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ABSTRACT Adhesion of leukocytes to substrate involves the coupling of disparate length and timescales between molecular
mechanics and macroscopic transport, and existing models of cell adhesion do not use full cellular information. To address
these challenges, a multiscale computational approach for studying the adhesion of a cell on a substrate is developed and
assessed. The cellular level model consists of a continuum representation of the field equations and a moving boundary
tracking capability to allow the cell to change its shape continuously. At the receptor-ligand level, a bond molecule is
mechanically represented by a spring. Communication between the macro/micro- and nanoscale models is facilitated
interactively during the computation. The computational model is assessed using an adherent cell, rolling and deforming along
the vessel wall under imposed shear flows. Using this approach, we first confirm existing numerical and experimental results. In
this study, the intracellular viscosity and interfacial tension are found to directly affect the rolling of a cell. Our results also show
that the presence of a nucleus increases the bond lifetime, and decreases the cell rolling velocity. Furthermore, it is found that
a cell with a larger diameter rolls faster, and decreases the bond lifetime. This study shows that cell rheological properties have
significant effects on the adhesion process contrary to what has been hypothesized in most literature.

INTRODUCTION

The study of leukocyte adhesion on blood flow in micro-

vessels is important for understanding the resistance changes

in microcirculation (Skalak, 1972; Weiss, 1990). The models

proposed previously in the literature, e.g., (Bell, 1978;

Dembo et al., 1988) do not take into account the rheological

properties of the cell, which can substantially limit the

predictive capability of these models. Evans et al. (1991)

introduced a different model in which the reverse reaction

rate (or off rate) followed a power law at low forces to

capture variations in rupture behavior from ductile to brittle.

Later, using the Brownian dynamics approach, Evans and

Ritchie (1997) derived a more general reverse reaction rate

expression that depends on the deformation of the energy

landscape caused by the external force and the spatial

variation of frictional interactions between molecules. In this

study, we will use the model proposed by Dembo because it

allows both the reverse and forward reaction rates to vary.

Adhesion to vascular endothelium is a prerequisite for the

circulating leukocytes to migrate into tissues. This event

involves amultistep process that includes: i), rolling of the cell

along the blood vessel wall; ii), margination (firm adherence

of the cell to the blood vessel wall); and finally iii), diapedesis

or emigration (cell squeezes through the capillary wall). This

three-step stage ismediated by a series of different endothelial

cell-leukocyte adhesion molecules (Long, 1995). Hydrody-

namic flow surrounding the cell exerts forces on the adhesion

bonds, which can shorten their lifetime or even extract the

receptor molecule from the cell surface (Alon et al., 1997,

1998; Evans, 1999). Evans (1999) showed that, under an

external force, bond lifetime and rupture strength are

intimately tied together by thermally activated kinetics in

a way that depends on how the force is applied over time.

Significant progress has been made toward understanding

the receptor-mediated cell adhesion process (Lauffenburger

and Linderman, 1993). Detailed experimental studies of the

adhesive bonds have suggested that adhesion molecules of

the selectin family are involved in maintaining the initial

rolling of the leukocytes on the endothelium, whereas the

integrin bonds are responsible for the firm and prolonged

attachment of the cells to the endothelium. Hammer and

Tirrell (1996) have presented a comprehensive review of the

fundamental parameters that characterize biomolecule func-

tion in cell adhesion.

Mathematical models proposed so far to describe different

events in cell adhesion are based on either the equilibrium

concept (Bell et al., 1984; Evans, 1985a,b) or the kinetics

concept (Dembo et al., 1988; Hammer and Lauffenburger,

1987; Dong et al., 1999). Here we follow the kinetics model

because it is designed to handle the dynamics of the cell

adhesion process. In the kinetics approach, both bond

association and dissociation occur according to the forward

reaction rate, kf, and reverse reaction rate, kr, respectively.
The merits of this approach have been reviewed in Shyy et al.

(2001). For a review on cell adhesion simulations using
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probabilistic and Monte Carlo approaches, the reader is

referred to Zhu (2000).

One flaw with all these models is that they do not take into

consideration the deformation of the cell. Dong et al. (1999)

and Dong and Lei (2000) attempted to address this issue by

assuming the cell membrane to be a two-dimensional (2-D)

elastic ring. They show that the intracellular viscosity and

cell membrane bending stiffness have profound effects on

adhesion. However, their model does not accurately describe

the rheological behavior of the leukocyte because in their

study only a small portion of the adhesion length is allowed

to peel away from the vessel wall. This constraint is not

physical so a more comprehensive model is presented here.

A major computational challenge for the adhesion studies

is the presence of the disparate length scales between a cell,

on the order of mm, and the adhesion bonds, on the order of

nm. Although the physical phenomena within the mm range

can be well represented by a continuum mechanics model,

molecular effects become significant within the nm range.

The objectives of this work are to develop a computational

strategy for multiscale problems, and to investigate the

effects of some key adhesion parameters and rheological

properties on the rolling and displacement of a white blood

cell in contact with a substrate. The cell is modeled first as

a simple liquid drop to show the essence of the computa-

tional approach, and then as a compound drop to highlight

the role of the nucleus in the cell behavior. The adhesion

mechanism is modeled based on the kinetics concept. The

cellular level model consists of a continuum representation

of the field equations for momentum transfer and mass

continuity, and an interfacial tracking capability to allow the

cell to change its shape continuously. The various aspects of

the modeling are described below.

COMPUTATIONAL METHODS

Development of the multiscale model

To form a comprehensive modeling framework to treat the

disparate scales between cell deformation (mm) and bond

length (nm), a multiscale model to account for both macro/

micro (continuum) and nano (ligand-receptor) levels of

phenomena is needed (Fig. 1). In our multiscale model, the

macro/micro component deals with the deformation of the

cell, the nano part takes care of the adhesion aspect, and

a numerical procedure is used to transfer information

between the two components. To outline the proposed

method, a 2-D representation of a cell modeled as either

a simple or a compound drop is studied in a planar channel

under an imposed flow (Fig. 2). The flow is assumed to be

uniform at the entrance of the channel, as is the case when

a flow enters the orifice of a parallel plate chamber. This is

done to generalize the problem so that no assumption has to

be made concerning the velocity profile of the flow as it

approaches the cell. The cell is attached to one side of the

channel wall with adhesive bonds governed by the kinetics

model proposed by Dembo et al. (1988).

Macro/micro scale model

A detailed description of the method used to treat the

deformation of the cell can be found in the literature

(Udaykumar et al., 1997; Shyy et al., 2001). Briefly, the

deformation of the cell due to an external fluid is governed

by the incompressible Navier-Stokes equations given below.

Governing field equations:

=:u ¼ 0 (1)

�=P1m=
2
u1F ¼ @ðruÞ

@t
1=:ður uÞ: (2)

In these expressions, u is the fluid velocity, P the pressure,

F the body force, m the dynamic viscosity of the fluid, r the

density of the fluid, and t time. Constant properties are

considered in each medium (such as cytoplasm), whereas

property variations are allowed between media (like

cytoplasm and nucleus, or inside and outside of the cell).

In the problems to be treated here, inertial effects are

negligible so the inertia term in Eq. 2 can be omitted.

However, for generality, we will keep all the terms.

Interfacial treatment. The interfacial conditions adopted

in the cellular model are based on the mass flux and force

balances, namely,

Continuity condition:

ðVÞinterface ¼ ðu:nÞ1 ¼ ðu:nÞ2: (3)

Balance of normal stresses—the dynamic Young-Laplace
equation:

P2 � P1 ¼ gk1m2

@un

@n

� �
2

�m1

@un

@n

� �
1

; (4)

where k is the curvature for two-dimensional flows and twice

the mean curvature for three-dimensional flows, g is the

interfacial tension, and n is the normal vector at the interface.

The subscripts 1 and 2 represent the fluid outside and inside

the cell, respectively.

FIGURE 1 Macro/Micro- and Nanomodel. The cellular model is shown

on the left (mm scale), whereas the enlarged area on the right shows the

nanodomain for the receptor model (nm scale).
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In this approach, the interfacial force is converted into the

source term, via local integration, in the momentum equation

as follows:

F ¼ �+
k

Dðx � X
ðkÞÞðgkðkÞ

1F
ðkÞ
b ÞnðkÞ

Ds
ðkÞ
; (5)

where D is the delta function, g the interfacial tension, k the

curvature, Ds is the arc length (for 2-D problems), n is the

normal direction vector, and Fb is the bond stress that is

defined by the nanoscale model.

The macroscopic model has been assessed by investigat-

ing the effects of capillary number, Ca ¼ mU/g, Reynolds
number, Re¼ (rUd/m), as documented in N’Dri et al. (2000)

and Shyy et al. (2001).

This macroscopic model provides information about the

cell shape, and velocity and pressure in the entire field.

Information about the instantaneous membrane shape and

local hydrodynamic force obtained from the macroscopic

model is transmitted to the nanoscale model.

Nanoscale model

The interaction between the cell and substrate surface at the

microscopic level is analyzed with the model proposed by

Dembo et al. (1988). This model treats a bond as a spring,

and the force of a bond, fb, is given by:

fb ¼ sðxm � lÞ and Fb ¼ Nbfb; (6)

where s is the spring constant, xm and l are the current and

the equilibrium lengths of a bond, Fb is the total bond force,

and Nb is the bond density.

Calculation of the bond density, Nb. The balance

equation for the formation and dissociation of bonds is

given by a simple kinetic relationship:

@Nb

@t
¼ kfðNlo � NbÞðNro � NbÞ � krNb; (7)

where Nb is the bond density, kr and kf are the reverse and

forward reaction rate coefficients, respectively, Nlo is the

initial ligand density on the surface, and Nro is the initial

density of receptors on the cell membrane.

The reverse and forward reaction rate coefficients are,

respectively, given by:

kr ¼ kro exp
ðs � stsÞðxm � lÞ2

2kbT

� �
(8)

and

kf ¼ kfo exp �stsðxm � lÞ2

2kbT

� �
; (9)

where kro and kfo are, respectively, the initial reverse and

forward equilibrium reaction rates, s the spring constant, sts

is the transition spring constant, xm the actual length of

a bond, l the equilibrium bond length, kb the Boltzmann

constant, and T is the temperature.

The kinetics equation is solved using a fourth-order

Runge-Kutta method where the initial bond density, Nbo, is

obtained by solving the following equilibrium equation:

kfoðNlo � NboÞðNro � NboÞ � kroNbo ¼ 0: (10)

The macro/micro model has been used to offer preliminary

analysis of a membrane being pulled away from a surface at

a constant velocity (Shyy et al., 2001; N’Dri et al., 2000).

The effects of reaction rates, ligand density, and other

parameters on the adhesion process have been reported.

Macro/micro- and nano communication

The transfer of information between the macroscopic and

microscopic scales is done as follows. First, an initial

membrane shape given by the macroscopic model is used as

the input for the microscopic model. At time zero, the bond

force is initialized (here, it is set to zero), and the

macroscopic model provides the pressure and velocity

around the cell. This information along with the shape of

the cell is then transferred to the microscopic model to

calculate the bond density and bond force. The macroscopic

model uses the latter data to determine the new shape and

position of the cell. Such two-way procedures continue

throughout the entire computation. Fig. 3 shows a flowchart

illustrating the multiscale model.

Computational procedures

The computational procedures for the above-described cell

adhesion problem consist of the following key elements: i),

FIGURE 2 Schematic of the problem statement. (a)

Simple liquid drop. (b) Compound drop model. In both

cases, the inlet flow is uniform. The uniform inlet flow is

selected to simulate the entrance of a flow into a 2-D

parallel plate chamber. This imposed uniform inlet flow is

more general than assuming a simple shear flow or

parabolic velocity profile. It allows us to investigate

entrance effects if needed. In the studied case, the cell is

located far enough from the entrance so that the flow is

parabolic.
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field equation solvers for mass and momentum conservation,

ii), interfacial movement in response to cell and surrounding

fluid interactions, and iii), communication between the field

equation solvers and the interfacial treatment. In this

approach, the field equations are solved using fixed Cartesian

grid, while the interface moves through the mesh based on

discrete, massless markers. This approach forms the so-

called Eulerian-Lagrangian technique (Shyy et al., 2001).

The advantage of the fixed-grid approach is that grid

topology remains simple while large distortions of the

interface take place. However, because the interface assumes

irregular shapes and moves continuously in time, proper

accounts of the interfacial conditions and capabilities for

handling irregular geometries in different materials are

critical steps. Different approaches can be used in this

regard. An effective approach is the immersed boundary

technique (IBT) originally used by Peskin (1977) and later

extended by various researchers for different problems

involving free and moving boundaries (Fauci and Peskin,

1988; Juric and Tryggvason, 1996; Kan et al., 1998;

Udaykumar et al., 1997; Unverdi and Tryggvason, 1992).

The other approach is the sharp interface method (Kwak and

Pozrikidis, 1998; Shyy et al., 1996; Ye et al., 1999, 2001).

For a review of alternative approaches, we refer to Shyy et al.

(2001), and the references cited therein. In this article, we

have adopted the IBT. A summary of this method is given

below.

Immersed boundary technique

The IBT approach incorporates the interfacial condition into

the field equation without explicitly tracking the interface.

As detailed in Udaykumar et al. (1997), the interface can be

handled by using marker points.

Interface information. The immersed interface is de-

noted by C(t), the interface is either a curve for a 2-D

problem or a surface for a 3-D problem. The interface is

represented by K marker points of coordinates~xxkðsÞwith k¼
1, . . . . ,K and s is the arc length. Fig. 4 shows the interface

numbering and representation. The marker points are

regularly separated 0:5h# ds# 1:5h where h is the grid

size. The interface is parameterized as a function of

the arc length s by fitting quadratic polynomials

~xxkðsÞ ¼~aaks
21~bbks1~cck through three consecutive marker

points of coordinates ~xxk�1;~xxk;~xxk11: Once the position of

the interface is known, the normal and the curvature are

evaluated. The convention adopted is that the unit normal

point form Fluid 2 to Fluid 1. In 2D, the normal is given by:

nx ¼ � ysffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
2

s 1 y
2

s

q and ny ¼
xsffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
2

s 1 y
2

s

q ; (11)

where the subscript s denote d/ds. The curvature is then

obtained by taking the divergence of the normal vector

k ¼ ~==:~nn: (12)

Material property assignment. With the known inter-

face position, the material properties are assigned using

a Heaviside step function.

b ¼ b1 1 ðb2 � b1ÞHð~xx �~xxkÞ; (13)

where b is any material property such as density r or

dynamic viscosity m. The subscripts 1 and 2 denote Fluid 1

and Fluid 2, respectively, as shown in Fig. 4, and Hð~xx �~xxkÞ
is the discrete Heaviside step function defined as follows:

FIGURE 4 Interface representation and numbering.

FIGURE 3 Flow chart showing the interaction between the nanomodel

(receptor scale) and the macro/micromodel (vessel/cellular scale).
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where dim is the spatial dimension, d ¼ 2h with h the grid

size, ~xx is the grid coordinate, and ~xxk is the interfacial point

coordinates. Fig. 5 provides an illustration of the Heaviside

function.

The next step is to communicate the force stored at the

interface to the nearby grid points.

Source term computation. The surface tension, while

exerted on the interface only, can be accounted for in the IBT

via modeled source terms in the momentum equation by

means of integral source terms. Specifically, it is lumped into

the source term ~FF in Eq. 2. Here we show this force only on

the discretized form:

~FFP ¼ �+
k

fk~nnkdð~xx �~xxkÞDsk: (15)

The force at the grip point P is computed based on the sum

of the interfacial force fk of the marker point located inside

a circle of radius 2h weighted by the Delta function as shown
in Fig. 6. The delta function spreads over 4h and is the

derivative of the Heaviside step function. It is computed as

follows:

dð~xx�~xxkÞ ¼
Ydim
m¼1

1

2d
ð11cos

pð~xxm�ð~xxmÞk
d

Þ if j~xx�~xxkj# d

0 otherwise

:

8><
>:

(16)

Once the interfacial position is known, the material

properties can be assigned properly then the interfacial force

is spread to nearby grid points and finally the flow field

equation can be solved. The next step is to compute the

interfacial point velocity.

The projection method for field equation solutions

Equations 1–4 are solved using the projection method on

a fixed Cartesian collocated grid. The projection method or

fractional steps is divided into three fractional steps:

Fractions step 1: solve momentum without pres-
sure. The convection terms are explicitly treated using

the Adams-Bashforth scheme, whereas the diffusion terms

are treated implicitly using the Crank-Nicholson schemes.

Both schemes are second-order accurate. Fig. 7 shows the

location of the velocity component and the pressure on a grid

cell.

Evaluation of the intermediate velocity u�x and u
�
y for a 2-D

problem

~uu
� �~uu

n

Dt

� �
1

3ð~uu:~==~uuÞn�ð~uu:~==~uuÞn�1

2

 !

¼ n=
2~uu

n�n=
2~uu

�

2
1F; (17)

where n is the time step level and F the source term

The pressure equation is derived by assuming that the

velocity satisfies the continuity equation at n 1 1 time step

level.

FIGURE 5 Heaviside function definition illustration.

Hð~xx �~xxkÞ ¼

Ydim
m¼1

1

2
11

ð~xxm � ð~xxmÞkÞ
d

1
1

p
sin

pð~xxm � ð~xxmÞkÞ
d

� �
if j~xx �~xxkj # d

0 if j~xx �~xxkj[1 d;

1 otherwise

8>>><
>>>:

(14)

FIGURE 6 Source term computation at the grid point P. Marker points

contributing to the computation are also shown.

FIGURE 7 Velocity and pressure location on a given grid cell.
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Fractional step 2: solve for the pressure.

~==:~UU
n11 ¼ 0)~==:

1

r
~==p

n11

� �
¼ 1

Dt
~==:~UU

�
: (18)

Fractional step 3: combination of velocity with pres-
sure. Finally, the correction step is done as follows.

At the cell center:

~uu
n11 ¼~uu

� �Dt
1

r
~==p

n11

� �
cc

: (19)

At the cell face:

~UU
n11 ¼~UU

� �Dt
1

r
~==p

n11

� �
fc

; (20)

where the subscript cc stands for cell center and fc stands for
face cell.

Interfacial velocity computation

The velocity at the marker point is denoted by Vk and should

satisfy the continuity condition, so in discretized form the

interfacial velocity is:

~VVk ¼+
ij

~uuijdð~xx�~xxkÞh2
; (21)

where h is the grid size, i and j are the grid location indices,

and~uu is the fluid velocity. The computation of the interfacial

velocity is illustrated in Fig. 8. The velocity is computed by

taking the sum of all the grid points located inside a circle of

radius 2h.
The last step is the advection of the interface and this is

done using the following equation:

~xx
n11

k ¼~xx
n

k1Dtð~VVn

kÞ (22)

RESULTS AND DISCUSSION

All the results presented below are based on the non-

dimensional parametric variations normalized by the refer-

ence scales given in Table 1. In all computation, the outer

viscosity (plasma) is kept constant.

Simple drop model

In this problem, a two-dimensional cell attached to a vessel

wall is subjected to a uniform flow imposed at the inlet of the

channel (Fig. 2 a). Tables 2 and 3 give, respectively, the

values of the macro/micro- and nanoparameters used in the

study. The cell is first modeled as a liquid drop with a

constant viscosity and surface tension. This is the simplest

model one can use to describe qualitatively certain rheolog-

ical behaviors of leukocytes (Evans and Yeung, 1989;

Tran-Son-Tay et al., 1991; Kan et al., 1999). In all the com-

putations, unless specified otherwise, the values used for kro,
s, and sts are taken equal to 0.1 s�1, 5 dyne/cm, and 4.5

dyne/cm, respectively. Using these parameters, the effects of

the reverse reaction rate, the wall, and the spring constant s

on the rolling/displacement of the cell along the endothelium

are evaluated.

Fig. 9 a shows the instantaneous position of an interfacial

point on the cell surface for a given kro. It is found that the

cell translates along the wall and rotates at the same time.

The combination of these two movements leads to the rolling

of the cell along the wall. The cell initially rolls along the

wall and starts to slide along the vessel wall when the bonds

offer no more resistance as shown by the plateau observed in

Fig. 9 b.
In what follows, a cell is considered peeled away from the

surface when the cell travels more than two cell radii.

Beyond this distance, our simulation shows that the shape of

the cell becomes nonphysical. Kuo et al. (1997) have made

similar assumptions in their study in which the leukocyte is

FIGURE 8 Interfacial point velocity computation. Grids contributing to

the computation are also shown.

TABLE 1 Reference values

Length Viscosity

L ¼ 30 mm m ¼ 1 dyne s/cm2

Velocity Density

U ¼ 600 mm/s r ¼ 1.0 g/cm3

Spring constant Bond density

s ¼ 5.0 dyne/cm Nb ¼ 5.1010 cm�2

Reverse reaction rate Interfacial tension

kro ¼ 0.1 s�1 g ¼ 0.1 dyne/cm

This is a list of the scaling parameters and values used in the study.

TABLE 2 The macroscopic-model parameters

Tube diameter Cell viscosity

30 mm 10–1000 dyne s/cm2

Cell diameter Plasma viscosity

6–8 mm 1.0 dyne s/cm2

Tube length Plasma density

120 mm 1.0 g/cm3

Inlet velocity Interfacial tension

50–600 mm/s 10�3–8.0 dyne/cm

Shown is the range of values used in the computational work.
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modeled as a solid body. They assume that bonds are broken

if the cell travels 10 cell radii.

Dong et al. (1999) and Dong and Lei (2000) have modeled

the cell as a liquid drop enclosed in an elastic ring. In their

approach, the initial shape of the elastic ring is the one taken

from the picture of an experiment of a cell adhering on

a surface under a known shear rate. They assume that only

a small portion of the adhesion contact can be peeled away

from the wall (that length is not specified in their work). This

assumption allows them to use an energy approach to cal-

culate the cell rolling velocity. In this model, we do not make

that assumption. We solve the full flow field and fluid-

interface interactions, and let the flow dictate the contact area.

The adhesion parameters and cell viscosity used in this study

are the same as those in Dong and Lei (2000). The only

unknownparameters in their study are the cell surface tension,

the contact length and the number of bonds. In Fig. 10,

a comparison between Dong and Lei’s (2000) numerical

study and our results is shown for �gg ¼ 4.0, 5.0, and 10 by

keeping the contact length and the number of bonds constant.

A high value of the surface tension �gg¼ 10 gives a good overall

agreement between our result and that of Dong and Lei

(2000). This is expected, because as the surface tension

increases, the liquid dropmodel should provide results similar

to the 2-D elastic model. However, because our approach is

more general, additional information can be found. For

example, we do not constrain the cell to a peelingmotion only;

we allow the cell to be lifted away from the surface.

A comparison of the bond lifetimes computed in our study

and the experimental results obtained by Schmidtke and

Diamond (2000) for one bond is shown in Fig. 11. Although

no information about the reaction rates and spring constant

is given, we have found that for the adhesion parameters

considered, these values do not significantly affect the rolling

and displacement of the cell along the vessel wall. The key

parameters are the cell rheological properties, the receptor

density and the ligand density. In this comparison, the cell

surface tension is taken to be 1.2 and the viscosity is varying

from 50 to 300. The top line in Fig. 11 corresponds to the

highest viscosity value. Good agreement is seen for a surface

tension of 1.2 and a viscosity of 200, even though a viscosity

value of 300 provides a better fit for shear rate values below

200 s�1.

Compound drop model

The case of the compound drop model is illustrated in Fig.

2 b. In the model, the nucleus occupies 44% of the volume of

the cell (Schmid-Schonbein et al., 1980), and the rheological

properties (viscosity and surface tension) of the nucleus are

taken to be 10 times that of the cytoplasm and cellular

membrane (Table 2). The kinetics parameters used are the

same as in the simple drop model. The problem to be solved

is the same as before: a cell is attached to a vessel wall, with

a uniform flow imposed at the inlet of the vessel tube.

It should be noted that the nucleus of a neutrophil is

small and segmented. Its contribution may not be as large as

the one predicted by this model but it is difficult to assess

this at the present time. A neutrophil nucleus is asymmetric

and it has been shown by Kan et al. (1999) that nucleus

eccentricity affects the instantaneous shapes of the cell

during recovery. In addition, Kan et al. (1998, 1999) have

shown that the presence of a nucleus, although small in size,

is needed to reconcile the various leukocyte rheological data

published in the literature. Therefore, this compound drop

model describes better the structure of a lymphocyte, but is

nevertheless a good model for evaluating the effect of key

parameters on the rheology and adhesion of leukocytes in

general.

Fig. 12 shows cell shapes at different time instants and

inlet velocities. We observe that an increase of the inlet

velocity accelerates the movement of the cell along the

vessel wall, and causes the bonds to break at a distance closer

FIGURE 9 Instantaneous location of an interfacial point on the cell as

a function of position and time for a simple drop model (kro ¼ 1.0 and
�UU ¼ 1:0; m ¼ 100, g ¼ 1.0). (a) Schematic showing the position of an

interfacial point on the cell to demonstrate cell rolling. (b) Vertical distance

between a specific interfacial point and the surface wall as a function of time.

y is the ordinate of the interfacial point shown in Fig. 4 a and R is the tube

radius. The points shown correspond to the simulation data.

TABLE 3 Values used in the microscopic model

Nr ¼ 2.0–5.0 1010 cm�2

(Bell et al., 1984)

kb ¼ 1.38 10�16 dyne cm/K

(Boltzman constant)

kfo ¼ 10�14 cm2/s

(Hammer and Lauffenburger, 1987)

l ¼ 5.0 10�6 cm

(Bell et al., 1984)

kro ¼ 10�11–10 s�1

(Bell, 1978)

rc ¼ 4.0 10�4 cm

(Schmid-Schonbein et al., 1980)

s ¼ 0.5–10 dyne/cm)

(Dembo et al., 1988) Fs ¼ (s � sts) / s ¼ 0.1

sts ¼ 0.48–9.5 dyne/cm

(Dembo et al.,1988)

Nl ¼ 2.0–5.0 1010 cm�2

(Lawrence and Springer, 1991)
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to the wall surface. This is due to the fact that when the inlet

velocity is increased, the cell is pushed by a higher

hydrodynamic force.

The viscosity ratios between the plasma, cytoplasm, and

nucleus are defined as follows:

a¼ mc

m0

and b¼mn

mc

; (23)

where m0 is the plasma viscosity, mc is the cytoplasm

viscosity, and mn is the nucleus viscosity.

The effects of b on the peeling time and rolling velocity

are shown in Figs. 13 and 14, respectively. A higher value of

b increases the bond lifetime and decreases the rolling

velocity. The effects of a and b on the bond lifetime as

a function of shear rate are shown in Fig. 15 and compare

well with the experimental measurements made by

Schmidtke and Diamond (2000), especially for shear rates

less than 200 s�1. In our computation, the surface tension of

the cell is kept fixed whereas the viscosity ratios are varied. It

is seen that a decrease in the cytoplasm/plasma or nucleus/

cytoplasm viscosity ratio lowers the bond lifetime. Overall,

our simple and compound drop models both produce results

in agreement with published experimental data. The pre-

sence of a nucleus is found to increase the bond lifetime and

to decrease the cell rolling velocity.

The effects of surface tension on the bond lifetime are

shown in Fig. 16. A lower surface tension allows the cell to

maintain a larger curvature, which enables the cell to remain

attached with a smaller contact area, as shown in Fig. 17.

Consequently, the cell can remain attached with a smaller

and sharper curved contact area and delay the lifting of the

cell from the wall. For the parameter values used, the cell

with the highest surface tension describes best the experi-

mental results of Schmidtke and Diamond (2000). It is also

shown that a cell with a lower cytoplasmic viscosity deforms

more, remains closer to the surface, and rolls faster, as shown

in Fig. 18, causing a decrease in bond lifetime.

The effect of cell diameters on the peeling time is shown

FIGURE 11 Effects of cytoplasm viscosity and shear

rates on the bond lifetime: simple drop model. The squares

correspond to the experimental results of Schmidtke and

Diamond (2000), and the lines to our study. �NNr ¼ 0:02;
�NNl ¼ 1:0; �ss ¼ 0:1; fs ¼ 0:04; �gg ¼ 1:2:

FIGURE 10 Effects of cytoplasm viscosity and surface tension on the cell

rolling speed: simple drop model. The dashed line corresponds to the

numerical results of Dong and Lei (2000), and the solid lines to this study. In

all cases, �UU ¼ 1:0; �NNr ¼ 0:4; �NNl ¼ 1:06; �ss ¼ 0:1; fs ¼ 0:04: The three solid

curves correspond to �gg ¼ 4.0, 5.0, and 10, from bottom to top respectively.

2280 N’Dri et al.

Biophysical Journal 85(4) 2273–2286



in Fig. 19. Three cell diameters of 7 mm, 8 mm, and 10 mm

corresponding, respectively, to the average size of lympho-

cytes, neutrophils, and monocytes are selected. It is seen that

a larger diameter cell decreases the peeling time and

increases the cell rolling velocity. This result is consistent

with the simulation of Tees et al. (2002) and experiments of

Shinde Patil et al. (2001). A larger cell causes a greater

blockage of the vessel, which results in larger local

hydrodynamic forces.

Changing the values of the spring constant (s) by a factor

of two or less has little impact on cell rolling, as observed

by Chang et al., (2000). The results are not shown for

conciseness, but the nucleus tends to delay the rolling of the

cell along the vessel wall.

In summary, we have shown that the rheological

properties of a cell have significant effects on the adhesion

process contrary to what has been hypothesized in the

literature (Hammer and Lauffenburger, 1987; Tees et al.,

2002).

SUMMARY AND CONCLUSIONS

In this study, a multiscale computational approach for

studying the adhesion kinetics, the deformation, and the

FIGURE 13 Effect of the nucleus to cytoplasm viscosity

ratio, b, on the peeling time: compound drop model. a ¼
100, �UU ¼ 0:1; �NNr ¼ 1:0; �NNl ¼ 1:0; �ss ¼ 1:0; fs ¼ 0:2: The

points shown correspond to the simulation data.

FIGURE 12 Instantaneous cell shapes for different

values of inlet velocities: compound drop model. The

horizontal line corresponds to the bottom channel wall.
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movement of a cell on a substrate is presented. This method

breaks the computational work into two separate but inter-

related domains. At the cellular level, a continuum model

satisfying the field equations for momentum transfer and

mass continuity is adopted. At the receptor-ligand, or molec-

ular, level, a bond molecule is mechanically represented by

a spring. A reversible two-body kinetic model characterizes

the association and dissociation of a bond. Communication

between the macroscopic and microscopic scale models is

facilitated interactively in the course of computation.

The computational model is assessed using an adherent

cell, allowed to roll along the vessel wall under imposed

shear flows. The cell is first modeled as a liquid drop to

illustrate the computational approach, and then as a com-

pound drop to evaluate the effect of the nucleus. The results

compare very well with those obtained computationally

(Dong et al., 1999; Dong and Lei, 2000; Chang et al., 2000;

Tees et al., 2002) and experimentally (Schmidtke and

Diamond, 2000; Shinde Patil et al., 2001). With these key

validations, this approach is now ready to be extended to

address various issues associated with cell adhesion. Shao

et al. (1998) have found that after the microvillus reaches its

natural length, it will extend under a small pulling force or

form a tether under a high pulling force. In our computation,

we observed that a tether is formed for high inlet velocity,

thus for high pulling force as shown in Fig. 12. In addition,

FIGURE 15 Effects of intracellular viscosity and shear

rate on the bond lifetime: compound drop model. The

squares correspond to the experimental results of Schmidtke

and Diamond (2000), and the lines to this study. �NNr ¼ 0:02;
�NNl ¼ 1:0; �ss ¼ 0:1; fs ¼ 0:04; �gg ¼ 1:2: For a surface

tension value of 0.12 dyne/cm, the best fit to the

experimental data is given for a cytoplasm and nucleus

viscosity value of 200 dyne s/cm2 and 1000 dyne s/cm2,

respectively. Cytoplasm and nucleus viscosity values of 100

dyne s/cm2 and 1000 dyne s/cm2, respectively, also form

a reasonable set. All these values are within the range of the

values reported in the literature (see Table 2).

FIGURE 14 Effect of the nucleus to cytoplasm viscosity

ratio, b, on the rolling velocity: compound drop model. a¼
100, �UU ¼ 0:1; �NNr ¼ 1:0; �NNl ¼ 1:0; �ss ¼ 1:0; fs ¼ 0:2: The

points shown correspond to the simulation data.
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we have observed a lifting of the cell from the vessel wall

leading to its peeling as shown in Fig. 9. Similar obser-

vations were made by Sukumaran and Seifert (2001) who

studied the influence of the shear flow on vesicles near a wall

and by Hodges and Jensen (2002) in their numerical study.

In the latter study, the cell is modeled as a liquid drop

adhering to a flat surface subjected to a simple shear flow.

They found that the distance of the cell above the plane

FIGURE 17 Instantaneous cell shapes for different

values of interfacial tension, g. �NNr ¼ 1:0; �NNl ¼ 1:0;

�ss ¼ 0:1; fs ¼ 0:04; a ¼ 100, and b ¼ 10, �UU ¼ 0:1: The

horizontal line corresponds to the bottom channel wall.

FIGURE 16 Effects of surface tension and shear rate on

the bond lifetime: compound drop model. The squares

correspond to the experimental results of Schmidtke and

Diamond (2000), and the lines to this study. �NNr ¼ 1:0;
�NNl ¼ 1:0; �ss ¼ 0:1; fs ¼ 0:04; a ¼ 100, and b ¼ 10. For

cytoplasm and nucleus viscosity values of, respectively,

100 and 1000 dyne s/cm2, a surface tension of 0.3 dyne/cm

gives the best fit to the experimental data. A surface tension

value of 0.12 dyne/cm also provides a good fit. All these

values are within the range of the values reported in the

literature (see Table 2).
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surface increases rapidly with time, then reaches a plateau as

observed in Fig. 9 of this study. In addition, Hodges and

Jensen (2002) reported that changing the suspending fluid

viscosity value (the inside fluid is inviscid) does not affect

the cell rolling velocity. However, they did not investigate

the effects of the nucleus and cytoplasmic viscosities. In this

study, it is shown that varying the cytoplasmic and/or

nucleus viscosities influences the rolling velocity of the cell,

indicating that hydrodynamics has an effect on cell adhesion.

In our study, bond formation is not considered per se due

to the numerical resolution. We consider that a bond is

formed when the distance between a receptor and ligand is

less than a bond length, taken as 5 3 10�6 cm. Although in

this study mesh resolution does not allow bond formation to

be directly simulated, we can deduce from Fig. 13 that an

increase of the shear stress keeps the cell closer to wall, and

increases the contact area. This is consistent with published

results (Alon et al., 1997, 1998) that a higher shear stress can

enhance bond formation. How this phenomenon occurs is

not clear. Does an increase of the shear stress increase first

the diffusion and convection of bond molecule toward the

contact area, or does an increase of the shear stress lead to an

increase of the contact area due to cell deformation?

Although the proposed approach is able to describe key

features of cell adhesion, several issues still need to be

addressed. For example, experimental results have shown

that there is a threshold stress above which cell rolling occurs

(Shao et al., 1998). However, the models proposed in the

literature cannot capture this feature, indicating that the

straightforward analogy between a bond molecule and

a spring model is incomplete. A bond model with a yield

force can be used to help resolve this deficiency. Another

issue is the characterization of the association and dissoci-

ation of bonds and the bond length before rupture because of

the required computational time.

In this work, we have neglected membrane roughness

(microvilli) and the effect of nonspecific forces in the bond

force computation. In addition, we have assumed that the

bond molecules are fixed on the membrane surface, which is

not the case because bond molecules have shown to diffuse

laterally to the contact area (Bell et al., 1984). The model is

also limited by the fact that the only stresses acting on the

FIGURE 19 Effect of cell diameter on the dimensional

peeling time: compound drop model. a ¼ 100, �UU ¼ 0:1;
�NNr ¼ 1:0; �NNl ¼ 1:0; �ss ¼ 1:0; fs ¼ 0:2; b ¼ 5: The points

shown correspond to the simulation data.

FIGURE 18 Effect of viscosity on the cell shape as

a function of time. �NNr ¼ 1:0; �NNl ¼ 1:0; �ss ¼ 0:1; fs ¼ 0:04;

b ¼ 10, �UU ¼ 0:1: The horizontal line corresponds to the

bottom channel wall.
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membrane are those coming from the bond molecules, as

made by Dembo et al. (1988) in the derivation of the reverse

reaction rate constant. Furthermore, although the compound

liquid drop model can capture most of the features of cell

recovery and explain the reasons for the different published

values for leukocyte viscosity, it does not include elastic

effects that may be needed to fully describe leukocyte

rheology (Tran-Son-Tay et al., 1994, 1998; Drury and

Dembo, 1999, 2001; Kan et al., 1998, 1999). Another

important issue is the use of a 2-D cell model because some

of the present results may not hold in a 3-D world.

Nevertheless, this effort has offered a comprehensive

framework to couple the cellular and the receptor-ligand

dynamics and has shown that cell rheological properties have

an effect on adhesion process. In the future, we will exploit

the capabilities of large-scale parallel molecular dynamics

computation to explicitly track the formation and dissocia-

tion of a bond, which has a timescale too small, of the order

of 1 ns or less, to be accurately determined by the existing

numerical technique.
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