T138 contact map, which stands in opposition to the

apparent parallel contact between the first helix (residues

15–25) and the last helix (residues 115–120) in the ex-

perimental structure. Differences between experimentally

observed and predicted contact maps are much less pro-

nounced for other targets, such as T150 and T160. For T150,

this agreement complements the prediction of the correct

b-sheet topology. On the other hand, although the prediction

of the b-sheet topology for T160 is not in exact agreement

with experiment, the contact map agreement suggests that

these discrepancies are not likely to affect the accuracy of

the overall three-dimensional structure.

A more quantitative assessment is to compute the

backbone RMSD between the experimentally observed and

FIGURE 12 Contact map comparisons (clockwise from top left) for T130, T138, T160, and T150. The upper left triangle corresponds to interatomic

distances calculated from the experimental structure, whereas the lower right triangle corresponds to those derived from the predicted structure. An upper

distance cutoff of 30 Å was used to emphasize small interatomic distances. The progression from small to large distances follows the dark to light shading.
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computationally predicted structures. Several measures for

assessment employ RMSD values, although many times

these measures are not stringent. For example, a sequence-

independent RMSD analysis allows for shifting of the

structure-to-structure alignment along the corresponding

target sequence. In addition, other RMSD measures do not

enforce that the set of compared residues are contiguous.

One objective analysis involves the simple determination of

the longest contiguous segment (LCS) that falls within

a certain RMSD cutoff value. For the structure predictions of

the CASP5 targets, 5 out of 11 predicted structures possessed

at least 50 contiguous residues with RMSD values between

4–6 Å. When requiring at least a 40-residue LCS within the

4–6 Å RMSD cutoff, this set included 9 out of the 11 targets.

For larger RMSD (6–8 Å) cutoffs, a 50-residue contiguous

segment was predicted for 8 out of 11 targets. Finally, for

both T138 and T160, an LCS of at least 100 residues was

found within RMSD cutoffs of 6–8 Å.

Systematic analyses of the predicted three-dimensional

structures can also be insightful in identifying potential

improvements for the ASTRO-FOLD approach. Using the

experimentally determined structures as a guide for the

location of helices and strands, structural RMSDs were

calculated between predicted and experimental structures for

regions defined as helix, strand, or loop. These results were

grouped according to the length of the regions, and average

RMSDs along with the corresponding standard deviations

were computed. Graphs of this information are provided in

Fig. 13 for regular secondary structure elements (helices and

strands) and in Fig. 14 for loop regions.

As Fig. 13 shows, the average RMSDs between predicted

and experimental structures are essentially invariant with

respect to the length of the helical segment. That is, although

small helices have somewhat smaller RMSDs, even rela-

tively large helices, in excess of 20 residues, also tend to

have equally small RMSDs. This reflects the fact that when

the location of a helical region is predicted correctly, the

three-dimensional structure that emerges matches well with

the actual experimental structure. In certain cases, the RMSD

may be inordinately large, but this is due to the incorrect

specification of that helical region. An illustration of this case

is the incorrect prediction of one particular helical region of

six amino acids in length, which resulted in the large

standard deviation for this group of helices. In general,

however, helices are predicted with deviations \2–2.5 Å,

regardless of the length of the helix. The three-dimensional

structures of b-strand regions tend to be predicted equally

well. As shown in Fig. 13, strands of any length are predicted

to within 2–2.5 Å RMSDs from the corresponding

experimental structures.

The situation is not quite as impressive when considering

the predictions for loop regions. The average RMSDs for

small loops are quite good, as given in Fig. 14, although

there is a decline in the accuracy of the predictions as loop

length increases. In particular, it is not uncommon for loops

longer than eight residues to have RMSD values in excess of

3 Å. This is important because the loop predictions are

expected to become more difficult as loop lengths increase

further. It should be noted that for these ab initio predictions,

the loop prediction problem is compounded further because

the locations of the stem regions are not specified, as is the

case for the comparative modeling and template-based

approaches. In this regard, these predictions are quite

FIGURE 13 Average backbone RMSDs from experimental structure for

helical (top) and b-strand (bottom) regions (length given by values on x-axis)

of all CASP targets. Helix and strand locations defined as in experimental

structures. Standard deviations are also provided.

FIGURE 14 Average backbone RMSDs from experimental structure for

loop regions (length given by values on x-axis) of all CASP targets. Loop

locations defined as in experimental structures. Standard deviations are also

provided.
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competitive given the additional flexibility of the loop stem

regions. Nevertheless, it is expected that improvements in

the prediction of loop regions can contribute significantly to

further advancements in treating the protein structure

prediction problem.

A more complete view on the accuracy of the three-

dimensional predictions is given in Fig. 15. These graphs

plot all-backbone atom RMSDs between the predicted and

experimental structures for all CASP targets in the test set. In

particular, the curves traces the best RMSDs for a continuous

fragment of the sequence (sequence-dependent), which is

plotted versus the fraction of the sequence for that particular

fragment (exhibiting the best RMSD). A crucial observation

is that for all CASP sequences, the ASTRO-FOLD

predictions identify a fragment of no less than 50% of the

entire sequence that does not deviate from the experimental

structure by[9 Å. In addition, in more than half the cases,

the deviation of such a fragment is within ;6 Å of the same

fragment in the experimental structure. In addition, for the

vast majority of the CASP targets, the accuracy of the

prediction for a fragment of[75% of the sequence matched

the same part of the experimental structure to within a 12 Å

deviation.

To supplement these quantitative analyses, visual assess-

ments of six CASP5 targets are shown in Figs. 16–18. These

figures were constructed following full atom superposition-

ing of the experimental and predicted structures. For T132,

the exact agreement between the antiparallel b-sheet

networks becomes apparent, although the relative position-

ing of the a-helices is decidedly different. In addition, the

a-helices in the predicted structure are less packed against

the b-sheet network, an indication of the sparsity of informa-

tion regarding the interplay between a- and b-structural ele-

ments. Another important observation is illustrated through

visual comparison of the T137 structures. In particular, the

b-sheet predictions for T137 identify a b-sheet topology

similar to the experimentally observed system, with the

major difference being an underprediction in the number of

b-sheet contacts. However, the overall predicted structure

does not exactly resemble the characteristic b-sandwich fold

of the experimental structure, although significant portions

of the overall structure produce relatively low RMSD values.

As the structural plot indicates, these discrepancies are most

likely related to the irregularity of the hydrogen bonding

between the b-sheets. In fact, although not a component in

the current ASTRO-FOLD methodology, the refinement of

structures to improve hydrogen bonding networks is an

important consideration in a variety of fold prediction

methodologies.

Fig. 17 illustrates the predicted and experimental struc-

tures for two CASP targets classified as ‘‘new-fold’’ systems.

Both systems are relatively small, and the experimental

FIGURE 15 Smallest RMSDs for longest continuous

segment between predicted and experimental structures of

CASP targets. The RMS values are plotted versus the

fraction of the total sequence represented by the longest

continuous segments providing that RMS value. The top

plot is for sequences with lengths \110 amino acids,

whereas the bottom plot is for the remaining longer length

sequences.

2142 Klepeis and Floudas

Biophysical Journal 85(4) 2119–2146



structures contain only helical segments. For target T170, the

predicted structure is identified as having a small b-hairpin

supersecondary structure. Although the antiparallel packing

of this part of the sequence is satisfactory, the overall helix

packing is not captured. In the case of T139, the ASTRO-

FOLD prediction correctly identifies the majority of the

helical regions. However, the packing of these helices is not

predicted with high accuracy. These observations highlight

the difference between the ASTRO-FOLD approach and

other ab initio approaches. That is, although most ab initio

approaches perform best for small all-helical proteins, the

lack of tertiary restraints for such systems actually hinders

the performance of ASTRO-FOLD methodology. In con-

trast, the ASTRO-FOLD approach performs well when the

protein contains b-structure or mixed a-b structure, systems

that have typically been bottlenecks for existing ab initio

approaches. For this reason, an avenue for improvement

would include the ability to predict packing constraints for

helices, and current research is exploring these possibilities.

Fig. 18 depicts two systems with very good agreement

between experimental and predicted structures. In the case of

T138, the parallel b-sheet topology is an important element

that dominates the accuracy of the predicted structure.

However, as the contact map analysis indicated, a discrep-

ancy exists between the relative placement of the first and

last helices in the experimental and predicted structures.

Nevertheless, the accuracy of several loop fragments in

combination with the correct b-sheet network results in an

extremely accurate overall structure. For T160, the visual

assessment also affirms the accuracy of the predicted

structure. In fact, although the b-sheet predictions excluded

a potential strand-to-strand contact, the final topology of the

predicted structure closely mimics the experimentally

observed packing.

Since the ultimate goal of successful structure prediction is

to provide experimentalists with biologically relevant

structures, other assessment criteria can be envisioned. For

example, the predicted structures could be used to assess the

functionality of the targets using a structural comparison to

an available structural database. Although these criteria were

not considered as part of the exclusively ab initio prediction

(without databases) using ASTRO-FOLD, a postanalysis can

be easily implemented to evaluate the quality of the predicted

structures. In fact, a variety of methods exist for the

structure-to-structure alignment of proteins (Holm and Park,

2000; Holm and Sander, 1996; Russell and Barton, 1992).

The underlying premise is that structural matches between

a predicted structure and a structure in the database may

indicate the functional equivalence of the two systems. This

analysis was completed for two systems, namely T138 and

T160, using the DALI method for structure comparison

(Holm and Sander, 1993). In the case of T160, the highest

confidence match belonged to the major sperm protein

(1msp-A), which possesses an overall length of 124 residues.

Using a PSI-BLAST search, the 1msp-A also provided the

highest ranked match for T160, which is indicative of its

classification as a comparative modeling target for the

FIGURE 17 Comparison of predicted lowest energy tertiary structure

(left) and experimentally determined structure (right) for T139 and T170

(top to bottom). All images generated with the RASMOL molecular

visualization package (Sayle and Milner-White, 1995).

FIGURE 16 Comparison of predicted lowest energy tertiary structure

(left) and experimentally determined structure (right) for T132 and T137

(top to bottom). All images generated with the RASMOL molecular

visualization package (Sayle and Milner-White, 1995).
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purposes of CASP5 assessment. On the other hand, T138

was classified as a homologous fold recognition target by

CASP5 evaluators. The predicted structure for T138 was

accurate enough to provide a wide variety of structural

matches, with the highest rank coming from 2dhq-A,

a 3-dehydroquinate dehydratase protein. As with T160, the

overall lengths of this system (136 amino acids) and the

target sequence (135 amino acids) are almost identical. In

addition, a fold recognition search using GenTHREADER

(Jones, 1999a) identified 2dhq-A among the top matches for

this system. Although this analysis relies on the use of

database information for functional annotation, the un-

derlying predictions are based on a pure ab initio structure

prediction methodology. That is, although database ap-

proaches could be used to provide the same information,

these results indicate that purely ab initio predictions can

perform comparably. Of course, functional annotation of

‘‘new-fold’’ targets may not be possible, but these findings

are significant because ab initio functional annotation is

possible without the additional requirement of initially find-

ing the correct database match. These results highlight the

promise of ASTRO-FOLD as a method to unambiguously

and generically address the structure prediction problem.

CONCLUSIONS

In the postgenomic era, the revolution in bioinformatics

deals with the problem of structural genomics. To tackle this

problem a variety of approaches have been developed to

predict the three-dimensional structure of a protein given its

amino-acid sequence. A basic premise for most methods

is that they rely on the content of sequence and structural

databases to guide the structure prediction for the target

sequences. However, as the results from the CASP experi-

ments indicate, the generic structure prediction problem has

not yet been solved.

The development of a true ab initio methodology that can

accurately predict protein structures holds the key to success

in the field of generic structure prediction. We work toward

this goal by presenting ASTRO-FOLD, a method true to the

tenets of ab initio structure prediction. The approach is based

on novel methods for modeling protein systems by com-

bining concepts from two competing views regarding the

folding of proteins. One component involves the modeling of

local interactions and free energy calculations to predict

regions of strong helix nucleation. The second component

relies on the modeling of long-range hydrophobic forces and

the principles of combinatorial optimization to predict the

b-sheet and disulfide bridge topology for a protein structure.

Finally, these results are combined in a hierarchical way to

formulate a constrained global optimization problem that is

solved via a combination of deterministic and stochastic

algorithms to predict the final tertiary structure.

Both the validation and blind prediction results highlight

the merits of the ASTRO-FOLD approach. In addition to

accurately predicting the location of secondary structure

elements as assessed via SOV evaluations, the approach

provides specific information regarding the b-sheet topology

of the protein. These results are extremely powerful, and

form the basis for the overall accuracy of the final three-

dimensional structure predictions. The assessments of the

results through contact maps, LCS (RMSDs), and visual

observations emphasize these successes as well as indicate

avenues for potential improvement. Additional analysis also

suggests that these ab initio predicted structures are accurate

enough to link structure to function, which has important

implications for genome-wide functional annotation (Bren-

ner and Levitt, 2000; Baker and Sali, 2001).
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